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Abstract
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1 Introduction

There is now a substantial body of research suggesting that asset price bubbles and

their ensuing collapses can have a significant impact on a country’s macroeconomic

performance.1 Hence, detecting the presence of an asset price bubble and the timing of

its termination is of crucial importance to central banks and financial regulators, as well

as investors. Of particular interest to researchers in this area are “rational bubbles”

— where the real price of an asset is assumed to be equal to the present value of

relevant fundamentals and a bubble component that grows in expectation at the real

interest rate, and investors are assumed to have rational expectations. Under these

assumptions investing in the asset can be a rational choice for investors even though

its current observed price is higher than the price level that is justified by relevant

fundamentals. To define a rational bubble algebraically consider the simple case of a

single stock, where Pt denotes the observed real stock price, Dt denotes the observed

real dividend for the stock and r denotes the real interest rate used for discounting

expected future cash flows. Define the observed price as consisting of a fundamentals

component and a bubble component

Pt = P f
t +Bt

where the fundamentals component P f
t is given by

P f
t =

∞∑
i=1

(1 + r)−iEt(Dt+i).

If the bubble component satisfies the stochastic difference equation

Bt+1 = (1 + r)Bt + ut

where Et−i(ut) = 0 for all i ≥ 0, then a rational bubble is said to exist (cf. Diba and

Grossman, 1988).

It is clear from the algebraic representation given above that in the presence of

a rational bubble, since the bubble grows at an explosive rate, the observed price

will be a statistically explosive process (even if the fundamentals component of the

1See for example Bernanke (1995, 2013) and Greenspan (2007), Ch. 8, and the references therein,
where examples of causal links between speculative bubbles, crises in banking systems and subsequent
falls in aggregate demand leading to major macroeconomic recessions are discussed (including for the
US stock price bubble in September/October 1929, the real estate and stock price bubbles in Japan
in the late 1980s, and the US house price bubble in 2006.)
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price is not statistically explosive). Recognition of this feature of rational bubbles led

Diba and Grossman (1988) to propose statistical testing for the presence of a rational

stock price bubble by attempting to detect explosive autoregressive behaviour in the

stock price series that is not driven by similar explosive behaviour in the dividend

series, using orthodox unit root tests such as the Dickey-Fuller (DF) test applied to the

price and dividend series in levels and first differences. Since differencing an explosive

autoregressive process does not lead to a stationary process, a rejection from the DF

test for the first difference of the price and dividend series, with no rejection for the

series in levels, suggests that no rational bubble exists.

The research on testing for rational bubbles by Diba and Grossman (1988) focuses

on the specific case of an explosive rational bubble that does not collapse. As noted

by Evans (1991) however, this type of bubble is empirically unrealistic because it

implies that the asset price will perpetually grow at an explosive rate. Evans (1991)

proposes a more realistic rational bubble model where the explosive bubble periodically

collapses to a lower level, and the frequency of the collapses is controlled by a Bernoulli

process. Using simulations, it is shown that even when the probability of collapse at

each observation is extremely small so that there are just one or two collapses over

the sample period considered, the use of orthodox unit root tests to detect bubbles as

suggested by Diba and Grossman (1988) will tend to lead to the erroneous conclusion

that a bubble is not present. This is due to the large adjustment in the price series

caused by the bubble process collapsing. In effect, this reversion an appearance of mean

reversion, causing the series to appear to be a stationary process with no explosive

behaviour.

Recognizing this weakness of orthodox DF tests, researchers have focused on devel-

oping methods for detecting asset price bubbles that are more robust to the presence

of collapses in the bubble process. Initial developments in this area employed unit root

tests derived from regime switching models, such as Markov-switching models (e.g.

Van Norden and Vigfusson, 1998; Hall et al., 1999) and smooth transition autoregres-

sive models (e.g. McMillan, 2006). Markov-switching models combined with Bayesian

estimation techniques have also been found to be informative about the presence of

bubbles that periodically collapse (e.g. Balke and Wohar, 2008). Whilst these meth-

ods have considerable advantages in the presence of periodically collapsing bubbles

relative to using orthodox unit root tests, they can be computationally expensive, and

the asymptotic distributions of unit root test statistics computed using these types of

regime switching models are in some cases impossible to derive analytically.

