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Abstract
In the recent experimental and theoretical literature well-established nonclassicality criteria from the
field of quantumoptics have been directly applied to the case of excitations inmatter-waves. Among
these are violations of Cauchy–Schwarz inequalities, Glauber–Sudarshan P-nonclassicality, sub-
Poissonian number-difference squeezing (also known as the two-mode variance) and the criterion of
nonseparability.We review the strong connection of these criteria and theirmeaning in quantum
optics, and point out differences in the interpretation between light andmatter waves.We then
calculate observables for a homogeneous Bose–Einstein condensate undergoing an arbitrary
modulation in the interaction parameter atfinite initial temperature, within both the quantum theory
as well as a classical reference.We conclude that to date in experiments relevant for this scenario
nonclassical effects have not conclusively been observed and conjecture that additional, noncommut-
ing, observables have to bemeasured to this end.Moreover this has important implications for
proposed analog gravitymodels where the observation of nonclassical effects is amajor goal.

Bose–Einstein condensation (BEC) is amacroscopic quantumphenomenonwhere a large fraction of the bosons
occupy the same lowest energy quantum state, and thus form a coherentmatter wave.Many properties of the
condensate can be captured by a Schrödinger-type equation for a complexfieldwith a nonlinear potential
referred to as theGross–Pitaevskii equation (GPE) [1–3]. To cite one example, theGPE correctly predicts
discrete values for the circulation of the velocity field in a BEC [4]. Nevertheless, within this description the
evolution of the condensate can be considered a classical process [5]. On the other hand it is possible to excite
smallfluctuations of the condensate, for example bymeans of rapid changes in the condensate parameters [6–
11], whichmay activate their nonclassical behavior. An ongoing line of research is to investigate experimentally
themanipulation and detection offluctuations in BECs, e.g. exploring their quantumnature [12–14] and
correlations [11, 15]. This is partiallymotivated by various analogue gravity studies [16–19], where BECs are
utilized as quantum simulators [5] of quantumfield theories in curved spacetime (QFTCS). InQFTCS one is
interested in howquantumfields propagate on a classical curved spacetime geometry acting as a non-trivial
background configuration.Within analogue gravity studies the ultimate goal is tomimic and capture genuine
quantum effects predicted fromQFTCS. Thefield of experimental analogue gravity in BECs started only a few
years ago, andwith recent advances, e.g.mimicking black hole evaporation [9, 10, 20–22] and cosmological
particle production in ourUniverse [13, 23–26], and the debate on the nonclassicality of the observed effects is as
timely as ever.Hence, it is essential tofind suitable observables that can distinguish between classical and
nonclassical features of excitations in the condensate. Although in principle possible, we are lacking a Bell-type
experiment to rule out any classicalmodel (assuming local realism) for the excitations in a BEC, and in this sense
establish their nonclassicality once and for all [27, 28]. (Bell-tests for internal degrees of freedom are explored
experimentally in [29], and a theoretical proposal formotional-state Bell inequalities applied to an elongated
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condensate split into two counterpropagating halves is given in [30]. However neither of these studies are
directly applicable to the case of parametric resonance that we consider in this paper.)Wepartially address this
issue, by investigating amore restrictive notion of nonclassicality. A system shows nonclassical behavior
precisely when the observationsmade are incompatible with the predictions of a specific classical reference: a
specified classical theory and the accessible observables.

Our approach ismainlymotivated by the quantumoptics revolution [31].Maxwell’s theory of
electromagnetism supplies uswith an excellent classical description of light as awave phenomenon. There are
however situations where the quantumnature of light cannot be neglected. For example, antibunching
experiments provide direct evidence for the existence of photons [32, 33] (we explain this effect inmore detail in
the next section).Within quantumoptics nonclassicality criteria have been defined that delineate between
classical and nonclassical attributes of the quantum states. Since the quantum theories of both light and BECs
can be described in a Bosonic Fock space, one can in principle apply nonclassicality criteria taken or inspired
fromquantumoptics to the BECs.However, as wewill demonstrate, one can not always carry over the
interpretation aswell. Belowwe demonstrate the pitfalls involved in even establishing nonclassicality with
currently accessible observables in the sense of ruling out a given classical theory.

We focuson the caseof thefinite-temperaturehomogeneousBECundergoing anarbitraryparametric excitation
due to a variationof the scattering length. Fromanexperimental perspective this canbe implemented
straightforwardly, see for example [6, 7, 23]. For thequantumdescriptionwe assumequadraticBogoliubov theory
whichneglects phonon interactions so that thenon-equilibriumdynamics canbe solved for exactly. It preserves the
Gaussianity of thequantumstate.As a classical referencewe employ aquadratic semiclassical approachbasedon the
GPEwith an initial thermalmodepopulationwhich alsopreservesGaussianity. Thequantummechanical predictions
for themoments ofmodeoccupations approach thepredictionsof this classical theory in thehigh temperature limit.

Motivated fromquantumoptics studies three kinds of inequalities were utilized in recent BEC experiments,
with the goal to determine nonclassicality in atomoptics experiments, namely sub-Poissonian statistics
[8, 13, 34–37], and intensity [14, 36, 38–44] andmode [9, 10, 26, 45–48]Cauchy–Schwarz inequalities (CSIs).
Among these three inequalities sub-Poissonian statistics is themost accessible variable, as it can be obtained
directly from the normalized number difference variance, also referred to as the two-mode variance (TMV), see
equations (4)–(5). The intensity CSI involves normally ordered density–density correlations of two
symmetrically occupiedmodes, and is violatedwhen the normally ordered cross-correlations exceed the
normally ordered auto-correlations, see equation (2). In [14] it was argued that the normally ordered density–
density correlations are accessible in time-resolved time-of-flight (TOF)measurements. ThemodeCSI, see
equation (27), is a comparison between anomalous andmode density. A directmeasurement of the anomalous
density is not possible, but recently an indirectmeasurement of it has been suggested [10, 49].

