SiC and GaN Power Transistors Switching Energy Evaluation in Hard and Soft Switching Conditions

Ke Li, Paul Evans, Mark Johnson
Power Electronics, Machine and Control group
University of Nottingham, UK
Email: ke.li@nottingham.ac.uk, paul.evans@nottingham.ac.uk, mark.johnson@nottingham.ac.uk

Abstract

SiC and GaN power transistors switching energy are compared in this paper. In order to compare switching energy $E_{\text {sw }}$ of the same power rating device, a theoretical analysis is given to compare SiC device conduction loss and switching losses change when device maximal blocking voltage reduces by half. After that, $E_{\text {sw }}$ of a 650 V GaN-HEMT is measured in hard switching condition and is compared with that of a 1200 V SiCMOSFET and a 650 V SiC-MOSFET with the same current rating, in which it is shown that $E_{\text {sw }}$ of a GaN-HEMT is smaller than a 1200 V SiC-MOSFET, which is smaller than 650 V SiCMOSFET. Following by that, in order to reduce device turnON switching energy, a zero voltage switching circuit is used to evaluate all the devices. Device output capacitance stored energy $E_{\text {oss }}$ are measured and turn-OFF switching losses are obtained by subtracting $E_{\text {oss }}$, which shows that GaN-HEMT is sill better than SiC device in terms of switching losses and 1200 V SiCMOSFET has smaller switching losses than 650V SiC-MOSFET.

Keywords-Wide bandgap power semiconductor device; GaNHEMT; SiC-MOSFET; Switching energy; hard switching; soft switching

I. Introduction

Wide bandgap power semiconductor devices like silicon carbide (SiC) and gallium nitride (GaN) are able to operate in high temperature, high frequency and realize high energy conversion efficiency, so they are gradually applied in power electronics systems for electrical power conversion.

The ability of blocking voltage of the commercial SiC transistors such as JFET and MOSFET is bigger than 1.2 kV , while that of commercial GaN transistors such as HEMT and GIT is smaller than 650 V . Current ratings of both SiC and GaN devices can be found in a wide range from a few amperes to a few tens of amperes. Depending on electrical power requirements, SiC and GaN power devices can be applied in different power electronics systems such as battery charger, switching mode power supply, electrical motor drive. It is illustrated in Fig. 1 the reported application of SiC and GaN devices in power electronics systems in literature [1]-[6], where all devices are in hard switching mode when converting electrical power. SiC and GaN devices are compared in terms of power rating, efficiency and switching frequency. It is shown that both SiC and GaN devices can realize high efficiency power conversion. SiC devices are applied for above 1 kW , below 500 kHz power conversion while GaN devices are applied for below 1 kW , above 500 kHz conversion.

Fig. 1: Comparison of SiC and GaN devices in terms of switching frequency, power rating and efficiency

Due to the dismatch of device power rating, there are few publications about experimental comparison between SiC and GaN power semiconductor devices on switching energy. The objective of this paper is at first to theoretically analyze how losses of SiC power devices change when blocking voltage reduces from 1200 V to 600 V and then experimentally compare switching losses of a commercial 1200 V SiCMOSFET (C2M0080120D, 1200V/36A), 650V SiC-MOSFET (SCT2120AF, 650V/29A) and 650V GaN-HEMT (GS66508P, $650 \mathrm{~V} / 30 \mathrm{~A}$) with similar current rating in different hard switching conditions, which would be helpful for engineers to choose wide bandgap power devices when designing power electronics systems. As shown in [6], [7], zero voltage switching (ZVS) is an efficient way to further reduce device switching losses, thus all the above devices are all evaluated in soft switching condition as well.
The paper is structured with following sections: at first, theoretical comparison of conduction loss and switching losses of SiC-MOSFET when reducing blocking voltage is analyzed. Afterwards, based on an optimized switching circuit of each device, switching energy of all the aforementioned devices is measured and compared in both hard and soft switching conditions. Conclusions are given at last.