Many of the more recently developed techniques for testing for bubbles retain use
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of DF-type tests; however, rather than applying traditional left-tailed DF tests to the

price and fundamentals data in levels and differences, this research has recommended

the use of right-tailed DF tests of the unit root null hypothesis against the alternative

hypothesis of explosive autoregression applied to the relevant series in levels only. For

example, see the papers by Phillips et al. (2011) (PWY), Homm and Breitung (2012),

and Phillips et al. (2014) (PSY). PWY suggest constructing right-tailed DF tests

recursively, and taking the supremum of this sequence of test statistics to test the

unit root null hypothesis against the explosive alternative. Homm and Breitung (2012)

consider a modified version of the PWYmethodology, based on taking the supremum of

backward recursive DF statistics. PSY recommend a statistic based on the supremum

of both forward and backward recursively computed DF statistics. Simulations show

that the proposed tests have very good finite sample power to detect a rational bubble,

even if the bubble periodically collapses as in Evans (1991). Note also that as pointed

out by PSY, a further attractive feature of the test statistics proposed in this line

of research is that as well as being able to detect rational bubbles, the test statistics

will have non-trivial finite sample power to detect other types of explosive bubble

processes, including for example intrinsic bubbles (Froot and Obstfeld, 1991), herd

behavior (Avery and Zemsky, 1998; Abreu and Brunnermeier, 2003), and bubbles

generated by time varying discount factor fundamentals (Phillips and Yu, 2011).

At least as important as being able to detect the presence of a bubble is the issue

of being able to accurately determine the start and end dates of a bubble regime

that is deemed to exist. Such information can be crucial ex post for reconciling the

origination and termination of a bubble with other economic and financial events. Both

PWY and PSY address this important issue, proposing estimators for the timing of

explosive behaviour that are based on the sequences of DF recursive statistics exceeding

threshold values. For example, PWY apply their approach to data on the Nasdaq

composite index 1972:3-2005:6, and find evidence of explosiveness that started in 1995,

predating comments made by the Federal Reserve Board Chairman, Alan Greenspan, in

December 1996 on “irrational exuberance”affecting the US stock market (Greenspan,

1996).

In this paper we suggest alternative estimators of the origination and termination

of a bubble period. Specifically, rather than using sequences of recursive DF statistics

to date the bubble regime, we propose estimating regime change-points on the basis of

model-based minimum sum of squared residuals estimators (in the spirit of, inter alia,

Bai and Perron, 1998, and Kejriwal et al., 2013) combined with Bayesian Information

Criterion (BIC) model selection. The proposed dating algorithms also allow identifica-
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tion of the particular form of bubble among a set of candidate bubble processes, which

allow variously for a bubble that ends within the sample period, possibly with some

form of collapse, or a bubble that is ongoing at the end of the sample. For a fixed

magnitude bubble, we find that our BIC-based approach delivers consistent estimation

of the exact bubble start and (where appropriate) end dates. Moreover, finite sample

simulations suggest that, conditional on having detected the presence of a bubble using

the PSY test, the new procedure offers considerably improved dating accuracy relative

to the recursive DF statistic-based approaches of PSY, particularly with respect to the

bubble’s end date.

The next section of the paper sets out the basic framework and outlines the set of

bubble data generating processes (DGPs) considered. Section 3 presents our proposed

start and end date estimators for each model and their respective asymptotic properties.

In section 4 we present the BIC-based algorithms for selecting between the alternative

models and bubble date estimators outlined in section 3, and show that this approach

results in correct model selection in the limit. Section 5 outlines a number of details

concerning the practical implementation of the procedure, before section 6 presents

a finite sample evaluation of the new date estimators relative to those proposed by

PSY, using Monte Carlo simulations. In section 7 we revisit the Nasdaq composite

index series considered by PWY to examine whether the new estimators can shed

any further light on the timing of the asset price bubble in this data. Finally, some

conclusions are offered in section 8.

Throughout the rest of the paper, yt can be thought of as denoting the relevant

asset price. The following notation is also used: ‘b·c’denotes the integer part, ‘p→’
denotes convergence in probability and ‘1(·)’denotes the indicator function. We use
the order notation O+p (·) to imply that the term concerned is positive. Finally we use

‘xT >p 0’to imply xT becomes positive with probability one as T →∞.

2 The bubble DGPs

We consider the following generic DGP for yt, t = 1, ..., T ,

yt = µ+ ut (1)

ut =


ut−1 + vt, t = 2, ..., bτ 1,0T c,
(1 + δ1)ut−1 + vt, t = bτ 1,0T c+ 1, ..., bτ 2,0T c,
(1− δ2)ut−1 + vt, t = bτ 2,0T c+ 1, ..., bτ 3,0T c,
ut−1 + vt, t = bτ 3,0T c+ 1, ..., T
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where δ1 ≥ 0 and δ2 ≥ 0. We assume that the initial condition u1 satisfies u1 = Op(1),

while the innovation process {vt} satisfies the following linear process assumption:

Assumption 1. The stochastic process {vt} is such that

vt = C (L) ηt, C (L) :=
∞∑
j=0

CjL
j

with C(1)2 > 0 and
∑∞

i=0 i|Ci| < ∞, and where {ηt} is an IID sequence with mean

zero, unit variance and finite fourth moment. The short run variance of vt is defined

as σ2v =
∑∞

j=0C
2
j .