Aswe shall see, from all of the abovementioned criteria only themodeCSI is in principle a sufficientmeasure
of nonclassicality in the sense of ruling out our classical reference. (The intensity CSI can also serve in principle as
a sufficientmeasure of nonclassicality, but this depends fully on the possibility ofmeasuring the normally
ordered density-density correlations correctly.Wewill explain this inmore detail in the next section.)Wealso
show that given some stronger assumptions, i.e.the validity of the approximate quantum theoreticalmodel
(within the Bogoliubov approximation the quantum states for the excitations areGaussian), all of the three
criteria aremathematically equivalent, and since themodeCSI is violated if and only if the state is nonseparable
[50], all three of them can equally well facilitate as entanglement criteria. Nevertheless we show explicitly, when
it comes to the experimental realization of the abovementioned criteria, none of them are sufficientmeasures of
nonclassicality in the experimental setup under consideration here.

1.Nonclassicality criteria to falsify a specific classical theory

In quantumoptics an important class of observables is provided by absorbing photodetection. As a case in point
we considermonochromatic light emitted from a point source and photo detectors with no dead time that detect
light of a specificwave vector. In the semiclassical theory of atom-light interactions [51, 52] the joint click rates of
a single or several photodetectors are directly proportional to themoments ofmode intensities. In the theory of
the quantizedfield the intensity Ia of amode a is represented by the photon number operator ˆ ˆ ˆ†=n a a, and the
joint click rates are proportional to normally and time orderedmoments of this operator [53]; e.g.form
coincidentmeasurements at equal time and position they are proportional to
( ˆ ) ˆ ˆ ( ˆ ) ( ˆ )†á ñ = á - ¼ - + ña a n n n m1 1m m . The destructivemeasurement of photons results in decreased auto-
correlations, while the classical reference assumes a ‘non-destructive’measurement of waves resulting in á ñnm

cl,
where n=I is the (fluctuating)mode intensity. For example consider the observation of intensity correlations

( ) ( ( ) ( ))t t= +C I t I t of continuously emitted light (i.e.in a stochastic steady-state) from afluorescing atom
at two subsequent times separated by τ as recorded by a single detector. (Weuse the notation ( ) ... formean
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values of observables asmeasured in the laboratory.) If the density–density correlations are increasing with
t 0, we can rule out the classicalmodel because theCauchy–Schwarz theoremwould always imply

( ) tCd d 0 0 [53]. However, the observation of ( )t >Cd d 0 0, known as photon antibunching, was reported
in [32]. This effect is genuinely nonclassical by definition because it is not understoodwithin the classical reference.
Within quantum theory, the observed data can be explained by the fact that single photons are arrivingwith a
tendency of being separated fromeach other and thenormally ordered correlator is strongly decreased.The
criterion for quantum states allowing for theobservation of ( )t >Cd d 0 0 can be formulated as the inequality

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )† † † †
á ñ < á ña a aa a b ba , 1

where ˆ ˆ ( )=a a t , ˆ ˆ ( )t= +b a t . It follows that this expression serves as a sufficient nonclassicality criterion for
the quantum state in an experiment of the type outlined above.

The concept of nonclassical states and any corresponding criteria can be extended to the case ofmultiple
detectors. In particular, let ∣a bñ, be a tensor product of coherent states for twomodes a b, entering two
detectors at different positions, and consider themeasurement of coincident click rates, proportional to
normally ordered correlators of ˆ ˆn n,a b in the quantum theory. Further, let us call states

( )∣ ∣òr a b a b a b a b= ñáPd d , , , P-classical if their Glauber–SudarshanP-representation ( )a bP , has the
properties of a classical (i.e. positive) probability distribution for the two complexmode amplitudes. Using the
defining property that the coherent states are eigenstates of their correspondingmode annihilation operators, it
is evident that one can reproduce any coincident click ratewithin the classical reference by using ( )a bP , as the
probability distribution for the complex classicalmode amplitudes [53–55]. On the other hand, for P-
nonclassical states without such aP-representation there should exist in principle a coincidence counting
experiment falsifying the classical theory. Thus, in the case ofmeasuring such counting rates in quantumoptics,
a state is classical if and only if it isP-classical. A sufficient criterion to establish P-nonclassicality of a state is
similarly given by inequality(1), where now a and b are two differentmodes at equal time, as is proven by
contradiction from theCauchy–Schwarz theorem. This inequality is equivalent to

( ) ( )( ) ( ) ( )>G G G , 2a b a a b b,
2,2

,
2,2

,
2,2 1 2

for the special case that ( ) ( )=G Ga a b b,
2,2

,
2,2 . Here ˆ ˆ ˆ ˆ( ) † †

º á ñG a b abab
2,2 are the normally ordered correlators.We

therefore refer to this criterion as the violation of the intensityCSI.
We nowdiscuss the connection of the intensity CSIs and another correlationmeasure, the TMV, also called

the number squeezing parameter [40, 56], which is experimentally accessible by repeatedlymeasuring the
intensity of the twomodes. The TMV is defined as the normalized number difference variance

( ) ( ) ( ) = - +V I I I IVar 0 3a b a b

for twomodes labeled a and b. Similar to referring to the case of a single variable with a variance smaller than its
mean as sub-Poissonian, we refer to <V 1as sub-Poissonian statistics in accordance with the literature.
HoweverV is sensitive to both the single-mode statistics and two-mode correlations.WhileV=1 for the state
∣a bñ, , in general neither uncorrelated nor Poissonian variables are necessary forV=15. For the symmetric
case, where (( ) ) (( ) ) =I Ia

n
b

n for n=1, 2, the TMV simplifies to

( ) ( )
( )

( ) 
=
-

V
I I I I

I
. 4a a a b

a

In a quantum theory this can bewritten as

ˆ
( )

( ) ( )

= +
-

á ñ
V

G G

n
1 , 5

a a a b

a

,
2,2

,
2,2

so that it follows that <V 1and a violation of the intensity CSI are equivalent, as was noted previously in [14].
Note that since V 0, equation (4) also proves that cross-correlations never exceed the non-normally ordered
auto-correlations; the normal ordering is crucial for a violation of the intensity CSI. In a quantum theory, due to
the non-zero commutator, the normal ordering reduces the density–density auto-correlations, such that

ˆ ˆ( ) = á ñ - á ñG n na a a a,
2,2 2 , which allows for ( ) ( )<G Ga a a b,

2,2
,
2,2 .