II. Theoretical analysis

A. Conduction loss comparison

The structure of a MOSFET is shown in Fig. 2, where it is shown that device ON -state resistance R_{ON} is mainly constituted by device channel resistance R_{ch} and drift region resistance $R_{\text {drift }}$.

Fig. 2: Structure of a MOSFET

Multiplying by device active area A, the relation of each specific resistance ($m \Omega \cdot m m^{2}$) is expressed by the following equation:

$$
\begin{equation*}
R_{\mathrm{ON}, \mathrm{sp}}=R_{\mathrm{ch}, \mathrm{sp}}+R_{\mathrm{drift}, \mathrm{sp}} \tag{1}
\end{equation*}
$$

where device specific drift region resistance $R_{\text {drift,sp }}$ can be expressed by a function of device maximal blocking voltage V_{DSS}, material permittivity ϵ, carrier mobility in the drift region μ and critical electrical field E_{c} as given in [8]:

$$
\begin{equation*}
R_{\mathrm{drift}, \mathrm{sp}}=\frac{4 V_{\mathrm{DSS}}{ }^{2}}{\epsilon \mu E_{\mathrm{c}}{ }^{2}} \tag{2}
\end{equation*}
$$

Shown in [8], the minimal $R_{\text {drift,sp }}$ is a function of $V_{\mathrm{DSS}}{ }^{2.5}$. Following relation is obtained if one compares $R_{\text {drift,sp }}$ value of a 600 V device and a 1200 V device.

$$
\begin{equation*}
\frac{R_{\mathrm{drift}, \mathrm{sp}, 600 \mathrm{~V}}}{R_{\mathrm{drift}, \mathrm{sp}, 1200 \mathrm{~V}}}=\frac{W_{\mathrm{D}, 600 \mathrm{~V}}}{W_{\mathrm{D}, 1200 \mathrm{~V}}} \approx \frac{1}{5.6} \tag{3}
\end{equation*}
$$

Device $R_{\text {drift,sp }}$ is also proportional to device drift region thickness W_{D}. Thus, device W_{D} ratio of a 600 V device and a 1200 V device follow the same relation as eq.(3).

Device specific channel resistance $R_{\mathrm{ch}, \mathrm{sp}}$ can be approximately expressed by a function of device channel length L_{ch}, unit cell width $W_{\text {cell }}$, channel mobility μ_{ch} and accumulated charge in the channel $Q_{\text {ch }}$ as shown in [9]:

$$
\begin{equation*}
R_{\mathrm{ch}, \mathrm{sp}}=\frac{L_{\mathrm{ch}} \cdot W_{\mathrm{cell}}}{\mu_{\mathrm{ch}} \cdot Q_{\mathrm{ch}}} \tag{4}
\end{equation*}
$$

According to the results presented by authors in [10], $R_{\mathrm{ch}, \mathrm{sp}}$ varies little on V_{DSS} voltage.

By applying the parameters given by authors in [11] for a 1200 V SiC-MOSFET, $R_{\mathrm{ch}, \mathrm{sp}}$ is found to be about 40% of the total $R_{\mathrm{ON}, \mathrm{sp}}$ of a 1200 V device. Thus, by combining the above equations, following equation can be obtained, which shows that $R_{\mathrm{ON}, \mathrm{sp}}$ of a 600 V device is about a half of the value of a 1200 V device.

$$
\begin{equation*}
\frac{R_{\mathrm{ON}, \mathrm{sp}, 600 \mathrm{~V}}}{R_{\mathrm{ON}, \mathrm{sp}, 1200 \mathrm{~V}}} \approx \frac{1}{2} \tag{5}
\end{equation*}
$$

Afterwards, device switching losses are compared in the next subsection.