The DGP imposes a unit root on yt up to time bτ 1,0T c, after which yt is explosive
(when δ1 > 0) until time bτ 2,0T c. If τ 2,0 = 1, the explosive regime continues to the end

of the sample period. However, if τ 2,0 < 1, the explosive regime terminates at some

in-sample date, at which point a number of possibilities exist for the post-explosive

period. If τ 2,0 = τ 3,0, the series reverts to unit root behaviour for the remainder of the

sample. Alternatively, if τ 2,0 < τ 3,0 (with δ2 > 0), the explosive period is followed by a

stationary regime, which either runs to the end of the sample if τ 3,0 = 1, or terminates

within sample if τ 3,0 < 1; in this last case, the series reverts to unit root behaviour for

the final regime.

In terms of modelling potential asset price bubble behaviour, our DGP allows for

a number of specifications for yt when applied to asset price series (assuming unit root

dividends). When δ1 > 0, the series initially starts as a unit root process for bτ 1,0T c
observations before a bubble regime begins. Given the presence of such a bubble, four

possibilities are admitted by the DGP: (i) the bubble runs to the end of the sample, (ii)

the bubble terminates and unit root behaviour is restored, (iii) the bubble terminates

with some form of collapse modelled by the stationary regime, which then continues

to the end of sample, or (iv) the bubble terminates with a collapse regime that also

finishes in-sample, after which unit root behaviour resumes. The magnitude of δ2 and

the duration of the collapse regime (bτ 3,0T c − bτ 2,0T c) control the rapidity and extent
to which a collapse occurs. Our approach offers a flexible way of modelling potential

collapse behaviour that might be expected when an asset price bubbles terminates,

from relatively slow gradual adjustments in the price level to more rapid corrections,

the rate being a reflection of how long agents need to adjust their behaviour. Modelling

the collapse in this manner as opposed to an instantaneous collapse is credible from an

empirical viewpoint, as it is hard to imagine all agents can react immediately and in

unison upon a bubble’s termination.
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When a collapse regime is present, the mean reversion implicit in the stationary

process generates a model of a collapsing bubble, as the underlying autoregressive pro-

cess for ut creates an exponential decay from the final bubble observation towards zero,

thereby “offsetting”the explosive period to some extent. Of course, if left completely

unrestricted, this decay process will eventually flatten out and merely resemble a zero

mean stationary process, which is unappealing as a model for the price level. As a

result, we wish to introduce a constraint on the stationary regime to ensure that ex-

ponential decay remains the dominant feature of the process when the collapse regime

terminates. The condition we impose is that

(1 + δ1)
(τ2,0−τ1,0) (1− δ2)(τ3,0−τ2,0) ≥ 1 (2)

and, drawing on the proof of Theorem 1, it then follows that

ybτ3,0T c ≈ (1− δ2)bτ3,0T c−bτ2,0T c (1 + δ1)
bτ2,0T c−bτ1,0T c ybτ1,0T c

+
∑bτ3,0T c−bτ2,0T c−1

j=0 (1− δ2)j vbτ3,0T c−j (3)

where the first term of (3) dominates the second. Hence at the point where the collapse

period terminates, the effect of the decay from the explosive period is still dominant.

To summarise, given δ1 > 0 and δ2 > 0, the following possibilities are considered

for the behaviour of yt:

DGP 1: 0 < τ 1,0 < 1, τ 2,0 = 1

(unit root, then bubble to sample end)

DGP 2: 0 < τ 1,0 < τ 2,0 < 1, τ 2,0 = τ 3,0

(unit root, then bubble, then unit root to sample end)

DGP 3: 0 < τ 1,0 < τ 2,0 < 1, τ 3,0 = 1

(unit root, then bubble, then collapse to sample end)

DGP 4: 0 < τ 1,0 < τ 2,0 < τ 3,0 < 1

(unit root, then bubble, then collapse, then unit root to sample end)

Our focus in this paper is on dating an asset price bubble that is assumed to be

present (or has been inferred to be present on the basis of a test for a bubble), and we

concentrate on estimating the bubble start and finish timings (bτ 1,0T c+1 and bτ 2,0T c)
that arise under DGPs 1-4.
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3 Estimating the regime change points

We first consider the case where we assume knowledge as to which of DGP 1, DGP

2, DGP 3 or DGP 4 is the true generating process. For DGP j, we estimate the

regime change point(s) on the basis of minimising the residual sum of squares across

all candidate dates, using the fitted OLS regressions corresponding to Model j below:

