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Quantum State Reconstruction of an Oscillator Network in an Optomechanical Setting
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We introduce a scheme to reconstruct an arbitrary quantum state of a mechanical oscillator
network. We assume that a single element of the network is coupled to a cavity field via a lin-
earized optomechanical interaction, whose time dependence is controlled by a classical driving field.
By designing a suitable interaction profile, we show how the statistics of an arbitrary mechanical
quadrature can be encoded in the cavity field, which can then be measured. We discuss the impor-
tant special case of Gaussian state reconstruction, and study numerically the effectiveness of our
scheme for a finite number of measurements. Finally, we speculate on possible routes to extend our

ideas to the regime of single-photon optomechanics.

PACS numbers:
I. INTRODUCTION

Quantum optomechanics exploits radiation pressure to
couple photons and mechanical oscillators. The field has
progressed significantly in the last decade and is now en-
tering a promising stage where the observation of quan-
tum effects in macroscopic objects appears to be within
grasp [IH3]. Substantial theoretical and experimental ef-
fort has been put into the preparation of mechanical sys-
tems, typically consisting of vibrating mirrors or mem-
branes, in interesting non-classical states. In such a con-
text, an important question arises: how can we verify
that the mechanical state prepared in an experiment is
indeed the desired one? The design of successful strate-
gies to achieve such verifications requires the experimen-
tal estimation of the density operator of a mechanical
system. However, it is well known that the full informa-
tion encoded in the density operator cannot be accessed
through the measurement of a single observable. One
must instead collect the measurement statistics of several
distinct observables, a task which requires access to many
copies of the quantum system of interest. These could be
obtained, for instance, by repeating the same experiment
with the same initial conditions. By post-processing the
outcomes of such measurements, an experimentalist can
estimate the density operator via techniques known as
quantum tomography and quantum state reconstruction
[4,[5]. Perhaps the best known example in this context is
the reconstruction of the Wigner function of an oscillator
(which brings about an amount of information equivalent
to that of the density operator) through a Radon trans-
form of the quadrature probability densities [6].

In an optomechanical setting various approaches to
quantum state reconstruction have been explored in the
literature [2,[7, [8], in particular employing weak or quan-
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tum non-demolition measurements of mechanical quadra-
tures [7, [OHIT]. Other techniques that have been put for-
ward include the use of short laser pulses to prepare and
read out the mechanical state [I2HI4], the exploitation
of a detuned driving field [15], and the measurement of
the phonon-number operator [16]. The possibility of a
precise readout has also opened the way towards feed-
back cooling of a mechanical oscillator [I7]. Very re-
cently, high-efficiency state estimation of a mechanical
oscillator through techniques based on Kalman filtering
have been implemented experimentally, paving the way
to the real-time reconstruction of mechanical state-space
configurations, and their quantum-limited control [18].
Besides optomechanical systems comprising a single
mechanical oscillator, one can envisage situations in
which multiple mechanical oscillators interact in a small

4

Aout

FIG. 1: Sketch of the system under consideration: a is the
annihilation operator of the single intra-cavity mode, whereas
bi,...,bn refer to the mechanical oscillators composing the
network. Only the mechanical mode b; is directly coupled to
the radiation field. The driving field (red arrow) can be modu-
lated in order to realize the time-varying linearized radiation-
pressure coupling needed to reconstruct a selected quadrature
of the oscillator network. Only the field aout leaking from the
cavity is eventually measured via homodyne detection. Re-
peating the protocol for a sufficient set of quadratures, the
state of the entire mechanical network can be reconstructed.
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network and operate close to the quantum regime [T9-21]
(Fig.[I)). The latter would implement systems of interact-
ing bosons which are of paramount interest in a variety of
contexts — including quantum thermodynamics [22] and
quantum simulators [23], where they represent an ideal
playground to test fundamental issues like equilibration
[24], heat transport [25H29], the definition of tempera-
ture [30H32], and the universal scaling of ground-state
entanglement [33, [34]. In addition, interacting quantum
oscillators have been proposed as a valid route towards
quantum computation [35H38]. Quantum state recon-
struction is instrumental in all these settings. Outside
the optomechanical domain, the reconstruction of an os-
cillator network can be accomplished using a two-level
system interacting with one node of the network — pro-
vided the coupling constant is time-dependent and can be
controlled by the experimenter [39] 40]. However, apart
from measuring each oscillator individually, to the best
of our knowledge no method has been proposed for the
efficient readout of the quantum state of an oscillator
network in an optomechanical setting.