Fig. 3: Ideal switching waveforms and switching losses calculation

B. Switching loss comparison

It is illustrated in Fig. 2 the SiC-MOSFET inter-electrode capacitances $C_{\mathrm{gd}}, C_{\mathrm{ds}}$ and C_{gs} between each terminal. Different like $C_{\mathrm{gs}}, C_{\mathrm{gd}}$ and C_{ds} are V_{DS} voltage dependent capacitances and their values can be approximately calculated by the following equation:

$$
\begin{equation*}
C_{\mathrm{x}}=\frac{\epsilon \cdot A_{\mathrm{x}}}{W_{\mathrm{S}}} \tag{6}
\end{equation*}
$$

where C_{x} refers to either C_{gd} or $C_{\mathrm{ds}}, A_{\mathrm{x}}$ refers to the active area of each capacitance and W_{S} is depletion region thickness, which is dependent on device switching voltage V_{S}.

Active area of C_{gd} and C_{ds} is obtained by multiplying a coefficient b to the device area A. The relation between W_{D} and W_{S} is obtained by the following equation given in [8]:

$$
\begin{equation*}
W_{\mathrm{S}}=W_{\mathrm{D}} \cdot \sqrt{\frac{V_{\mathrm{S}}}{V_{\mathrm{DSS}}}} \tag{7}
\end{equation*}
$$

By combining eq.(6) and eq.(7), stored charge Q_{x} of each capacitor during switching can be obtained by:

$$
\begin{align*}
\int_{0}^{Q_{\mathrm{x}}} \mathrm{~d}_{q_{\mathrm{x}}} & =\int_{0}^{V_{\mathrm{S}}} C_{\mathrm{x}} \mathrm{~d}_{v_{\mathrm{S}}} \tag{8}\\
Q_{\mathrm{x}} & =\frac{2 b \cdot \epsilon \cdot A}{W_{\mathrm{D}}} \cdot \sqrt{V_{\mathrm{DSS}}} \cdot \sqrt{V_{\mathrm{S}}}
\end{align*}
$$

Thus, the comparison of specific charge ($Q_{\mathrm{x}, \mathrm{sp}}$) between 600 V and 1200 V device can be obtained by following equation:

$$
\begin{equation*}
\frac{Q_{\mathrm{x}, \mathrm{sp}, 600 \mathrm{~V}}}{Q_{\mathrm{x}, \mathrm{sp}, 1200 \mathrm{~V}}}=0.7 \cdot \frac{W_{\mathrm{D}, 1200 \mathrm{~V}}}{W_{\mathrm{D}, 600 \mathrm{~V}}} \tag{9}
\end{equation*}
$$

By combining eq.(3) and eq.(9) together, it is shown in the following equation that in contrary to device $R_{\mathrm{ON}, \mathrm{sp}}, 600 \mathrm{~V}$ device $Q_{\mathrm{x}, \mathrm{sp}}$ is four times bigger than 1200 V device.

$$
\begin{equation*}
\frac{Q_{\mathrm{x}, \mathrm{sp}, 600 \mathrm{~V}}}{Q_{\mathrm{x}, \mathrm{sp}, 1200 \mathrm{~V}}} \approx 4 \tag{10}
\end{equation*}
$$

Power transistor ideal switching waveforms (device switching at voltage V_{S} and current I_{S}) is shown in Fig. 3, where transistor gate-drain charge Q_{gd} plays an important role in device switching, because its discharge and charge time t by
gate current I_{g} influence on device switching losses. Thus, device switching losses E_{sw} of one period can be approximately calculated by the following equation:

$$
\begin{equation*}
E_{\mathrm{sw}}=V_{\mathrm{S}} \cdot I_{\mathrm{S}} \cdot t=V_{\mathrm{S}} \cdot I_{\mathrm{S}} \cdot \frac{Q_{\mathrm{gd}}}{I_{\mathrm{g}}}=V_{\mathrm{S}} \cdot I_{\mathrm{S}} \cdot \frac{Q_{\mathrm{gd}}}{V_{\mathrm{com}}-V_{\mathrm{pl}}} \cdot R_{\mathrm{g}} \tag{11}
\end{equation*}
$$

where R_{g} is gate resistor, $V_{\text {com }}$ is controlled gate voltage and V_{pl} is Miller-plate voltage. It is to be noted that device output capacitance $C_{\text {oss }}$ stored energy $E_{\text {oss }}$ would be dissipated during turn-ON switching and $E_{\text {oss }}$ would be recovered during turn-OFF switching. By adding $E_{\text {oss }}$ in turn-ON switching and subtracting it from turn-OFF switching, eq.(11) can be still used to estimate device total switching loss.