For the BEC, the implication that P-nonclassical states can demonstrate nonclassical behavior is not
generally true, as it is fundamentally based on the ability tomeasure normally orderedmoments of intensity in
the quantum theorywhile at the same time these are representedwithout normal order in the classical reference.
Wewill see below that this is not the case in the BEC. Thus the criteria for nonclassical states fromquantum
optics based on establishing P-nonclassicality, such as the violation of the intensity CSI(2), are neither a priori
related to nonclassicality.

5
An example are the binomially distributed, anti-correlated numbers of particles found in two non-overlapping regions in a box filledwith

an ideal gas. Simple examples with (positive) correlations also exist.

3

New J. Phys. 18 (2016) 113017 AFinke et al



To further explore these issues we focus on the specific example of (parametrically) excited, strongly
correlated two-mode numberfluctuations in a BEC [8]. To determine the validity of the nonclassicality criteria
for this system it is necessary to compare both the quantum and the corresponding semiclassical theories, as
described in sections 2 and 3 respectively.

2.Quantum theory

Weconsider an interacting Bose gas in a box of volume =V L3 with time-dependent interaction strength. The
second quantizedHamiltonian is given by

ˆ ( ) ˆ ˆ ( ) ˆ ˆ ˆ ˆ ( )† † †å å= +
¢

+ ¢- ¢H t
k

m
a a

U t

V
a a a a

2 2
, 6

k
k k

kk q
k q k q k k

2 2

where âk annihilates a single particle eigenstate of the (translationally invariant)momentumoperator and
pÎ Lk 2 d . Herewe assume the box to be large enough to approximate its single particle ground state by

ˆ ∣† ña 00 . For atoms ofmassm and s-wave scattering valid in the ultracold regime, the effective interaction is
( ) ( )p=U t a t m4 2

s . In experiments, the time-dependence of the scattering length as(t) can be achieved by use
of an appropriate Feshbach resonance [7, 57].We assume all changes to be slow enough not to excite the bound
state of the resonance [58].

2.1.Quasiparticles
Our formulation is based on standard Bogoliubov theory valid for a weakly interacting Bose gas [59]. The
Hamiltonian can be diagonalized by retaining only interaction terms to quadratic order in the total number of
particlesN after the Bogoliubov approximation

ˆ ˆ ( )†= = - Da a N . 70 0

With the critical assumption of a small depletion of the condensate, i.e. ˆ ˆ† D = å á ñ¹ a a Nk k k0 , the
Hamiltonian becomes a quadratic expression in themode operators. Onlymodeswith oppositemomenta are
coupled in a homogeneous condensate andwe henceforth use the abbreviated notation ˆ ˆºa ak and ˆ ˆº -b a k. A
two-mode squeezing represented by the transformation

( ) ˆ ( ) ˆ

( ) ˆ ( ) ˆ
( )

†

† †
= +

= +

a u t A v t B

b u t B v t A

;

,
8k k

k k

can be used to diagonalise theHamiltonian. The coefficientsmay be chosen as real numbers satisfying
- =u v 1k k

2 2 . Then the transformation is a Bogoliubov transformation, i.e.leaves the bosonic commutation

relation unchanged, [ ˆ ˆ ] [ ˆ ˆ ]† †= =A A B B, 1 , , and [ ˆ ˆ] =A B, 0. Neglecting the ground state energy the
Hamiltonian ˆ ( ) ( ) ˆ ( ) ˆ ( )†w= åH t t A t A tkk counts the elementary excitations of the system, the so-called
quasiparticles, with

( ) ( )
( )

( ) ( )= 
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟u t v t

e

e t

e t

e
,

1

2

1

2
, 9k k

k

k

k

k

kin 1 2

kin

1 2

with density n=N/V, kinetic energy =e k m2k
kin 2 2 and ( ) ( ) ( ( ) )w= = +e t t e e U t n2k k k k

kin kin , thewell-
knownBogoliubov dispersion relation. Assuming the equilibrated isolated system can be treated in the canonical
ensemblewith respect to the particles (or grand canonical with respect to the quasiparticles with vanishing
chemical potential as their number is not conserved), with the density operator ˆ ( ˆ )r bµ - Hexpth

ˆ ˆ
( )

≕ ( )†

w
á ñ =

-
A A

k T
n

1

exp 1
10

k B
kth
th

and the anomalous quasiparticle average ˆ ˆá ñ =AB 0th . (Note that althoughwe are neglecting the interactions
between the quasi-particles, we do assume their presence at longer time-scales, allowing the condensate to
thermalize in thefirst place.) For continuous timedependence ofU(t) theHeisenberg equations for the operators
are, with ( ) ( ( ) ( ) )†=S t A t B t, T, given by ( )=S t M t Sd d where

( ) ≔ ( )
w

w

- w

w

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟M t

i

i
. 11

k t

t k

dlog

d

dlog

d

k

k
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This implies that it is possible in general to describe the time evolution by a further linear transformation of the
form

ˆ ( ) ˆ ( ) ˆ ( )
ˆ ( ) ˆ ( ) ˆ ( ) ( )

†

† †

*

*

a b

a b

= +

= +

A t A t B t

B t B t A t

;

. 12

k k

k k

out in in

out in in

The complex coefficients *ak , bk and ak, *bk are the entries of the first and of the second rowof the fundamental
matrix ( )j =t t out of system(11) respectively, i.e. ( ) ( ) ( )j j=t t M t td d with ( )j =t idin . Using

( ) ( ( ( )))j j=det exp tr log wehave (∣ ∣ ∣ ∣ ) ( ) ( ) ( )a b j j- = = =d t d t M td d det det tr 0k k
2 2 so that

∣ ∣ ∣ ∣a b- = 1k k
2 2 at all times and (12) is a Bogoliubov transformation.We choose with no loss of generality
=t 0out such that for >t 0 the interaction strength is kept constant, defining the out-region, in which the time

evolution is a trivial phase oscillation. Note that the arbitrary time dependence of ( )<U t 0 is now encoded in
the complex Bogoliubov coefficients ak and bk subject to the normalization constraint. The dependence of these
coefficients on ( )<U t 0 is implicit in our notation.