Model 1: ∆yt = µ̂1Dt(τ 1, 1) + δ̂1Dt(τ 1, 1)yt−1 + v̂1t

Model 2: ∆yt = µ̂1Dt(τ 1, τ 2) + δ̂1Dt(τ 1, τ 2)yt−1 + v̂2t

Model 3: ∆yt = µ̂1Dt(τ 1, τ 2) + µ̂2Dt(τ 2, 1) + δ̂1Dt(τ 1, τ 2)yt−1 + δ̂2Dt(τ 2, 1)yt−1 + v̂3t

Model 4: ∆yt = µ̂1Dt(τ 1, τ 2) + µ̂2Dt(τ 2, τ 3) + δ̂1Dt(τ 1, τ 2)yt−1 + δ̂2Dt(τ 2, τ 3)yt−1 + v̂4t.

Here, the dummy variables are defined byDt(a, b) = 1(baT c < t ≤ bbT c). The constant
dummy variables associated with µ̂1 and µ̂2 are included to ensure invariance of the

residuals v̂jt, j = 1, ..., 4, to the series mean µ. Given these models, the change point

estimators obtained from each are as follows:

Model 1: τ̂ 1 = arg min0<τ1<1,yT>ybτ1Tc SSR1(τ 1)

Model 2: (τ̂ 1, τ̂ 2) = arg min0<τ1<τ2<1,ybτ2Tc>ybτ1Tc SSR2(τ 1, τ 2)

Model 3: (τ̂ 1, τ̂ 2) = arg min0<τ1<τ2<1,ybτ2Tc>ybτ1Tc,ybτ2Tc>yT SSR3(τ 1, τ 2)

Model 4: (τ̂ 1, τ̂ 2, τ̂ 3) = arg min0<τ1<τ2<τ3<1,ybτ2Tc>ybτ1Tc,ybτ2Tc>ybτ3Tc SSR4(τ 1, τ 2, τ 3)

where SSRj(.) =
∑T

t=2 v̂
2
jt, j = 1, ..., 4, and the constraints ybτ2T c > ybτ1T c and ybτ2T c >

ybτ3T c are incorporated to ensure that the period between the sample fractions τ 1 and

τ 2 is associated with a (putative) upward explosive regime, and τ 2 to τ 3 associates

with a downward stationary collapse regime.2

We now consider the asymptotic behaviour of the regime change point estimators

for Models 1-4, assuming a correct pairing between the DGP and the corresponding

Model. The results are given in the following theorem.

Theorem 1
(I) For DGP 1 and Model 1, bτ̂ 1T c − bτ 1,0T c

p→ 0.

2Homm and Breitung (2012) propose a similar estimator of a bubble start date in the context of
a model where the bubble originates from unit root behaviour within-sample and continues to the
sample endpoint (i.e. DGP 1), using the argmax of a sequence of Chow tests for structural change
in the autoregressive parameter of an AR(1) regression. Breitung and Kruse (2013) suggest using
a similar SSR-based estimator for the bubble end date in a model where the bubble originates at
the sample start-point and terminates in-sample, reverting to unit root behaviour (i.e. DGP 2, but
without the initial unit root regime).
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(II) For DGP 2 and Model 2 bτ̂ iT c − bτ i,0T c
p→ 0, i = 1, 2.

(III) For DGP 3 and Model 3, bτ̂ iT c − bτ i,0T c
p→ 0, i = 1, 2.

(IV) For DGP 4 and Model 4, under the condition (2), bτ̂ iT c−bτ i,0T c
p→ 0, i = 1, 2, 3.

Theorem 1 shows that, for each correct DGP/Model pairing, the actual date of the

start of the bubble period is consistently estimated by bτ̂ 1T c + 1. For DGPs/Models

2-4, which have a bubble ending within the sample, the bubble end date is consistently

estimated by bτ̂ 2T c. Finally, for DGP/Model 4, the end date of the collapse period is
consistently estimated by bτ̂ 3T c. Should condition (2) not hold, we would still obtain
bτ̂ iT c − bτ i,0T c

p→ 0, i = 1, 2, but for the end date of the collapse regime, consistency

would only apply to the break fraction (not the exact date), i.e. τ̂ 3 − τ 3,0
p→ 0. In the

next section we consider selection between these alternative Models and their estimated

break points in the practical case where it is not known which of DGPs 1-4 corresponds

to the true generating process.