In this paper we propose a protocol of quantum state
reconstruction for the mechanical portion of a generalized
optomechanical system, featuring a single high-quality
cavity mode coupled to a network of mechanical oscilla-
tors (see Fig. . Our protocol relies on the so-called lin-
earized radiation pressure interaction, and exploits mea-
surements on the accessible output modes of the optical
cavity (rather than the mechanical modes of the oscilla-
tor network which are typically challenging to measure
directly). By controlling in time the interaction strength,
we show that it is possible to encode information about
any mechanical quadrature in the cavity light, which can
then be measured through the output fields leaking out
of the system. Specifically, we discuss how an arbitrary
moment of the selected quadrature can be estimated via
appropriate light-quadrature measurements, followed by
the inversion of a linear system of equations. Our scheme
shares an important advantage with Ref. [40]: it requires
minimal access to the oscillator network, in that it can be
probed through interaction with just one of its elements.

The paper is organised as follows. In Section [[I] we
present our state reconstruction scheme applied to a sin-
gle mechanical oscillator, a simple example which pro-
vides a gentle introduction to the more technical case of
a network. We start by showing how the dynamics of
interest can be solved analytically, then discuss how the
interaction profile can be designed to encode a chosen
mechanical quadrature in the cavity light mode. Finally,
we conclude the section by explaining how to measure
indirectly the light mode through collection of the cavity
output field. Section [[TI] presents the main results of this
paper, and generalizes our reconstruction procedure to a
network of mechanical oscillators. We provide sufficient
conditions under which the quantum state of the entire
network can be reconstructed, as well as an explicit an-
alytical procedure to design the interaction profile. Sec-
tion[[V]deals with the important special case of Gaussian

states, and provides a numerical simulation of our scheme
for the realistic case of a finite number of measurements.
In Section [V] we present some ideas about extending our
state reconstruction scheme to the single-photon regime
of optomechanics. Finally, we draw our conclusions in

Section [V

II. A SINGLE OSCILLATOR
A. Optomechanical model

Our starting point is the so-called linearized optome-
chanical interaction, which involves a cavity mode with
annihilation operator a and an oscillating mirror whose
excitations are described via a second annihilation op-
erator b. The cavity is pumped by a resonant classical
field, and in a frame rotating with the cavity frequency
the Hamiltonian reads

H = w,b'b+ g(t) X (b + '), (1)

where w,,, is the mechanical oscillator frequency, g(¢) is a
time-dependent coupling constant controlled via the am-
plitude of the classical driving field, and X = (a+a')/v/2
is a cavity quadrature operator. Notice that an alterna-
tive scheme to generate Hamiltonian with tunable
coupling has been recently reported in [4I]. Moving to
an interaction picture defined by Hy = w,,b'b, the Hamil-
tonian becomes

Hy = g(t)X (be~@mt 4 pleiwmt) (2)

The latter satisfies the Schrédinger equation U =
—tH;U, which can be solved via the ansatz U =
e'*D(XB) [with D(a) = ' =2"b the displacement oper-
ator of the mechanical mode], where ¢ is assumed to be
a time-dependent operator that commutes with the me-
chanical degree of freedom (namely, [¢,b] = [¢,b[] = 0),
whereas (8 is a time-dependent complex number. Then

U =ipU — X(BB* + BB*)U — XB*Ub . (3)

Using the unitarity of U and the Baker-Campbell-
Hausdorff formula, note that

UU" = ip - X*(65" + B5*) — XpUBUT,  (4)
UbUT =b— XB* . (5)
Then the Schrédinger equation implies
i+ iX*Im(BB*) + XbB — b3 (6)
= —ig(t)Xbe wmt L pleiwmt — (7)

Matching coefficients produces a set of simultaneous
equations:

B = —ig(t)ent d=—-X’Im(BB*). (8)



For an interaction time 7, one has the solutions

B=—i / " g(s)emids | (9)

¢=-X? /T Im(B3*)ds . (10)
0
Finally one can rewrite U = e™*” D(X) with
=— [ Im(BB*)ds. 11
v=— [ m(ai)as (1)

Therefore, the dynamics is described by a mechanical
displacement operator whose amplitude depends on the
in-phase quadrature operator of the optical mode modi-
fied by a quadratic term on the optical mode.

For the purposes of this reconstruction strategy, the
dynamics can be greatly simplified by constructing the
interaction profile in such a way as to eliminate the
quadratic term (i.e., setting ¢ = 0)[57].

B. State reconstruction of a single oscillator

We will now show that a link can be established be-
tween the cavity quadrature operator P = i(a' — a)/v/2
(namely, the canonical momentum operator conjugated
to X — momentum for brevity) and an arbitrary me-
chanical quadrature. Then, we will use these results to il-
lustrate how the full reconstruction of the oscillator state
can be carried out. Let the initial state of light and me-
chanics be p = |0) (0] ® po with |0) the vacuum state
of the optical mode (in the displaced frame of reference)
and py the mechanical state to be reconstructed. For the
scope of the present discussion it is convenient to switch
to the Heisenberg-picture. After an interaction time 7,
the cavity field’s momentum evolves into

P(r)=U'PU = P —V2|B|Qy , (12)

where Qp = (be™" 4 bte?)/1/2 is the arbitrarily chosen
mechanical quadrature. The phase of Qg is controlled by
the parameter 3, as per ¢ = arg(3) + 5. We rescale the
observable as