By a periodicmodulation of the interaction strength, ∣ ∣bk grows exponentially with the number of periods if k
is in a region of instability. For example, for low amplitude sinusoidalmodulations of the form

( ) ( ( ))w= +U t U A t1 sin D0 with A 1 thefirst resonance occurs at w w= 2k D [60].More generally, some
algebra shows the unstable regions are given for { }( ) a >e 1k

1 , where ( )ak
1 is taken from the solution of

system(11) integrated for a single period. Analytic resultsmay be obtained in the case of a square wave
modulation, for whichwe denote the amplitude pA 4. Furthermore, the position and growth rate of the first
resonance6 of a sinusoidalmodulationwith a large amplitude can be approximated by a series of sudden changes
of this kind. Interestingly, this also predicts the positions of extremely fast growing parametric resonances
occurring only for certain, large enoughA. Fast growing, nonperturbative parametric resonances have been
suggested to cause preheating in the reheating process of the inflationaryUniverse [61]. Note however that such
resonances increase the condensate depletion dramatically andwill eventually lead to violation of the assumed
linear theory. Parametric resonance for the nonlinear, classical problemhas been studied analytically for a
variation of the trap in [62] and numerically for a variation of the scattering length in [63]. For the purpose of the
present workwe consider a resonance due to periodicmodulations. For smallmodulation amplitudes the first
resonancemode can be strongly excited, however the particle number can be insignificant with respect to the
total depletion for a systemwithmanymodes.

2.2. Real particles
Weare primarily concernedwith themomentum-space observables, which are the expectation values of
products of time-dependent real particle operators of the form ( )>a t 0 and/or its conjugate, as these
observables can bemeasured in current experiments, e.g.using the standard TOFmethod [1, 64]. In a TOF
experiment onemeasures real particles rather than quasi-particles, and in the followingwewill be focussing on
observables in the real particle basis [65]. Note, this is in contrast tomost of the analogue gravity studies on
similar subjects, which focus on the quasi-particlesmodes, e.g. [17, 26, 46, 47, 49]. Combining the interaction
squeezing(8)with the parametric excitations for <t 0 (12) and the subsequent phase evolution, we have
ˆ ( ) ˆ ( ) ˆ †*l g= +a t A t Bk k

in in
and ( ) ˆ ( ) ˆ† † *l g= +b t B t Ak k

in in
. Because the Bogoliubov transformations form a

group, the coefficients of the total transformation satisfy ∣ ( )∣ ∣ ( )∣l g- =t t 1k k
2 2 , and are given by

( ) ( )l a b= +w w-t u ve e ; 13k k k
t

k k
tout i out ik k

out out

( ) ( )g b a= +w w-t u ve e 14k k k
i t

k k
i tout outk k

out out

and a straightforward calculation shows that

∣ ( )∣ ( ) ∣ ∣ ( ) ∣ ∣
( [ ]) ( )

g b b
k w d

= + +

´ - +

t v v

t

2

1 cos 2 , 15

k k k k k

k k k

2 out 2 2 out 2 2

out

where [( ( ) )( ∣ ∣ )]k b= + +- -v1 1k k k
out 2 2 1

2 and d a b= -arg argk k k.
Starting from a thermal initial state, the number of particles inmode k for >t 0 is given by

( ) ≔ ˆ ˆ ∣ ( )∣ ∣ ( )∣ ( )† g gá ñ = + +n t a a n t n t2 . 16k k k k k
th 2 th 2

Here nk
th refers to the initial populationwhen ( )=U U t in .With expression(15) the depletion

( ) ( )åD =
¹

n t 17
k

k
0

6
Approximately given for k solution of ( ) ( )w w w+ =U Uk k Dmax min such that ( )p= U U A1 3max min 0 for
( ) ( ( ))w= +U t U A t1 sin D0 , which can be solved analytically.
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is when time averaged

[ ∣ ∣

( )
]

( )

å b

b b

b

D = + +

+ + +

+

n v

n v n v

n v

2

4 ,

18

k k k

k k k k k k

k k k

k

th out 2 2

th out 2 th 2 out 2 2

th out 2 2

in particular containing the following three terms: the thermal depletionnk
thwhich vanishes only for =T 0in , the

depletion due to interactions vk
out 2 which vanishes only for =U 0out , and the quasiparticle production bk

2 which
vanishes only forU=const. Furthermore all threemutual dual products of these terms appear aswell as the
triple product, signifyingmutual amplification of these processes. For large but finite volume it is possible to stay
in the validity regime of the Bogoliubov theory D N by reducing the scattering length sufficiently. Significant
interactions are still possible by increasing the particle density. For the rest of this paper, we assume that we are in
this regime.

The only other non-vanishing correlation containing two operators is

( ) ≔ ( ) ( )( ) ( )*g lá ñ = +m t ab t t n1 2 . 19k k k k
th

Themodulus squared

∣ ( )∣ ∣ ( )∣ ( ∣ ( )∣ )( ) ( )g g= + +m t t t n1 1 2 , 20k k k k
2 2 2 th 2

is referred to as the anomalous density. The anomalous density is of quartic order, and hence cannot be neglected
in our truncation of the originalHamiltonian(6). Although the anomalous density is not directly observable in
section 4.3we discuss a proposal [49] to observe this quantity indirectly. Aswe shall see the anomalous density
plays an important role in terms of establishing the nonseparability for the quantumfluctuations in a BEC.

2.3. Correlations
The two-mode squeezed thermal state we are considering here is the exponential of a quadratic expression in the
mode operators. For suchGaussian states, a finite temperatureWick theorem exists formode operatormoments
in anti-normal, normal, and symmetrized order, respectively. Highermoments can be computed by simply
summing over all possible pairings of secondmoments of themode operators.