4 Selecting between the models

To obtain effi cient break date estimation it is important to select the correct model,

i.e. the model that corresponds to the true DGP. We propose selecting between the

models on the basis of the BIC as follows. In the leading case of interest, where we

assume that a bubble is present in the series, we choose Model jopt, and the change

point estimates associated with Model jopt, according to

jopt = arg min
j∈{1,2,3,4}

BICj

where

BIC1 = T ln{T−1SSR1(τ̂ 1, 1)}+ (2 + 1) ln(T ),

BIC2 = T ln{T−1SSR2(τ̂ 1, τ̂ 2)}+ (2 + 2) ln(T ),

BIC3 = T ln{T−1SSR3(τ̂ 1, τ̂ 2, 1)}+ (4 + 2) ln(T ),

BIC4 = T ln{T−1SSR4(τ̂ 1, τ̂ 2, τ̂ 3)}+ (4 + 3) ln(T ).

The scalar multiplying the penalty ln(T ) represents the number of columns in the

associated regressor matrix, i.e. the number of coeffi cients being estimated, plus the

number of estimated regime change points. In what follows we refer to this model/break

date selection algorithm as BICopt.
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In order to establish the asymptotic behaviour of BICopt, we first analyze the

large sample behaviour of the (scaled) minimised sum of squared residuals for each

Model across the various DGPs considered, i.e. T−1SSR1(τ̂ 1, 1), T−1SSR2(τ̂ 1, τ̂ 2),

T−1SSR3(τ̂ 1, τ̂ 2, 1), T−1SSR4(τ̂ 1, τ̂ 2, τ̂ 3) under DGPs 1-4. Given the results in Theo-

rem 1 for the break date estimators, the following results are straightforward to estab-

lish:
T−1SSR1(.) T−1SSR2(.) T−1SSR3(.) T−1SSR4(.)

DGP 1: σ2v +Op(T
−1/2) O+p (T

κ) σ2v +Op(T
−1/2) O+p (T

κ)

DGP 2: O+p (T
κ) σ2v +Op(T

−1/2) σ2v +Op(T
−1/2) σ2v +Op(T

−1/2)

DGP 3: O+p (T
κ) O+p (T

κ) σ2v +Op(T
−1/2) λ2 +Op(T

−1/2)

DGP 4: O+p (T
κ) O+p (T

κ) O+p (T
κ) σ2v +Op(T

−1/2)

Here, κ > 0 is used generically and λ2 is a constant satisfying λ2 > σ2v. From the

above results, we see that a true DGP/Model combination always yields T−1SSRj(.) =

σ2v +Op(T
−1/2). Employing a minimum BIC rule means that any competing model for

which T−1SSRj(.) = O+p (T κ) will, in the limit, never be selected since

T ln{O+p (T κ)} − T ln{σ2v +Op(T
−1/2)} = κT ln{TO+p (1)} − T ln{σ2v +Op(T

−1/2)}
= κT ln(T ) + κT ln{O+p (1)}
−T ln{σ2v +Op(T

−1/2)}

which diverges to +∞ at a rate T ln(T ), thereby dominating any order ln(T ) penalty

term involved. Also, for DGP 3, when comparing Model 3 and Model 4 we have

T ln{λ2 +Op(T
−1/2)} − T ln{σ2v +Op(T

−1/2)} = T ln

{
λ2

σ2v
+Op(T

−1/2)

}
which diverges to +∞ at a rate T since λ2/σ2v > 1, again dominating any order

ln(T ) penalty term involved, so that minimising the BIC results in a preference for

the true Model 3 over Model 4 in the limit. Elsewhere, the comparison is between

a true DGP/Model combination and other models that are overspecified, such that

T−1SSRj(.) = σ2v + Op(T
−1/2) in each case. However, a minimum BIC approach al-

ways selects the true model in the limit because, denoting the true model by j and its

overspecified counterpart by k, we find that

T ln{T−1SSRk} − T ln(T−1SSRj) = −O+p (1)

and hence the penalty term associated with the overspecified model in BICk ensures

that Model k is not selected in the limit.
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The above results establish that model selection on the basis of minimising the

BIC will, in the limit, lead to selection of the true model. Moreover, the constants

multiplying the ln(T ) penalties are not unique in this regard. As a consequence, the

BICopt algorithm results in correct asymptotic selection between DGPs 1-4, i.e. between

the alternative bubble models.

Finally, while the large sample properties of the bτ̂ iT c of Theorem 1, and the BICopt
algorithm, have been established under an assumption of homoskedastic innovations

vt according to Assumption 1, we conjecture that the same results will continue hold

under most forms of heteroskedasticity, including nonstationary volatility. This con-

jecture stems from the fact that the asymptotic analysis involves only establishing

stochastic orders of magnitude for the relevant quantities, and never any limiting dis-

tributions. The orders of magnitude are unlikely to be affected by departures from

homoskedasticity.

5 Practical implementation of the algorithm

The large sample results in sections 3 and 4 above rely on setting 0 < τ 1,0 < τ 2,0 <

τ 3,0 < 1, that is, any particular regime present has a duration of O(T ) time periods.