P(7) 0 P
=Yoo= =7
V2|8 V2|8
from which we can easily deduce a relationship between
P,(q), the (measurable) probability distribution of @,
and Py(q), the probability distribution of @y in the state

po- Such distributions are related by the convolution
integral

o 2 2 N2
P, (q) =/ dg'Py(q) \/;ﬂlem (@) (14)

where the Gaussian factor is due to the second term in
Eq. (recall that P exhibits vacuum statistics on our

Q. =— (13)

initial state). As the displacement paramenter |S| in-
creases, the measured distribution P,(¢q) provides a better
approximation to Py(g). In the limit |3] — oo one would
have P,(q) — Py(gq). Note however that the magnitude
of |8] will be limited by physical constraints such as the
maximum achievable coupling strength max;|g(t)| and
the requirement to keep interaction times short enough to
avoid decoherence. For finite |g] it is in principle possible
to recover Py(q) from P,(¢q) via standard deconvolution
techniques, due to the fact that the Gaussian distribution
in Eq. is fully known.

As an alternative to the deconvolution approach, one may
also exploit Eq. to establish a relation between the
statistical moments of the measured operator @, and the
mechanical moments (QF)

@ =3 (1)@ (V;m)v (15)

k=0

where V} indicates the statistical moments of P in the
vacuum state, Vy = (0| P¥ |0)

0
Vi = { 1
N
where T' is the FEuler-Gamma function. Eq. (15
tells us that, having experimentally determined (Q?)
(j = 1,...,n), we may calculate (Q}) (j = 1,...,n)
from the data by inverting an m x mn linear system of
equations. As discussed in section [[V] this second ap-
proach is particularly convenient when pg is a Gaussian
state, in which case the knowledge of first and second
moments of Qg (for several values of 6) is sufficient for
full state reconstruction.

k odd
(%) k even (16)

Let us now illustrate the quantum state reconstruction
protocol. First, the user selects a quadrature Qg to re-
construct. This choice determines the value of arg(3) as
shown above. The modulus of 5 along with the coupling
g(t) and interaction time 7 are chosen such that ¢ = 0.
This can be accomplished by setting

Wi
) = —m
q(t) o

(Ae—iwmt _,'_A*eiwmt + Be—Ziwmt + B*€inmt)

(17)
and using Egs. (9] along with the choice of arg(f)
and the condition ¥ = 0 to solve for the coefficients A
and B. After an interaction time 7, the cavity field has
assimilated the information from the mechanical mode
and is ready to be measured. At this point the coupling
is switched off, the measurement is performed, and the
result recorded. The system must be reset and the proce-
dure repeated sufficiently many times such that the sam-
pling of the measurement results is reliable. The proba-
bility distribution P,(¢q) and/or the associated moments
may then be estimated from the collected data. Subse-
quently one may proceed to the deconvolution of P,(q),
[or the inversion of Eqs. (I5)] in order to estimate the dis-
tribution Py(q) (or a finite number of its moments). The



procedure must then be repeated for a sufficient num-
ber of different quadratures (i.e., different values of ),
such that the state pg may be recovered via the standard
inversion techniques of quantum tomography [4H6], 42].

C. DMeasuring the cavity through its output field

Note that the scheme presented so far relies on the mea-
surement of the intra-cavity field, which is typically not
directly accessible. However, by making use of the small
but inevitable transmittance of the cavity mirrors, one
may measure the associated output fields and infer the
intra-cavity field properties via input-output theory [43].
For the case under consideration, assume that the emis-
sion rate of the cavity x is small enough as to be neg-
ligible during the reconstruction protocol described so
far (i.e., k7 < 1). It is also convenient to assume that
such emission occurs through only one of the two cav-
ity mirrors, so that it may be more easily collected. At
time 7, we assume that the optomechanical coupling has
been switched off, and that the cavity obeys the standard
quantum Langevin equation [43]

a— g(l = _\/anut, (18)

whose formal solution can be arranged as

K tf K ’
alr) = 5 Talty) Vi [ gt

(19)
This is a Heisenberg-picture relation indicating that the
full information about the cavity field (at the time 7 of
interest) is shared between the output field modes and
the cavity field at the later time ¢tf. Observe that for
ty > ! the desired information is fully encoded in the
output field. Formally, this amounts to the expression

[ee]
a(r) = \/E/ 6_%(t/_T)aout(tl)dt/ = fout (20)

where the bosonic operator f,.; represents an appropri-
ate combination of output field modes that can be mea-
sured directly. Note that, so far, we have considered an
idealized cavity in which all internal losses are associated
with emission into detectable modes. In the presence of
genuine optical losses, which irreversibly deteriorate the
amount of accessible information, Eq. must be mod-
ified as follows [44] [45].