It is shown in this equation that $E_{\text {sw }}$ is proportional to Q_{gd}. By dividing device surface, 600 V and 1200 V device specific switching loss $E_{\mathrm{sw}, \mathrm{sp}}$ can be compared by the following equation:

$$
\begin{equation*}
\frac{E_{\mathrm{sw}, \mathrm{sp}, 600 \mathrm{~V}}}{E_{\mathrm{sw}, \mathrm{sp}, 1200 \mathrm{~V}}} \approx 4 \tag{12}
\end{equation*}
$$

Subsequently, switching losses of a 600 V and a 1200 V device with the same current rating are compared in the next subsection.

C. $600 \mathrm{~V} / 1200 \mathrm{~V}$ device comparison

Device maximal conduction current I_{D} is limited by its heat dissipation, which is calculated by the following equation:

$$
\begin{equation*}
I_{\mathrm{D}}^{2} \cdot R_{\mathrm{ON}} \cdot R_{\mathrm{th}}=T_{\mathrm{j}(\max)} \tag{13}
\end{equation*}
$$

At first condition, only device thermal resistance R_{th} of die is considered (without influence of packaging), which is determined by device thickness (which is supposed to be device drift region thickness W_{D} for a transistor), active area A and material thermal conductivity k. Thus,

$$
\begin{equation*}
R_{\mathrm{th}}=\frac{W_{\mathrm{D}}}{k \cdot A} \tag{14}
\end{equation*}
$$

By combining eq.(13) and eq.(14), following equation can be obtained:

$$
\begin{equation*}
I_{\mathrm{D}}=\sqrt{T_{\mathrm{j}(\max)} \cdot k} \cdot \frac{A}{\sqrt{R_{\mathrm{ON}, \mathrm{sp}}} \cdot \sqrt{W_{\mathrm{D}}}} \tag{15}
\end{equation*}
$$

If 600 V and 1200 V device has the same current conduction capability, the comparison of device area A can be expressed by the following equation by combining eq.(3) and eq.(5) together:

$$
\begin{equation*}
\frac{A_{600 \mathrm{~V}}}{A_{1200 \mathrm{~V}}}=\frac{\sqrt{R_{\mathrm{ON}, \mathrm{sp}, 600 \mathrm{~V}}} \cdot \sqrt{W_{\mathrm{D}, 600 \mathrm{~V}}}}{\sqrt{R_{\mathrm{ON}, \mathrm{sp}, 1200 \mathrm{~V}}} \cdot \sqrt{W_{\mathrm{D}, 1200 \mathrm{~V}}}} \approx 0.3 \tag{16}
\end{equation*}
$$

By combing eq.(12) with eq.(16), following equation can be obtained if switching losses of a 1200 V device and a 600 V device are compared.

$$
\begin{equation*}
\frac{E_{\mathrm{sw}, 1200 \mathrm{~V}}}{E_{\mathrm{sw}, 600 \mathrm{~V}}}=2 \cdot \sqrt{\frac{W_{\mathrm{D}, 600 \mathrm{~V}}}{W_{\mathrm{D}, 1200 \mathrm{~V}}}} \approx 0.83 \tag{17}
\end{equation*}
$$

At second condition, if the influence of the packaging is considered, R_{th} is mainly dependent on device packaging type, where device area and thickness has little influence on R_{th} value [12]. Thus, R_{ON} of 600 V and 1200 V device should be the same if both devices have same current rating. It is then found that $A_{1200 \mathrm{~V}}$ should be twice as big as $A_{600 \mathrm{~V}}$, so the following switching loss relation can be obtained.

$$
\begin{equation*}
\frac{E_{\mathrm{sw}, 1200 \mathrm{~V}}}{E_{\mathrm{sw}, 600 \mathrm{~V}}} \approx 0.5 \tag{18}
\end{equation*}
$$

It is shown in eq.(17) and eq.(18) that switching loss of a 600 V device can be superior to a 1200 V device with the same current rating in both conditions.