When implementing the BICopt algorithm in what follows, we estimate Models 1-4

imposing τ 1 ≥ s for the initial unit root regime. In general, we impose τ 2 − τ 1 ≥ s for

any potential explosive regime present, so that any bubble has duration of at least bsT c
observations, and impose τ 3− τ 2 ≥ s/2 for any potential collapse regime present. This

allows the possibility of the bubble collapsing over a shorter time period than that over

which it emerges, as might be expected empirically. In doing this, we are restricting

the bubble and collapse regimes to each being of O(T ) duration. Such an approach

precludes modelling a collapse as occurring instantaneously (such as in equation (14)

of PWY), but instantaneous adjustment is arguably less realistic empirically as agents

do not typically react in unison.

In practical applications, when computing the BICopt algorithm, enforcing an O(T )

duration on the final regimes of Models 1-4 prevents a segue from one model to another

(e.g. moving from Model 2 to Model 1 would involve a discontinuity from a model with

an O(T ) duration final unit root regime to one with no final unit root regime). To allow

for a smooth movement from one model to another, we relax the requirement of O(T )

durations when applied to the final regime of any given model. That is, for Model 1

we allow τ 1 to run up to the point bτ 1T c = T − 1, for Models 2 and 3 we let τ 2 run

to bτ 2T c = T − 1, and for Model 4 τ 3 is permitted to run to bτ 3T c = T − 1. Note
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that in the case of Model 1 when bτ 1T c = T − 1 and Model 3 when bτ 2T c = T − 1

(where the final regime lasts only a single observation), the corresponding dummy

variable regressors (Dt(τ 1, 1) and Dt(τ 1, 1)yt−1 for Model 1, Dt(τ 2, 1) and Dt(τ 2, 1)yt−1

for Model 3) become collinear; in these cases, we therefore replace these regressors with

a single (one-time) dummy regressor; we also reduce the corresponding BIC penalty

by ln(T ) in these cases to reflect the reduced number of estimated parameters.

6 Finite sample performance

In this section we examine via Monte Carlo simulation the finite sample properties of

the BICopt model selection algorithm in terms of its ability to correctly identify bτ 1,0T c
and bτ 2,0T c when a bubble is present in the DGP.3 Given that the algorithm is appli-

cable only when a bubble is deemed to be present, we assess the dating performance of

the procedure conditional on detecting a bubble in a given series from prior application

of the PSY test (this being more powerful than the PWY test). We also examine the

algorithm’s performance in identifying which of Models 1-4 corresponds to the true

DGP. Of course, correct model identification is not necessarily critical for accurate es-

timation of the bubble start and end dates, since, for example, it is possible that Model

4 may still prove informative about bτ 1,0T c and bτ 2,0T c when DGP 2 holds.
Figures 1-3 report measures of the accuracy of the change point estimators obtained

by BICopt for series generated according to DGPs 2 and 4, using a variety of bubble

and collapse timings and magnitudes. All simulations are conducted with a sample

size of T = 200, and we set s = 0.1 in the computation of BICopt. As a measure of

the accuracy of the change point estimators, we compute the simulated frequency with

which the break date estimates bτ̂ 1T c and bτ̂ 2T c are within ±k observations of bτ 1,0T c
and bτ 2,0T c, respectively, computing this frequency across the subset of replications
for which evidence of a bubble is found at the 0.05-level by the PSY test.4 We report

results for k = {0, 1, 5}; clearly, k = 0 corresponds to a correct dating of the precise

observation associated with the regime change point. The duration of the bubble regime

is set to b0.2T c in each case (i.e. τ 2,0 − τ 1,0 = 0.2), and the accuracy measures are

plotted against a range of bubble magnitudes, with δ1 = {0.0400, 0.0425, ..., 0.1000}.
The minimum value of δ1 is chosen so that the PSY test has a decent level of power

3Identification of bτ3,0T c is arguably of less importance and is not considered here.
4When implementing the PSY test, we follow PSY’s recommendation to use a small fixed lag

length in the ADF regressions, setting the lag length to one. We adopt PSY’s recommended minimum
window width of b(0.01+ 1.8/

√
T )T c, and simulate finite sample null critical values for the test using

10,000 replications.
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for all experiments conducted, ensuring that the accuracy frequencies are computed

over a suffi cient number of replications; for δ1 = 0.04, test power exceeds 0.45 across

all DGPs considered, rising to powers in excess of 0.95 across all DGPs when δ1 = 0.1.