fout = V1 —€a(r) + Ve avac, (21)

where 0 < € < 1 is the probability of single-photon loss,
while ayac is a bosonic mode accounting for the asso-
ciated added noise: it commutes with fu,¢ and is as-
sumed to display vacuum statistics. Constructing the
usual quadrature operators we obtain the relation Py, =
V1 — € P(7) + /€ Pyac, which can be exploited to obtain
relationships analogous to Eqs. and , linking the
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measurement statistics of Poyt to those of P(7). In par-
ticular, the measured moments read

Pr =3 (PJa-a ety . @)

k=0

The moments (P”.) can be estimated via homodyne de-
tection, so that an inversion of the equations above al-
lows one to retrieve the moments (P"(7)). As outlined
in Section [TB] the latter can then be rescaled to ob-
tain the moments of @,, which in turn allows to retrieve
the desired mechanical quadratures. Alternatively, the
measured probability distribution of Pyt may be decon-
voluted to obtain that of P(7), if the noise parameter € is
known. Appendix [A] details examples of the reconstruc-
tion when the noise parameter is significant. The primary
effect is to increase the number of measurements required
for a good representation of (P2,).

The next significant noise factor is that of damping
of the mechanical oscillator at rate I'. In the regime
in which the reconstruction protocol takes place the me-
chanical damping rate is very small compared to the cav-
ity decay rate. To clarify, we operate in the resolved
sideband regime which requires that I' < kK < w,,. We
thus conclude that the effect of the mechanical damp-
ing over the timescale of the interaction with the cavity
field is negligible. Furthermore, the explored examples
of g(s) (Figs. [4] and [5)) required for reconstruction show
that the reconstruction is effective over the course of a
few mechanical periods.

IIT. A NETWORK OF OSCILLATORS

A. Hamiltonian and time evolution

The protocol described above can be generalized to the
case of a network of N harmonically coupled oscillators,
whose mechanical excitations are described by a set of
bosonic operators by, ..., by, with [b;, b;r] = ;5. Only one
mechanical oscillator, say by, is coupled to the optical
mode a (see Fig[l). The Hamiltonian for such a system

reads H = Hy + H;py
Hy = wablbn+ > Jum(bubly +bibn)  (23)

n<m

+ > K (bnbm + DY) |

n<m
Hint = g(t)X (by +b1) (24)

where w,,, Jpm and K,,, are the bare frequencies and
coupling constants characterizing the network — which
are assumed to be known in advance [46, [47]. By
Williamson’s theorem, the mechanical portion of our sys-
tem can be brought into diagonal form by a symplectic
transformation S, which has the general structure

_ (51 S
S = (s; 5;) . (25)



In terms of the mechanical normal modes defined by S,
the Hamiltonian reads

Hy = Z VndILdn s (26>

Hipp = g(t)X Y (Gndn + Grdl) (27)

where G,, = (S1 — S2)%;, d,, are the annihilation opera-
tors for the normal modes ([d,,d! ] = 6,m), and v, the
associated eigenfrequencies. Moving to the interaction
picture defined by Hj, one has

Hy = g()X 3 hy(0). (28)

J

where hj = Gjdje”"'+ G d;[-ei”jt. These operators have
the property that [h;(t), hj ()] = 0 Vj # j'. This allows
the unitary for the system to be written as U = ®;u;(t) ,
with each u; satisfying the equation

u; = —ih;(t)u;(t) (29)

with the initial condition u;(0) = I . Following Section
[T these equations can be solved by the ansatz

uj =% D(XB)) (30)

with ¢; commuting with all involved mechanical modes.
There are two coupled equations associated with each j

¢; = —iX?Im(B;3;) |

which have solutions

B; = —ig(t)Gie™*t | (31)

t
Bj = —iG;/O g(s)e™i%ds (32)
t .
0; = ~ix* [ tm(Bf)ds (39
0
Then
U =" D(XP), (34)
where U =39, 8= (f1 B2 ... By) and
t
v == [ m(;5))ds (35)
0

The evolution of this more general system bears a clear
resemblance to the single oscillator case. First, it com-
prises a quadratic term on the optical mode that depends
on the global phase ¥. We will set this to zero, extending
the method used for the reconstruction of one oscillator
(see below). Second, we can recognise an X-conditioned
multimode displacement on the mechanical modes. In
order to proceed with the state reconstruction, it is nec-
essary to introduce two assumptions on the properties of
the network. These are

e (A1) G, 40 VY n.

e (A2) The spectrum of normal modes {v;} is non-
degenerate.

These assumptions embody the ability of the cavity field
to interact with, and distinguish, all the normal modes
of the network [see Eq. (27)]. A further practical require-
ment is that the interaction time should be sufficiently
long to allow the resolution of modes that vibrate with
similar frequencies. The dynamics described here is rem-
iniscent of the one derived in Ref. [40], where an oscilla-
tor network is probed with an auxiliary two-level system
rather than with a cavity field.