This immediately gives the normal ordered correlation functions, where for clarity we reintroduce the
k-dependence, as

( )
( )

( ) ∣ ( )∣
( )

( )( ) =
¢ =

+ ¢ = -¢

⎧
⎨⎪

⎩⎪
G t

n t

n t m t

n t

k k

k k

2

.

else

21
k

k k

k

k k,
2,2

2

2 2

2

In our abbreviated notation, ( )( ) =G n t2aa k
2,2 2 and ( ) ∣ ( )∣( ) = +G n t m tab k k

2,2 2 2. Then, the two-mode variance(5)
is

∣ ∣ ( )= +
-

V
n m

n
1 . 22k k

k

2 2

Thus, we have sub-Poissonian statistics and violation of theCSI if and only if ∣ ∣ >m nk k
2 2. This is an

entanglement criterionwhichwasfirst derived in the context of cosmological inflation [45] and subsequently
applied to the phonons of quenched andparametrically excited BECs in [26, 46]. The connection of entanglement
to the violation of theCSI has been noticed previously [50].We can rewrite expression(22) as

( )
( ∣ ∣ ) ∣ ∣

( )
g g

=
+

+ +
V

n n

n

1

1 2
23k k

k k k

th th

th 2 2

and in particular simplify the condition <V 1 to obtain

∣ ( )∣ ( ) ( )g >t n T 2 . 24k k
2 th

Taking the limit of vanishing interaction U 0out quasiparticles reduce to real particles and the term
∣ ( )∣g tk

2 may be replaced by ∣ ∣bk
2 in(24). Then this expression agrees with the phonon entanglement criterion

found in [66].
We now give an independent (and short) derivation that(24) is a nonseparability criterion for the real

particles,i.e. atoms, of oppositemomenta.
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For a given partition of theHilbert space into each of the twomodes and the rest of the system
   = Ä Äa b r wemay ask if a product state r r r= Äab r is separable with respect to the first two spaces.
Thismeans by definition that the bipartite state can bewritten as amixture of products (i.e. a convex sum),
r r r= å Äpab i i a

i
b
i with å =p 1i i and >p 0i , and the subsystems’ states rm

i might be taken to be pure without
loss of generality. If this is not possible one has a nonseparable or entangled state with respect to Äa b [67].

A requirement for a separable state is that the partial transpose of the density operator is again positive semi-
definite [68]. If this is not the case the statemust be nonseparable. For continuous variable two-mode systems,
like for the twomodes a b, considered here, the implication of this sufficient nonseparability criterion for the
covariancematrix is also necessary for nonseparability if the state is aGaussianWigner function [69]. A
straightforward procedure to evaluate this entanglement criterion conveniently written in terms ofmoments of
the annihilation and creation operators directly is to consider the determinant [70]

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

( )

† †

† † † † † †

† †

† † † † † †

† †

=

á ñ á ñ á ñ á ñ

á ñ á ñ á ñ á ñ á ñ

á ñ á ñ á ñ á ñ á ñ

á ñ á ñ á ñ á ñ á ñ

á ñ á ñ á ñ á ñ á ñ

D

a b b a

a a a a b a b a

b ab b b b a b

b ab b bb a b

a a ab ab aa

1

. 255

2

2

2

2

Here rows and columns have been reordered such thatD5 trivially splits into the product of two sub-
determinants for our case

( ∣ ∣ )(( ) ∣ ∣ ) ( )= - + -D n m n m1 . 26k k k k5
2 2 2 2

The state is entangled iff <D 05 [70]. Since in general ∣ ∣á ñ < á ñá + ñab n n 1a b
2 [48, 71] the second factor is

always positive andwe have simply ∣ ∣ > m n entanglementk k
2 2 , completing the proof.

Since for anymixed separable state ∣ ∣ † †á ñ á ñá ñab a a b b2 , ∣ ∣ >m nk k
2 2 implies nonseparability even for non-

Gaussian states [70, 72]. The violation of themodeCSI

∣ ˆ ˆ ∣ ˆ ˆ ˆ ˆ ( )† †á ñ > á ñá ñ- - -a a a a a a , 27k k k k k k
2

is thus sufficient for nonseparability in general, and equivalent to nonseparability for the two-mode squeezed
Gaussian states considered here. The intensity Cauchy–Schwarz violation(2) itself on the other hand does not
imply nonseparability in general when themoments do not factorize as forGaussian states. For example,V=0
for (mixtures of) Fock states ∣ ∣ñ Ä ñn n with the same number of particles inmode a and b.Without theGaussian
factorization the breakdown of the intensity CSI as an entanglement criterion is expected. Furthermore for
Gaussian states with coherent properties the intensity CSI violation is independent of entanglement [43, 47].

We see from(23) that for the thermal state of the non-interacting systemwith g = 0k thefluctuations are

always super-Poissonian, = +V n1 k
th, and thus the state is separable. Increasing ∣ ∣gk due to quantumdepletion

or parametric excitations however leads to a decrease ofV and sub-Poissonian statistics and nonseparability are
possible.

For the interacting system in equilibrium, i.e.without parametric excitation, it can be shown thatV as a
function of k increases with decreasingwave number k. For k 0,V=1 is reached for =k T UnB , i.e.the
temperature is of the order of the chemical potentialμ of the Bose gas.Here the atomswith oppositemomenta are
nonseparable already for all k due to interactions.This effect is absent for the quasiparticles.

The term ∣ ∣gk
2 on the left hand side of formula(24) appears in(16).Within(16) itmay be interpreted as a

quantum, ‘spontaneous emission’ term, comprising both quasiparticle production and quantumdepletion.
Note that for high temperatures ( ) n T 2 1k

th Bogoliubov theory implies a spontaneous emission term
∣ ( )∣ g t 1k

2 and entanglement when sufficiently strong correlations <V 1aremeasured, but it also predicts
that the spontaneous emission is insignificant compared to the amplification of thermal noise. In the next
sectionwe show that the samemeasurable strong correlations <V 1which imply entanglement in Bogoliubov
theory are possible in a classical theorywithout a notion of entanglement. In this theory the spontaneous
emission term is absent and only amplification of the thermal occupation occurs.

3. Classical theory

Whenquantum and thermalfluctuations are neglected, themean-field dynamics of a Bose–Einstein condensate
arewell-described by the so-called (GPE), given by
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( ) ( )∣ ∣ ( )


f f f¶ = -  + +
⎛
⎝⎜

⎞
⎠⎟m

V r U ti
2

, 28t

2
2 2

where ( ) ˆ ( )f = áY ñt x t x, , is the complex-valuedmacroscopic wave function andV(r) is the trapping potential
taken to be zero for the homogeneous case considered here. Formally theGPE can be obtained from the
Heisenberg equation ofmotion ˆ [ ˆ ˆ ]¶ Y = Y Hi ,t in the quantum theory and by a replacement ˆ fY  in the
operator equation ofmotion, as is well known. For amore detailed derivation see for example [2].