For DGP 4, where a stationary collapse regime is present, we set the duration to

b0.1T c (i.e. τ 3,0 − τ 2,0 = 0.1) in recognition of the empirical observation that the

duration of a collapse phase is typically shorter than the duration of the corresponding

bubble phase. We consider two cases for the magnitude of the stationary parameter

in these regimes, setting δ2 = δ1 or δ2 = δ1/2, the latter allowing for more partial

collapses relative to the former. For a given DGP, we simulate yt according to (1),

with µ = 0 and vt ∼ IIDN(0, 1); in cases where such a simulated DGP resulted in

a downward explosive regime (i.e. if ybτ2,0T c < ybτ1,0T c), typically due to the explosive

period originating with negative values, we multiplied the simulated series by −1, so as

to ensure that all generated series had upward explosive regimes. All simulations were

conducted using 2,000 Monte Carlo replications, and were programmed in GAUSS 9.0.

By way of comparison, we also report the same conditional accuracy measures for

the dating scheme proposed by PSY. Specifically, we adopt their backward supremum

ADF-based start and end date estimators (denoted by br̂eT c and br̂fT c in PSY).5 We
restrict identification of a valid bubble regime to cases where the sequence of backward

supremum statistics exceeds the corresponding threshold critical values for at least

blnT c contiguous observations, ensuring that only bubbles with a minimum duration

of blnT c are used for dating purposes. In the case that more than one bubble is

identified in a series, the bubble with the longest contiguous sequence of rejections is

used for dating purposes.

We begin by considering the case of DGP 2, where a bubble begins and ends within

the sample period, but no collapse occurs at the end of the bubble regime. Figure 1

reports results for a bubble beginning at the sample mid-point (τ 1,0 = 0.5, τ 2,0 = 0.7).6

Focusing first on the estimated start dates, for a given value of k, the accuracy of both

dating procedures increases monotonically with δ1 as would be expected. For both

bubble timings and for any k, it is clear that the BICopt algorithm delivers the more

precise estimator, with the accuracy levels for the PSY approach quite markedly below

those for the proposed BIC-based approach. This reflects the fact that the estimator

based on BICopt involves direct modelling of the start of the bubble period in the DGP,

5We again use a fixed lag length of one in the ADF regressions, use the minimum window width
b(0.01 + 1.8/

√
T )T c, and simulate finite sample null 0.05-level critical values for the sequence of

backward supremum statistics using 10,000 replications.
6Qualitatively similar results were obtained for an earlier bubble timing (τ1,0 = 0.2, τ2,0 = 0.4);

these results are available from the authors on request.
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as opposed to relying on the more indirect approach of recursive unit root statistics

exceeding threshold values.

Turning attention now to the end date estimators, for BICopt we again see that for a

given k, accuracy improves with δ1, but here the accuracy levels are much higher than

were seen for the corresponding start date. Indeed, the exact true end date bτ 2,0T c is
much more readily identified (conditional on a bubble being detected), with a frequency

close to one for the larger values of δ1. In contrast, the PSY end date estimators

display substantially lower accuracy levels, particularly when k = 0 or k = 1, where

the frequencies are at, or are very close to, zero for much of the δ1 range. This property

arises since the PSY estimators of the end point rely on the sequence of recursive unit

root statistics returning to magnitudes below the corresponding thresholds, and the

delay inherent in this methodology (in finite samples) has the tendency to place the

end date later than the true bubble’s actual end point.

We next consider DGPs where a stationary collapse regime occurs following the

termination of the bubble regime. In Figures 2-3, accuracy measures for DGP 4 are

reported for the bubble/collapse timings τ 1,0 = 0.5, τ 2,0 = 0.7, τ 3,0 = 0.8, and for two

settings for the stationary parameter, with δ2 = δ1/2 in Figure 2 and δ2 = δ1 in Figure

3.7 Comparing Figures 2 and 3 with Figure 1 (where the same bubble component

was present but without collapse), we again observe BICopt outperforming PSY. The

accuracy measures for the BICopt and PSY start dates are almost identical to their

respective counterparts in Figure 1, while the end dates are more accurately identified

by both methodologies now that a collapse occurs, particularly for PSY. The greatest

accuracy differences between BICopt and PSY are again seen for the end dates and for

k = {0, 1}, where the accuracy gains of BICopt over PSY are substantial. It is only for
k = 5 for the faster collapse DGP (Figure 3) that PSY achieves similar accuracy levels

to BICopt.8

In addition to evaluating the dating performance of the BICopt algorithm, it is also

of interest to establish, for a given DGP j, the frequency with which the algorithm

correctly selects Model j. Using the same simulations as outlined above for the dating

7Broadly similar results, available from the authors on request, were again obtained for an earlier
bubble timing (τ1,0 = 0.2, τ2,0 = 0.4, τ3,0 = 0.5).