B. Quantum state reconstruction

Similarly to the single oscillator case, let the initial
state of the system be the factorised state p = |0) (0| ® po
where py now indicates an arbitrary state of the oscilla-
tor network. Reconstruction proceeds as before, with the
following modification: there are now multiple mechani-
cal quadratures, defined by Qp, = (dje=% —I—d;r-ewi)/ﬂ.
Note that these quadratures are defined in terms of the
normal mode operators, so that the state is reconstructed
in the normal-mode basis. However, a representation in
terms of the original modes by,...,by can be obtained
through the inverse symplectic transformation S~!, cor-
responding to a reshaping of the reconstructed Wigner
function. As before, let us work in the Heisenberg pic-
ture, and let us indicate by 7 the interaction time in
which the controlled displacement is implemented. After
the interaction, the cavity quadrature P evolves into

P(r) =P =2} 181Qs,, (36)

where 0; = arg(f;)+5. By proceeding as for the case of a
single mechanical oscillator, one may write a convolution
integral connecting the probability distribution of P(7)
to that of the mechanical quadratures. Since the choice
of each quadrature @y, is determined only by the phase
of B;, by varying |3;| in Eq. it is possible to measure
a sufficient number of linearly independent observables
to enable a deconvolution, and hence estimate the multi-
variate probability distribution of (Qg,, ..., Qoy). As we
will be primarily interested in Gaussian states, however,
here we focus on the reconstruction of arbitrary moments
of the mechanical quadratures, rather than their proba-
bility distribution. From Eq. , it follows that the
moments of P are linked to the mechanical quadrature
moments by

P = {kz} (ko,k:...kN) Vo <1<1;£N(\[2|ﬂj|Q9j)kj>
(37)

with the sum over all permutations of integers (k1, ..., k)
such that k1 + ko + ... + ky = n, and we recall that



Vie = (0] P* |0) is given in Eq. (I6). This system of
simultaneous equations is under-determined, however we
can exploit the freedom in |3;| to generate as many inde-
pendent extra equations as necessary, involving the same
variables but different coefficients. This results in a linear
system of equations that, once inverted, provides an ar-
bitrary moment of the mechanical network quadratures.
For Gaussian states, we recall that first and second mo-
ments will suffice to fully characterize the mechanical
quantum state.

As in Section in order to (i) reconstruct an ar-
bitrary quadrature (Qg,) and (ii) reduce the dynamics
to a multimode displacement (i.e. set ¥ = 0)[58], it is
crucial to properly select the interaction profile g(s). Let
us define the latter as

E. 9k —iVES __ @ WES h —iws — h* ws
t[g(G;e er >—|—e e

(38)
where the additional term outside the sum does not de-
pend on any frequency of the system (i.e. w is arbitrary).
From Eq , it follows that

(B)-n(@)st) o

g(s) =

where
N M
with matrix elements
G* t ] e
Nopm = tG%A ez(un m) ds, (41)
G* t )
Mnm — n l(l/n-‘er)Sd 49
tGm Jo € 5 (42)
G is the vector of interaction profile coefficients,
T
g:(gl7 g2, ---, gN) ) (43)
and
P
S — (P* g) , (44)
where
* t
P, = %/ en=wls g (45)
t Jo
ot
Qn = %/ elrntwlsgg , (46)
0

with S being a rectangular matrix. For long interaction
times the matrix R is invertible. It can be shown that

lim R=1I= lim det(R)=1.
t—o0

t—o0

(47)
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FIG. 2: The fidelity F of a single mode thermal state (7' = 1)
(left) and a single mode squeezed thermal state (T = 1,
r = 0.2) (right) against the number of measurements N in
each collection of measurement results determining (P™). The
fidelities are calculated by comparing the reconstructed co-
variance matrix with the one of py (see text). In order to
exemplify the performance of the reconstruction method, we
evaluated the fidelity several times for a fixed A/. The points
represent the average fidelity thus obtained, whereas the error
bars give the respective standard deviation.

This implies that there exists an interaction time such
that det(R) > 0 and hence R is invertible. Then, as  is
chosen, the coefficients G are determined via

()= 1(7) = ()]

Egs. and set the interaction profile as a function
of 8 and h. The additional constraint to be taken into
account is that the quadratic parameter ¥ should vanish.
As shown in Appendix this amounts to a quadratic
equation in {h, h*} which can be solved numerically.

(48)

IV. GAUSSIAN STATE RECONSTRUCTION

A special case of the reconstruction strategy applies
when the state pg to be reconstructed is Gaussian. Such
states are characterised completely by the first and sec-
ond order moments of two conjugate quadratures (per
mode) and the correlations between them. The collection
of these terms is directly accessible to the reconstruction
scheme outlined here. In other words, if one knows al-
ready that the state is Gaussian, one does not have to
reconstruct higher order moments.