A suitable classicalHamiltonian yielding theGPE from the equation ofmotion is given by themeanfield
energy functional [73]

( )[ ] ( ) ∣ ∣ ∣ ∣ ( )*ò òf f f f f=   + ¢H m U tr r
1

2
d d 292 2 2

with the understanding that the complex field ( ) ( ( ) ( )) ( )f º -x Q x P xi 2 . Indeedwith this definition
Hamilton’s equations d d¶ =Q H Pt and d d¶ = -P H Qt appear in the form { }*f d df f¶ = =H Hi ,t , and
the right hand side of this expression amounts to the same formalmanipulations as in the right hand side of the
Heisenberg equation ofmotion ˆ [ ˆ ˆ ]¶ Y = Y Hi ,t .We consider the system to be in a classical thermal state of the
canonical ensemble with probabilities for afield configurationf given by [ ] ( [ ])f b f= -p Hexp . As in the
quantum case, wemay linearize and diagonalize the theory for sufficiently low classical depletion

*f fD = å ¹k k k0 . The linear transformations to the classical quasiparticles (normalmodes) are completely
analogous, preserving the correspondence between the equations ofmotion of the quantumand classical case.
This similarity between the quantum and classical linear theory is well known for the common-place approach
of linearizing after deriving the equations ofmotion, i.e.writing either ˆ ( ) ( ) ˆ ( )f dfY  +x t x t x t, , ,0 in the
quantum case and ( ) ( ) ( )f f df +x t x t x t, , ,0 in theGPE case (for the homogeneous time dependent case
considered here, ( )f t0 is constant in space). Thus, we obtain the equations ofmotion for the classical theory
without further calculation bymaking a replacement

ˆ ˆ ( )A B A B, , 30

in the corresponding equations from the quantum theory(11), where the classical quasiparticles are defined by a
similar linear Bogoliubov transformation of Fouriermodes of the field as in the quantum case

( ) ( )* *l g= +a A B , 31k k
in in

where againwe have set f = ak , with the coefficients gk and lk similarly given by (13) and (14).We identify the
mode intensity ( ) Ia with *á ña a cl, and similarly for the intensity correlations.Within this classical treatment of
the BEC,wefind again by evaluating aGaussian integral that *á ñ =A A nkcl ,cl

th and á ñ =AB 0cl for the initial
thermal state. However now the energy is equally partitioned over all the fieldmodes

( )
w

=n
k T

32k
B

k
,cl

th

in accordancewith the high temperature limit of the Bose–Einstein statistics with vanishing chemical potential.
The equipartition of energy is indeed observed in equilibratingmicro-canonical simulations of the projected
GPE [74, 75]. Note that furthermore it has been argued there that the projectedGPE at finite temperature
provides indeed a (classical) theory of the highly occupiedmodes of an actual Bose–Einstein condensate.We do
however not rely on a physical interpretation of the classical theory of this sort; instead, we just use it as a tool
providing a definite classical reference, to define and isolate the quantum effects.

3.1. Correlations
Using the Bogoliubov transformation(31)we obtain

≔ ( ) ( ∣ ∣ ) ( ) ( )* gá ñ = +n a a n2 1 ; 33k k k,cl
2

cl
2 2 2

,cl
th 2

∣ ∣ ≔ ∣ ∣ (∣ ∣ )∣ ∣ ( ) ( )g gá ñ = +m ab n4 1 . 34k k k k,cl
2

cl
2 2 2

,cl
th 2

Notice the absence of terms leading to the spontaneous generation offield fluctuationswithin this classical
treatment of the excitations. It is alsoworth stressing that even in the absence of amodulation, b = 0k , the
thermal noise is correlated by the interaction term in the real particle basis, which contributes to the (thermal)
depletion.However, for T 0 this depletion goes to zero in contrast to the quantum formulation. From
equations (33) and (34) it is immediate that ∣ ∣ <m nk k,cl ,cl. Hence themodeCSI cannot be violated in this classical
theory. This is in agreement with themathematical Cauchy–Schwarz theorem.

TheWick theorem for the evaluation of higher correlation functions now follows from Isserlis’ theorem [76]
directly. The fourthmoments needed in expression(4) for the two-mode variance are

( ) ( )* * * = = á ñI I a aa a a a2a a cl
2 and ( ) ∣ ∣* * * = á ñ = á ñ + á ñI I a ab b a a aba b cl cl

2
cl

2. (Note, comparing the
classical with the quantum theory no corrections due to normal ordering are needed in order to applyWick’s
theorem.)
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4. Comparison between classical and quantum theory for specific observables

Finally we apply ourfindings to recent experimental procedures to detect sub-Poissonian statistics, intensity CSI
andmodeCSI.We demonstrate that none of these proposed experimental observables can establish the
nonclassicality of the excitations in a BECundergoing an arbitrarymodulation of the interaction parameter.
Belowwe discuss in depth two proposals that can be implemented using a TOF and / in-situ imaging technique
of the condensate. In a TOFmeasurement the trap is switched off and the atoms fall due to gravity while
expanding rapidly due to the non-zero velocity distribution of the excitations in the BEC.Hence in a TOF
experiment real space density fluctuations aremapped onto the atomicmomentum space distribution. The
motional states of the real particles carry information about themotional states of the original quantum gas, see
for example [65]. Conversely, in- situmeasurements involve a direct imaging of the trapped condensate
[9, 10, 20, 77].

4.1. Sub-Poissonian statistics
Independent of the underlying theory the TMV, see equation (4), can be extracted experimentally via TOF and /
or in-situmeasurements. From a single experiment one can extract I Ia a, I Ia b and Ia. By repeating the experiment
and then averaging over the extracted quantities one can then get the corresponding expectation values. As
pointed out above if the TMV is smaller than 1 the statistics of the process is referred to as sub-Poissonian.