SiC and GaN power devices will be experimentally compared in the next section in order to evaluate their performance.

III. EXPERIMENTAL VALIDATIONS

A. Switching circuit

Switching energy of a 1200V/36A SiC-MOSFET (C2M0080120D), a 650/29A SiC-MOSFET (SCT2120AF) and a $650 \mathrm{~V} / 30 \mathrm{~A}$ GaN-HEMT (GS66508P) is evaluated and compared in this section. The switching circuit to test all the devices is shown in Fig. 4a. Gate loop and switching loop of each device is minimized in order to reduce gate loop inductance $L_{\text {para,g }}$ and switching loop inductance $L_{\text {para,sw }}$.

The realization prototype to test 1200 V SiC-MOSFET is shown in Fig. 4b, where the package of the device is TO-247. Device is driven by a gate voltage from -5 V to 20 V . $L_{\text {para,g }}$ is obtained by measuring gate voltage resonance frequency, which is supposed to be resonated between $L_{\text {para,g }}$ and device input capacitance $C_{\text {iss. }} . L_{\text {para,g }}$ in the prototype is about $2 n \mathrm{H}$.

The realization prototype to test 650 V SiC-MOSFET is similar as that shown in Fig. 4b, except the package of the device is TO-220. Device is driven by the same gate voltage as 1200 V SiC-MOSFET. The measured $L_{\text {para,g }}$ in the prototype is also about $2 n \mathrm{H}$.

The realization prototype to test 650 V GaN-HEMT is shown in Fig. 4c, where the package of the device is GaNPX. Device is driven by a gate voltage from 0 V to 7 V while the measured $L_{\text {para,g }}$ in the prototype is about $3 n \mathrm{H}$.

The used gate driver in all the above design is IXDN609SI and lumped gate resistance in all the measurements are about 4Ω including device internal gate resistance, external gate loop resistance and gate driver output resistance. Device T1 switching current I_{D} is measured by a current shunt (SSDN-414$025,1.2 \mathrm{GHz}$) while the switching voltage V_{DS} is measured by a differential voltage probe (TA043, $700 \mathrm{~V} / 100 \mathrm{MHz}$). The bandwidth of the used oscilloscope is 1.5 GHz . The device is at first tested in hard switching conditions by double pulse.

B. Comparison of device hard switching

The measured switching waveforms when all the device switching at $V_{\mathrm{DS}}=300 \mathrm{~V}, I_{\mathrm{D}}=10 \mathrm{~A}$ are shown in Fig. 5.

As shown in the results, 1200 V SiC-MOSFET switches faster than 650 V SiC-MOSFET in turn-off switching, which is supposed to be that transfer capacitance C_{rss} of 1200 V device