These relevant cases give the opportunity to show ex-
plicitly the functioning of the protocol here introduced
and to exemplify its requirements. In particular, we
will provide examples of the required time-dependent
coupling ¢(¢) in units of the mechanical frequency (or
smallest eigenfrequency as appropriate), together with
estimates of the protocol’s performance in terms of fi-
delity and of the number of measurements necessary to
determine the moments associated with each mechanical
quadrature.

Figs. [ and [ show the behaviour of the fidelity be-
tween the reconstructed state and the original state pg.
In order to obtain these plots we proceeded as follows.
For the single mode case of Fig.[2] we considered squeezed
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FIG. 3: The fidelity F of a two mode thermal state (T' = 1.5)
(left) and a two mode squeezed thermal state (T' = 1.5, r =
0.2) (right) of the normal modes of a network interacting with
a spring-like coupling against the number of measurements N
in each collection of measurement results determining (P").
The fidelities are calculated and illustrated as in Fig[2]

thermal states with temperature T" and squeezing param-
eter r [48]. We set the total interaction time 7 = 27 /w,,
and fixed the mechanical quadratures to be reconstructed
(Qo with 8 = 0,+m/4,7/2 suffice in this case). The
generic interaction profile is given by Eq. . The se-
lection of the mechanical quadrature — together with
the additional requirement of deleting the quadratic term
¢WX® _ determine as per Eqgs. @D the specific in-
teraction profile g(¢). The latter is reported in Fig.
for the four cases of interest § = 0,+w/4,7/2. Notice
that the required tuneability in time is of the order of
the mechanical frequency [see also Eq. ] and that
the profiles are clearly distinguishable, thus indicating
robustness against small perturbations. This range of in-
teraction strengths are typically available experimentally.
However, due to experimental limitations, it is also possi-
ble that, given a fixed §, the required magnitude of g(s) is
too high. This obstacle can be circumvented by allowing
for a longer interaction time, given that the magnitude
of g(s) is inversely proportional to it [see Eq. ]

For a fixed number of measurements A, we numeri-
cally sampled (Q,,) and (Q?2,) for the four choices of Qy.
Then, an inversion of Eq. (15)) allowed for the reconstruc-
tion of the first and second moments of Qg from which
the covariance matrix of the original state can be re-
constructed. We then used the latter and the covariance
matrix of pg in order to obtain the fidelity F between the
reconstructed state and the original one [49, 50]. Fig.
shows that, regardless of the state to be reconstructed, a
few hundreds of measurements N are sufficient to achieve
high fidelity.

For the two-mode case, we considered two-mode
squeezed thermal states. We considered total in-
teraction times 7 > 1/min(y;) and the me-
chanical quadratures given by the set of pairs
{(015 02)} - {(_77/27 _71-/2)7 (07 0)7 (Oa _71-/2)7 (_71-/27 O)a
(—=3n/4,-3r/4), (—7/4,—7/4)}. A corresponding set of
interaction profiles can be derived using the generic inter-
action profile of Eq. , and calculating the coefficients
following Eq. . These profiles have features mirror-
ing those of the single mode case, however the interac-
tion time is not identical for each curve, to improve the
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FIG. 4: Interaction profiles for the case of a single mode re-
construction. The various 6 suffice to reconstruct a single
mode Gaussian state.

distinguishability of each profile (see Fig. 5). The two
modes have equal frequencies w = 2 (and therefore dis-
tinct eigenfrequencies) and are coupled via a spring-like
interaction (Eq. with coefficients J = K = 0.7.

Again, for a fixed number of measurements A and for
each choice of {(61,602)}, the quadrature P is sampled in
order to estimate the second order moments of the me-
chanical quadratures. In this case, however, extra equa-
tions must be generated to make the system in Eq.
solvable. Each extra equation costs an additional N mea-
surements. As can be expected, by increasing the num-
ber of oscillators to reconstruct the number of required
measurements increases. However, the latter is not sig-
nificantly affected by the state to be reconstructed.

Clearly, tests of non-Gaussianity are also possible
within this scheme. In fact, apart from a full reconstruc-
tion of the state as explained in Sections [[I] and [[TT, one
could check the non-Gaussian character of the state pg by
reconstructing only few higher-order moments and com-
paring them with the first and second moments. This
is a general feature of this scheme, that it allows direct
access to partial information of the state without full to-
mography.

V. SINGLE PHOTON-PHONON COUPLING

In the previous Sections, we have considered a sys-
tem in which the radiation-pressure interaction has been
treated in the linearized regime [see Egs. and (24))].
This is certainly the situation that has been explored
most in experiments to date — both in the opto- and
electro-mechanical settings — giving us a clear motiva-
tion to focus on it. However, it is worthwhile to briefly
outline how our protocol can be modified to the case
in which the radiation-pressure coupling retains its non-
linear character. Remarkably, the protocol modifies sub-
stantially in this case, and it gives access directly to the
characteristic function of the network, as we will now see.