Our classical reference predicts

∣ ∣
( )

g
=

+
V

n

2 1
. 35k

k
cl

,cl
th

2

Note thatV andVcl aremathematically inequivalent expressions, but physically refer to the same observable.
Thuswe obtain sub-Poissonian statistics for

∣ ( )∣ ( ) ( )g > -t n T 2
1

2
, 36k k

2
,cl

th

within a completely classical treatment of smallfluctuations in a BEC.
Comparing the quantum result (24)with the classical result (36), it appears that it is possible in both cases to

produce sub-Poissonian statistics for a sufficiently low temperature and suitablemodulation.We compare the
time dependent value ofV for a resonantmode undergoing periodicmodulation for both the quantumand
classical cases infigure 1. In the left columnof thefigure we plot the dependence of theVʼs in the resonance
mode for a square-wavemodulation of the scattering length of a factor of 1.2 over 30 cycles for different initial
temperatures. There are three important observations that can bemade from these plots, which are true for both
theories. First,V is in general time-dependent due to the formof g2 given in equation (15). Second, for
sufficiently long driving the oscillations become suppressed andV approaches zero. The oscillations inV for the
quantum case also suggest that the entanglement criterion (24) is time-dependent. It should be noted that this
refers tomode entanglement in contrast to particle entanglement. Third, the classical value ofV is always below
the quantumvalue. This follows from comparing the criteria(36) and(24) and given that <n nk k,cl

th th at finite
temperature. The physical explanation is that our classical reference is awave theory and as such ismissing the
shot noise due to the discrete excitations (in this case atomnumbers), i.e.thefirst termon the right hand side of

( ˆ ) ˆ ˆ ˆ ˆ= á ñ + á ñ - á ñ = +n n n n n n nVar : :k k k k k k k
2 2. The classical reference only contains the final termnk

2 that has
been associated by Einstein to thewave character of the atoms [78]. The shot noise term is necessary for a (super-
)Poissonian two-mode variance for low occupation numbers. To see this, wemake use of an alternative formof
expression(4), ( ( ) ( )) ( )= -V I Cov I I IVar ,a a b a to boundV from above by ( ) ( ) V I IVar a a for positive
or vanishing correlations. Since classically the variance scales with the square of the occupation number,Vwill
always be sub-Poissonian for low enough occupation numbers. Indeed, for equilibrium and vanishing
interactions, (35) becomes =V nkcl ,cl

th showing the threshold is an occupation of unity.
We stress that the absence of shot noise in the classical theory is not always the cause of the obtained sub-

Poissonian statistics. At high initial temperature T 1 the shot noise becomes insignificant and the classical
and quantum results approach each other. For strong enough driving, sub-Poissonian statistics is possible in
both theories, even if the initial thermal state exhibits super-Poissonian fluctuations.

We conclude that a TMV smaller than 1, and / or sub-Poissonian statistics is not a sufficient nonclassicality
criterion to rule out our specific classical reference.

4.2. Violation of intensity CSI for time-resolved TOFmeasurements
As pointed out in (section 1) the so-called violation of the intensity CSI, defined as auto-correlations exceeding
cross-correlations, is only possible if the auto-correlations are normally ordered in the quantum theory or
equivalently ( )-I I 1a a ismeasured instead of Ia

2 for the auto-correlations. If <V 1a comparison of the cross-
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correlationswith the auto-correlations in the reduced form ( )-I I 1a a appears in both the quantumand
classical case. A distinction between the quantum theory and the classical reference as in coincidence counting
experiments is then not available.

A time-resolved TOFmethod as proposed in [14] is not a suitable detection scheme for this purpose. In the
TOFmethod the atoms are released from the trap, hence the BEC is destroyed, and thewave description for the
excitations breaks down. Collective excitations have been transferred to a finite number of atoms and hence
independent of the nature of the collective excitations themeasurement of the auto-correlations is destructive:
the probability to subsequentlymeasure two excitationswithmomentum k is proportional to ( )-n n 1k k . In
this sense the resulting violation of theCSIwithin a time-resolved TOFmeasurement of the density–density

Figure 1.Time dependence ofV (left column) and r̂ rá ñ-k k (right column) in the quantum theory (blue) and classical reference (red)
for first resonantmode at (a/e) m=T 0.5 , (b/f) m=T 1 , (c/g) m=T 5 , and (d/h) m=T 20 . The driving oscillation of the interaction
strength, i.e. ( ) ( ( ))= +U t U F t1 0.20 with ( ) ( ( ( )))w= -F t t1 sign sin 2D for w = 5D , in both cases is turned off after 30
periods as indicated by the (red) dotted vertical line. The (red) dotted horizontal line indicates in the columnon the left (right)V=1
( ˆ ˆr rá ñ =- Nk k ). For <V 1one speaks of sub-Poissonian number squeezing, and ˆ ˆr rá ñ <- N 1k k has been proposed in [9, 49] as an
indirectmeasure of non-separability. (Notewe are using dimensionless parameters here, t tU n0 0 .)
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correlations is not a priori incompatible with a suitable classical description. It is instead equivalent to <V 1and
our discussion of the corresponding interpretation of this case applies directly to the results in [14].

We conclude a time-resolved TOFmeasurement as suggested in [14] is not a sufficient nonclassicality
criterion for the excitations in a BEC.

4.3. Indirectmeasurement of violation ofmodeCSI
ThemodeCSI could provide away to establish the nonclassicality of the system.However, the anomalous
density needs to bemeasured for this purpose. In [9, 49] in situ densitymeasurements were related to
nonseparability criteria for the case ofHawking radiationwhich in the simple case also reduce to amodeCSI
between upstream and downstreammodes [47]. A similar analysis was also given in [43]. The basic observables
are the atomnumber densities at different positions in real space ( )r r measured for all r by an in situ imaging of
the condensate.