(c) Switching circuit of GaN-HEMT

Fig. 4: Electrical circuit of the switching circuit and their realization
is bigger than 650 V device in high voltage. This can be also confirmed when comparing device inter-electrode capacitance datasheet values as illustrated in Fig. 6, where it is shown that $C_{\text {rss }}$ of 1200 V SiC-MOSFET is smaller than $600 \mathrm{~V} \mathrm{SiC-}$ MOSFET when blocking voltage superior to 20 V . In terms of turn-ON switching, current transition time for both 1200 V and $650 \mathrm{~V} \mathrm{SiC}-M O S F E T$ is quite similar while measured $\mathrm{d} I / \mathrm{d} t$ of 1200 V device is higher than 650 V device, which suggests a similar input capacitance $C_{\text {iss }}$ of both device. Again, it is found in the datasheet value that $C_{\text {iss }}$ of both device is around $2 n \mathrm{~F}$ and that of 1200 V device is slightly smaller than 650 V device.
When comparing with 650 V GaN-HEMT, it is shown that GaN-HEMT switches faster than 1200V SiC-MOSFET in turn-on switching, which confirms the datasheet value that $C_{\text {iss }}$ of GaN-HEMT is only about one sixth of $1200 \mathrm{~V} \mathrm{SiC-}$ MOSFET. In terms of turn-off switching, no obvious difference observed between 1200 V SiC-MOSFET and GaN HEMT. This is supposed to be following two facts: one is that GaN-HEMT is turned OFF by OV while SiC-MOSFET is turned OFF by -5 V . If GaN-HEMT were turned OFF by negative voltage, the switching transition might be even shorter. Another fact is the fastest fall time of the gate driver is about 7 ns shown in its datasheet. If a faster gate driver were used to drive GaN-HEMT, turn-OFF transition can be also accelerated because device has much smaller $C_{\text {rss }}$ and $C_{\text {iss }}$ values than 1200 V SiC-MOSFET.

The switching energy comparison results of different switching conditions are shown in Fig. 7 for all the aforementioned devices. As it is in hard switching condition, measured I_{D} turn-ON current excludes $C_{\text {oss }}$ discharge current

Fig. 5: Switching waveforms comparison among 1200 V SiCJFET, 650 V SiC-MOSFET and 650 V GaN-HEMT in hard switching

Fig. 6: Device inter-electrode capacitance comparison
and I_{D} turn-OFF current includes C_{oss} charge current. Thus, dissipated $C_{\text {oss }}$ energy $E_{\text {oss }}$ is not included in device turnON energy and $E_{\text {oss }}$ is included in device turn-OFF energy. As shown in the results, 650 V SiC-MOSFET has bigger switching energy than 1200V SiC-MOSFET, which confirms the analytical analysis. Thus, switching losses of a 1200 V SiCMOSFET is smaller than 650 V device with the same current rating.
Switching energy of GaN-HEMT is smaller than that of 1200 V SiC-MOSFET. However, at some switching conditions,

Fig. 7: Switching energy including $C_{\text {oss }}$ stored energy comparison among 1200 V SiC-JFET, 650 V SiC-MOSFET and 650 V GaN-HEMT in hard switching
measured switching energy for the two devices are quite close. This is because of the voltage drop across $L_{\text {para,sw }}$ during the rise of I_{D}, thus it helps to decrease I_{D} and V_{DS} overlapping time. Obtained apparent switching energy of SiC-MOSFET is decreased because of the snubber effect of $L_{\text {para,sw }} . L_{\text {para,sw }}$ can be estimated based on the observed LC resonance frequency of the switching waveform at the end of the switching, which is supposed to be the resonance between device $C_{\text {oss }}$ and $L_{\text {para,sw }}$. It is thus found $L_{\text {para,sw }}$ of GaN-HEMT switching circuit is about $36 n \mathrm{H}$ while that of SiC-MOSFET is about 80 nH , so V_{DS} voltage drop of SiC MOSFET is twice than that of GaN-HEMT for the same $\mathrm{d} I / \mathrm{d} t$ turn-ON switching rate.

According to the switching energy comparison in this subsection, it is concluded that GaN-HEMT is more suitable than SiC-MOSFET for below 300 V electrical energy conversion because of less switching losses. However, for both GaNHEMT and 1200 V SiC-MOSFET, it is found in Fig. 7 that device turn-ON loss is bigger than turn-OFF loss, thus it is helpful to apply these devices in soft switching to reduce turnON loss.