For brevity, we will only mention here the case of one
non-linear interacting mechanical resonator b. Eq is
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FIG. 5: Interaction profiles for the case of a two mode recon-
struction. The various © suffice to reconstruct a two mode
Gaussian state. Each © corresponds to a pair {(01,602)} =
{(_W/Qa _7T/2)v (Ov O)a (07 —7l'/2), (_7‘-/27 0)7 (_37T/47 —37l'/4),
(—=m/4,—m/4)}. The parameters of the interaction profiles de-
pend on the choice of interaction times 7. These were chosen
independently for each profile © in order to promote their dis-
tinguishability. These times were 7 = 5/v, 15/v, 3/v, 25/v,
25/v, 3/v respectively, where v is the smallest eigenfrequency
of the two mode network.

thus changed into:
H = weala + wnb'b + goala(b +bT) , (49)

which, in an interaction picture defined by the free terms,
becomes:

Hr = goaTa(be_i“’mt + bTei“m't) . (50)

The dynamics is solved using the same techniques as
above, producing a unitary operator

U=eYN' D(NB) , (51)

where 1 and S retain their definitions from before and
N = a'a. We can see that now dynamics is described by
a number-operator conditioned displacement of the me-
chanical mode modified by a Kerr-like term on the optical
mode. Given a factorised initial state, p = |a) {(a| ® po,
where |a) denotes a coherent state, the characteristic
function of the mechanical state, x(8) = tr{D(8)po},
may be recovered from the first moments of the cavity
position and momentum operators.

Evolving the cavity’s position and momentum opera-
tors for a time 7 under this displacement operator pro-
duces the following relations

X(r) = D(NB)'XD(NB) = X cosh f +iPsinh § (52)
P(r) = D(NB)'PD(NB) = Pcosh f —iXsinh §  (53)

where B = bt — B*b and X and P are defined as before.
In this regime of nonlinear coupling we do not have the
tuneable coupling required to set ¢ = 0 and therefore the
Kerr term cannot be avoided. Including this term, the
first moments of X and P are

(X) = (q e~ IN® X N ) tr(cosh 3)+
i{al e~ IWN? peitN? la) tr(sinh 3)  (54)

(P) = (qa] e~ IWN? peitN® ) tr(cosh )+
i (o e N XN o) tr(sinh B)  (55)

Taking the sum of these produces an expression involv-
ing the characteristic function of the mechanical state,

X(B) = tr{D(B)po}

(X)+i(P) = {a 7N (X +iP)e™™ |a) x(8) (56)
2(n—1)

2 al( .
_ 2ae—|a\ —ul)(Z |(7l — 1)' ez2nw)x(5)
" (57)

Eq. above shows a direct link between the expec-
tation values of X and P and the value of the mechanical
characteristic function at point 5. By exploring enough
points in the phase space it is then in principle possible
to reconstruct directly the characteristic function of the
mechanical oscillator, which in turn gives full information
about its state. This feature is very different with respect
to the reconstruction procedure outlined in the previous
Sections, and shares a much stricter resemblance with
the protocol of [39,[40]. In general, the direct reconstruc-
tion of the characteristic function entails a set of useful
features which have been already outlined in the litera-
ture. We refer the reader to Refs. [39,40] (and references
therein) for a detailed account.

We would like to emphasise here that the freedom to
explore phase space lies in the definition of 8 [Eq. (9)].
There are two parameters that one could in principle
control: the interaction time 7 at which the measure-
ment must be performed and the optomechanical cou-
pling strength gg. A functional dependence on time for
go would grant the greatest control, but this is difficult to

achieve experimentally. Its definition is go = %= Qm’z ,
m

with m the mass of the oscillator and L the length of the
cavity. Since these parameters are usually fixed, the only
real freedom is in the interaction time. As is clear from
Eq. @D, changing the interaction time allows exploration
of only a ring in phase space, and not the entire space.
However, the partial information on the state from this
ring may still provide valuable details on the mechanical
state.

VI. CONCLUSIONS

We have introduced a method to reconstruct an arbi-
trary state of a harmonic network of mechanical oscil-
lators. The reconstruction strategy applies to any set-
ting in which a distinguished mechanical oscillator of the



network is coupled to a bosonic probe via a linearized
interaction. Then, the main feature of our reconstruc-
tion protocol is that by measuring a single system (the
probe) the state of the entire mechanical network can
be recovered. Given that the probe interacts with one
mechanical oscillator only, suitable counter-measures can
in principle be envisaged in order to screen the rest of
the network from sources of noise that are typically un-
avoidable whenever a system is coupled to a probe. In
this sense, our method provides a minimally invasive
configuration to monitor a network of oscillators, con-
trary to a more standard strategy in which each oscil-
lator of the network is individually measured. This is
reminiscent of the approach reported in Ref. [40], where
a finite dimensional probe was considered. However, in
many settings it is more convenient to use an infinite di-
mensional probe instead. As said, suitable experimental
platforms include opto- and electro-mechanical settings,
where linearized coupling at the quantum level has re-
cently been demonstrated between optical or microwave
radiation and a single mechanical oscillator [IH3]. The
main feature that differentiates our setting from the lat-
ter is that we consider, rather than only one oscillator,
a network of them. However, first implementations of
such systems have been reported recently [I9-21], thus
providing a promising route towards the realization of
small opto- and electro-mechanical networks. In addi-
tion, one can show that our protocol can be adapted to
configurations in which the mechanical oscillators, rather
then being directly coupled, interact only indirectly via
a common cavity mode [51H56].