The expectation value ˆ ˆr rá ñ-k k , where ˆ ˆ ( )òr r=¢
- ¢r rd ek

k ri and ˆ ( ) ˆ ( ) ˆ ( )†r = Y Yr r r , can be obtained

experimentally from the ensemble average ( ) r r-k k of the Fourier transform ( )òr r=¢
- ¢r rd ek

k ri of the
measured density ( )r r over different realizations (shots) of an identical experiment. Note that r̂k is not the

number operator formode k but a convolution ˆ ˆ ˆ†r = å +a ak p p k p involving the (dimensionless) real particle

annihilation and creation operators ˆ ˆ ( )òº Y- -a V r rd ek
kr1 2 i , as can be easily verified by

using ˆ ( ) ˆY = å-V ar ek k
kr1 2 i .

Making use of the Bogoliubov approximation(7) this is

ˆ ( ˆ ˆ ) ( )†r + -N a a . 37k k k

Herewe have assumed that the terms quadratic in the operators are bound by the total depletion.We can see
immediately that ˆ ˆ †r r=-k k and [ ]†r r =, 0k k . Thus ˆ ˆ ˆ ˆ†r r r rá ñ = á ñ-k k k k is a positive quantity and is
approximately given by

ˆ ˆ [( ˆ ˆ ) ( ˆ ˆ ˆ ˆ )] ( )† †r rá ñ + + +- - - -N a a a a a ah.c. . 38k k k k k k k k

In our previous notation and exploiting the symmetry of the state this reads ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ )† † † †+ + +N ab a b a a aa . In
the quantum theory, the expectation value is thus

ˆ ˆ ( ( ) ) ( )r rá ñ = + +- N m n2 2 1 . 39k kk k R

The behavior of ( )*g l= +m n1 2k k k k
th is determined by the complex factor

∣ ∣( ∣ ∣ )

∣ ∣ ∣ ∣[ ( ) ] ( )

*g l b

b b w d

=- +

+ + + + w d- -

u v

v t

2 1

1 2 cos 2 e . 40

k k k k k

k k k k
t

2

2 2 i2 i k

(Note that <v 0k was used in the first term.)At times tm such that ( )w d p p+ =t2 mod 2m k , this reduces to

∣ ∣( ∣ ∣ ) ∣ ∣ ∣ ∣( ) ( )*g l b b b= - + - + +u v v2 1 1 2 1 , 41k k k k k k k k
2 2 2

a negative real number. Since all terms on the rhs of equation (41) appearwith the same sign at tm the term ∣ ∣*g lk k
is largest at this time. Thus, whenmeasured at this particular time tm, we can replace the real part by aminus sign

ˆ ˆ ( ∣ ∣) ( )r rá ñ = - +- N n m N2 . 42k kk k

Wecan then see that—assuming the quantum theory—at tm themodeCSI violation(27) is equivalent to

ˆ ˆ ( )r rá ñ <- N . 43k k

Keeping track of higher order terms shows that one condition for this analysis to hold is D N nk, which has
to be compared to D N for the validity of standard Bogoliubov theory, whereΔ is the depletion of the
condensate (17).

Note that ˆ ˆr rá ñ =- Nk k in the limit of zero temperature, no driving and vanishing interactions due to the
nonvanishing commutator. (The quantumnoise causes themeasured in-situ density tofluctuate.)Thus, the
observable consequence of entanglement in this experiment is ameasured suppression of thesefluctuations. The
absence of quantumnoise in any classical reference already indicates that such a threshold does not exist in our
classical reference.

Indeed, at =t tm we obtain

( ) ( ∣ ∣) ( ) r r r r= á ñ = -- - N n m2 , 44k kk k k k cl

hence it is also possible to obtain ( ) r r <- Nk k .We compare the time dependent value of ˆ ˆr rá ñ-k k for a
resonantmode undergoing periodicmodulation for both the quantumand classical cases infigure 1. In the right
columnof thefigurewe plot the dependence of the ˆ ˆr rá ñ-k k in thefirst resonancemode for a square-wave
modulation of the scattering length of a factor of 1.2 over 30 cycles for different initial temperatures. In both case
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(quantum aswell as classical) the specific observable under consideration exhibit nonclassical correlations. Very
much like in the TMVcase there are commutator terms only appearing within the quantum theory thatmake
the observation imply a violation of themodeCSI.

In summary, an indirectmeasurement of themodeCSI of the type suggested in [9, 49] is not a sufficient non-
classicalitymeasurewhen applied to the case of excitations in a homogeneous parametrically excited BEC.

5. Conclusions

In this paper we have taken the viewpoint that nonclassical effects in the BEC are those that are incompatible
with the results obtained using an ensemble of classical trajectories given by solutions of theGPE. For excitations
in a parametrically excited BECwe showed that observable strong number correlations as indicated by <V 1
(related to P-nonclassicality and even nonseparability of atomicmodes in the quantum theory) and an indirect
measurement of the intensity CSI as suggested in [9, 49] are compatible with this classical theory. Similarly, we
argued that a violation of the intensity CSI in a time-resolved TOFmeasurement is compatible with the classical
picture of an atomic cloud after destruction of the BEC. Althoughwe considered the definitemodel of
parametric creation of two-mode squeezing, we also argued above that in different set-ups one should also not
automatically expect these number correlation-based observables to rule out a corresponding classicalmodel,
and possibly a quantummodel with decoherence. Nevertheless, in the context that the Bogoliubov theory is a
valid approximation, ameasurement of <V 1 (or equivalently a violation of the intensity CSI) is sufficient for
P-nonclassicality and nonseparability, both of which are criteria that assess a given quantum state. However,
these criteria are not suitable to theoretically single out the spontaneous process of amplified vacuumnoise for
analogue gravity studies.

We conjecture that the direct experimental verification of the quantumness of the fluctuations remains an
open challenge for future BEC experiments in general. For this purpose we propose that additional observables,
including noncommuting ones, e.g.density and phase fluctuations, have to bemeasured. For example it is
possible to involve interference techniques where onemeasures the phase quadrature of quasi particles
[11, 15, 79]. Returning to the particular setup discussed above, a parametrically excited condensate, wewould
like to point out that such a system can be used tomimicmodels of cosmological particle production in table-top
experiments [24]. As argued in this paper, evenwithin highly controllable and repeatable BEC experiments one
is for now facing a similar dilemma to the one of establishing the quantumorigin of thefluctuations seeding our
Universe [80]. So far in both cases a suitable Bell-type experiment, that would for once and all resolve this issue,
is absent.
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