C. Comparison of device soft switching

The circuit using to analyse device soft switching is illustrated in Fig. 9a, where voltage of the output capacitor $C_{\text {out }}$ is maintained constant by using an external power supply. At instant $t 1$, device T 2 is switched ON and load inductor starts to be charged by $V_{\text {in }}-V_{\text {out }}$. At instant $t 2, \mathrm{~T} 2$ is switched OFF in hard switching condition. Simultaneously, device T1 stored energy in its $C_{\text {oss }}$ is transfered by load current I_{L} to $C_{\text {oss }}$ of device T2. After deadtime $d t$, device T1 is switched ON at zero voltage switching (ZVS). Afterwards, Load inductor is reversely charged by $V_{\text {out }}$ and it changes the direction. At instant $t 3$, T1 is switched OFF in hard switching condition and simultaneously, device T2 stored energy in its $C_{\text {oss }}$ is transfered by load current I_{L} to $C_{\text {oss }}$ of T1. After deadtime, T2 is switched ON at ZVS and finally it is switched OFF at hard switching condition at instant $t 4$.

(a) Electrical circuit

(b) Control signals with load current waveform

Fig. 8: Electrical circuit using to test device in soft switching and load current waveform

Thus, by changing I_{L} direction, device T 1 and T 2 turn- ON losses can be avoided and both device only have turn-OFF losses which is due to the overlapping of V_{DS} and I_{D}. Stored energy in T2 is transfered to T1 before switching ON and vice versa. Device total switching losses can be greatly reduced in this current mode.

When $V_{\text {in }}=300 \mathrm{~V}$ and $V_{\text {out }}=50 \mathrm{~V}$, the measured 1200 V SiC-MOSFET switching waveforms are shown in Fig. 9a. At instant t, device T 2 is switched OFF in hard switching and stored energy in $C_{\text {oss }}$ of device T 1 is transfered to T 2 . By multiplying measured current and voltage of each device, switching power waveforms are obtained and shown in Fig. 9b. Thus, T1 turn-OFF energy including $E_{\text {oss }}$ and $\mathrm{T} 2 E_{\text {oss }}$ can be obtained separately. Device turn-OFF switching loss due to the overlapping of current and voltage waveforms can be obtained. In the waveform shown, it is found that $E_{\text {oss }}$ of 1200 V device is about $4.4 \mu \mathrm{~J}$ when device is withstanding $300 \mathrm{~V} V_{\mathrm{DS}}$.

Output capacitance stored energy $E_{\text {oss }}$ of the aforementioned devices is then measured by this method and they are compared in Fig. 10. As shown in the results, the measured $E_{\text {oss }}$ of all the devices is close to each other, which confirms that all devices have close $C_{\text {oss }}$ values as shown in Fig. 6. According to these results, even though $E_{\text {oss }}$ of 650 V GaN HEMT is only measured at 100 V , its value would be close to that of $650 \mathrm{~V} \mathrm{SiC}-M O S F E T$ when it switches at $200 \mathrm{~V}, 250 \mathrm{~V}$ and 300 V . By subtracting $E_{\text {oss }}$ from device turn-OFF energy as shown in Fig. 7, 650V SiC-MOSFET still has bigger switching losses than 1200 V SiC-MOSFET and 650 V GaN-HEMT is

Fig. 9: Measured 1200V SiC-MOSFET switching waveforms and stored energy

Fig. 10: Device stored energy $E_{\text {oss }}$ comparison among 1200 V SiC-JFET, 650V SiC-MOSFET and 650V GaN-HEMT
still more efficient than 1200 V SiC-MOSFET in this switching mode.

IV. Conclusion

SiC and GaN power semiconductor devices switching energy are compared in the paper. In order to compare switching energy of devices with the same power rating, a theoretical analysis is given to show that specific ON-state resistance of SiC power transistors will reduce half if device maximal blocking voltage decreases half. In contrary to that, device specific capacitance value would increase. Thus, when com-
paring device with same current rating, switching losses would increase in a 600 V SiC device than 1200 V device.

In order to validate the theoretical analysis, switching energy of a $650 \mathrm{~V} / 29 \mathrm{~A} \mathrm{SiC-MOSFET}$ is compared with a $1200 \mathrm{~V} / 30 \mathrm{~A}$ SiC-MOSFET in hard switching mode. Measurement results show that switching energy, especially turn-OFF energy of 650 V SiC-MOSFET is bigger than 1200 V device, which confirms the theoretical analysis. By comparing with a $650 \mathrm{~V} / 30 \mathrm{~A}$ GaN-HEMT, it is found that switching energy of GaN-HEMT is smaller than $1200 \mathrm{~V} \mathrm{SiC-MOSFET}$. shown in the results that device turn-ON energy are bigger than turn-OFF energy for both 1200 V SiC-MOSFET and 650 V GaN-HEMT.