In order to assess the performance of our method, we
have considered the relevant case in which the state to be
reconstructed is Gaussian. In particular, by giving a de-
tailed analysis of one and two-mode cases, we have shown
that the quality of the method is oblivious to the details
of the reconstructed state. As one could expect, in order
for the method to succeed with high fidelity, the number
of required measurements increases with the number of
modes. We have explored this feature in some detail by
numerically evaluating the fidelity for the realistic case of
a finite number of measurements, rather than the limit of
an asymptotically large number of measurements as per
our analytical results. In addition, we have also shown
how the detrimental effect of non-ideal measurements can
be taken into account, by considering losses in the cou-
pling between the radiation probe and the mode that is
actually measured. Other noise mechanisms could cer-
tainly be at work in an actual implementation of our
protocol, however they would depend specifically on the
platform under consideration and an exhaustive analysis
is outside the scope of the present work.

In view of the rapid progress in the development of
opto- and electro-mechanical technologies, we believe
that the method here introduced could prove useful in as-
sessing the generation of non-classical states of a network
of mechanical oscillator, as well as its dynamics. This is
of importance in many aspects relevant to the develop-

ment of quantum technologies, where the quantumness of
a system needs to be assessed in detail while minimally
compromising its state and its coherent dynamics.
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Appendix A: Effect of genuine optical losses on
single oscillator reconstruction
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FIG. 6: The fidelity F of a single mode thermal state (1" = 1)
(left) and a single mode squeezed thermal state (T = 1,
r = 0.2) (right) against the number of measurement results
determining (P5.). The fidelities are calculated and illus-
trated as in Fig. 2] The calculation is repeated for various
values of the genuine optical losses € = 0, 0.4, 0.8, demonstrat-

ing that reconstruction is still possible but requires a larger
sampling of the observable P,y [see Eq. ]
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In the plots of Fig. [2] it is assumed that the all op- where
tical information leaking from the cavity is measurable,
or equivalently, that the intracavity field is accessible to
direct measurement. In a physical scenario, the losses
described in Eq. must be taken into account. If the
loss coefficient € is known, then the statistical moments of
the intracavity field can be recovered via Eq. . How- 1 T t
ever, the effect of the losses is to increase the number of Apm = G Gr / 6%(”’*"’"#/ e Wi=vn)s qg dt (B2)
measurements (sampling size) required to accurately rep- n=m OT Ot
resent these moments. Fig. [6]shows the same reconstruc- B — 1 / e—i(uj—um)t/ et (i—vn)s gs dt (B3)
tion as in Fig. [2| with additional curves demonstrating " GEG Jo 0
this effect for various values of e. 1 T t
Com = & Ye / e istvm)t / it dsdt - (B4)
0
. . s . . . e 1 T ) o
Appendix B: Eliminating the quadratic term e D, = e / —z(uj—um)t/ Wi tvn)s gg g (B5)
nbm Jo 0
To write down explicitly the constraint ¥ = 0, we start T L
by recalling Ef = / z(Vjiw)t/o e ViTvn)S dsdt (B6)
U=TIm)_ / B;B; dt . (B1) GE = / etilvitw)t / WWitvn)s s dt (BT7)
i 70 " °,
+ _ —z(u +v,)t 1(1/ Fw)s
Using the notation of Section [[TTB| we may perform each L G /0 ’ /0 ’ dsdt (B8)
integral explicitly 1
B B ; Jr:Lt — G7/ (vj—vn) / z(u]j:w)sdsdt , (Bg)
3.5 — * Jj j n J0 0
/0 B;B; dt =(G G*) (Cj Dj> <g*>
Ef E7\ (h
* J
w0 a) ()
I I\ (¢ h
* J, i *\ 0.
o ) E) 000 (1)
J
0= fo etvitw)t fO et Wi—w)s Jo fo e—i(vj—w)t j‘t et (Vi—w)s dedt (Blo)
f e—z(uj—w)tf z(uJ-i-w)sdsdt fo z(w-&—w)t fo ei(uj—i-w)sdsdt

Finally, we can exploit Eq. to substitute the explicit
expression for G as a linear function of 8 and h. Thus it is
evident that the constraint ¥ = 0 amounts to a quadratic
equation in {h, h*}. We have not been able to prove that

(

a solution exists in any instance, however the freedom in
the modulus of 3; should provide alternatives in case of
possible pathological cases.
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