In order to reduce device turn-ON energy, a zero voltage switching circuit is used to evaluate device in soft switching mode. Device output capacitance stored energy $E_{\text {oss }}$ can thus be measured, so device turn-OFF losses due to overlapping of switching current and voltage can be obtained. By subtracting $E_{\text {oss }}$, it is shown that GaN-HEMT is still better than 1200 V SiC-MOSFET, which is better than 650V SiC-MOSFET in terms of the switching losses in this switching mode.
Based on all the results, it can be concluded that 1200 V SiC-MOSFET has smaller switching losses than 600 V device and GaN-HEMT is more suitable than SiC device to be applied in below 300 V energy conversion.

REFERENCES

[1] J. Rabkowski, D. Peftitsis, and H.-P. Nee, "Parallel-Operation of Discrete SiC BJTs in a $6-\mathrm{kW} / 250-\mathrm{kHz}$ DC/DC Boost Converter," Power Electronics, IEEE Transactions on, vol. 29, no. 5, pp. 2482-2491, 2014.
[2] J. Rabkowski, D. Peftitsis, and H.-P. Nee, "Design steps towards a 40kVA SiC inverter with an efficiency exceeding 99.5%," in Applied Power Electronics Conference and Exposition (APEC), 2012 Twenty-Seventh Annual IEEE, pp. 1536-1543, Feb 2012.
[3] J. Brandelero, B. Cougo, T. Meynard, and N. Videau, "A non-intrusive method for measuring switching losses of GaN power transistors," in Industrial Electronics Society, IECON 2013 - 39th Annual Conference of the IEEE, pp. 246-251, Nov 2013.
[4] B. Whitaker, A. Barkley, Z. Cole, and B. Passmore et al., "A HighDensity, High-Efficiency, Isolated On-Board Vehicle Battery Charger Utilizing Silicon Carbide Power Devices," Power Electronics, IEEE Transactions on, vol. 29, no. 5, pp. 2606-2617, 2014.
[5] S. Ji, D. Reusch, and F. Lee, "High-Frequency High Power Density 3-D Integrated Gallium-Nitride-Based Point of Load Module Design," Power Electronics, IEEE Transactions on, vol. 28, no. 9, pp. 4216-4226, 2013.
[6] X. Huang, Z. Liu, F. C. Lee, and Q. Li, "Characterization and Enhancement of High-Voltage Cascode GaN Devices," IEEE Transactions on Electron Devices, vol. 62, pp. 270-277, Feb 2015.
[7] M. Kasper, R. M. Burkart, G. Deboy, and J. W. Kolar, "Zvs of power mosfets revisited," IEEE Transactions on Power Electronics, vol. 31, pp. 8063-8067, Dec 2016.
[8] J. Lutz, H. Schlangenotto, U. Scheuermann, and R. De Doncker, Semiconductor Power Devices. Springer, 2011.
[9] B. Baliga, Advanced High Voltage Power Device Concepts. Springer, 2011.
[10] D. Ueda, H. Takagi, and G. Kano, "A new vertical power MOSFET structure with extremely reduced on-resistance," IEEE Transactions on Electron Devices, vol. 32, pp. 2-6, Jan 1985.
[11] M. Ruff, H. Mitlehner, and R. Helbig, "SiC devices: physics and numerical simulation," IEEE Transactions on Electron Devices, vol. 41, pp. 1040-1054, Jun 1994.
[12] H. Wu, M. Chen, L. Gao, and M. Li, "Thermal resistance analysis by numerical method for power device packaging," in Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), 2012 13th International Conference on, pp. 666-670, Aug 2012.