8We also conducted a number of additional simulations, the results of which are unreported but
are available from the authors on request. We simulated DGP 3, where the stationary collapse regime
runs to the end of the sample, with the settings τ1,0 = 0.7, τ2,0 = 0.9, τ3,0 = 1, and found the pattern
of results to be similar to those for DGP 4. We also simulated DGP 1, where a bubble is present
without collapse, but with the bubble running to the sample end (τ1,0 = 0.8, τ2,0 = 1); in that case,
results for the bubble start date were qualitatively similar to those in Figure 1 for DGP 2 (as the
bubble is ongoing at the end of the sample, there is no meaningful concept of a bubble end date for
DGP 1).
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evaluation, we also computed the correct model selection frequencies for BICopt, again

conditional on detection of a bubble, measured across replications for which the PSY

test indicated rejection of the null. Figure 4 presents the results for a representative

example of each of DGPs 1-4. It is clear that as the magnitude of the bubble com-

ponent (δ1) increases (and as the magnitude of the collapse parameter δ2 for DGPs

3-4 increases), the correct model is chosen with increasing probability. For a given δ1,

it is clear that the algorithm is best at correctly identifying DGP 1, and at its least

effective for correctly identifying DGP 4, with correct identification of DGP 2 and DGP

3 lying between these two extremes. Overall, though, the tendency towards correctly

identifying the underlying DGP as the true regime changes become more substantial

is an attractive feature of the BICopt algorithm, and allows inference to be made as to

the form of bubble/collapse, in addition to providing accurate estimates of the bubble

start and end dates.

Overall, on the basis of our simulation experiments, it is clear that the BICopt
algorithm offers a good approach for dating the start and end dates of a bubble regime,

outperforming the comparator dating methodology of PSY, particularly where end-

point detection is concerned. We envisage that these new methods of dating, when used

in conjunction with the PSY test for the presence of a bubble, should be very useful

for practitioners wanting to date the timing of a bubble episode, offering worthwhile

improvements in the estimation accuracy of the regime change-points.

7 Empirical application

To demonstrate the usefulness of the new procedure we consider an empirical appli-

cation, dating an explosive rational bubble in the Nasdaq composite stock price index

using monthly data on the index over the period 1973:2-2005:6 (a repeat of the empiri-

cal application in PWY). The US consumer price index is used to convert the data from

nominal to real values and following PWY the natural logarithm of the real data is used.

As in PWY, the Nasdaq composite data is collected from the Datastream database and

the CPI data from the Federal Reserve Bank of St. Louis FRED database.

As we have briefly mentioned in the introduction, the study of this data by PWY

reveals statistically significant evidence of explosive autoregressive behaviour in the

price index; given that no evidence of explosive behaviour was found in the dividend

index, this result is consistent with the presence of an explosive rational bubble. A

particularly interesting feature of PWY’s results concerns the dates obtained for the

start and end of the bubble. More specifically, PWY find that the bubble starts in
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mid-1995 and ends in mid-2001. Therefore the PWY dating procedure reveals that the

bubble began some time before the famous comments on the outlook for asset prices

made by the Federal Reserve Board Chairman, Alan Greenspan, on December 5th,

1996, in his speech to the American Enterprise Institute:

“Clearly, sustained low inflation implies less uncertainty about the future, and lower

risk premiums imply higher prices of stocks and other earning assets. We can see that

in the inverse relationship exhibited by price/earnings ratios and the rate of inflation

in the past. But how do we know when irrational exuberance has unduly escalated asset

values, which then become subject to unexpected and prolonged contractions as they

have in Japan over the past decade?” (Greenspan, 1996)

It is generally believed that these comments had a significant impact on global

financial markets, leading to falls the next day in several stock markets of as much as

4% (e.g. both Frankfurt and London stock markets fell by 4%), although the Nasdaq

composite index went on to rise to unprecedented levels. As PWY note at the start

of their paper: “...it is of interest to determine whether the Greenspan perception of

exuberance was supported by empirical evidence in the data or if Greenspan actually

foresaw the outbreak of exuberance and its dangers when he made the remark”(PWY,

p.202). The results obtained by PWY indicate that the rational bubble was well under

way when the Greenspan comments were made. As such, it appears that his comments

were grounded in empirical realities but could not be considered anticipatory.

In our analysis of this data we apply the PSY test for the presence of a bubble, and

then, having found a rejection of the null of no bubble, compute the estimated bubble

start and end dates using the PSY procedure plus our recommended BICopt dating

algorithm. Given that the sample size of T = 389 observations is roughly twice that

used in our finite sample simulations, we set s = 0.05 in the computation of BICopt. For

the PSY procedure, as in the simulations we adopt a minimum duration for identifying

a valid bubble episode to be blnT c contiguous observations, use PSY’s recommended
minimum window width of b(0.01 + 1.8/

√
T )T c, include one lagged difference term

in the regressions, and simulate 0.05-level critical values for testing and dating using

10,000 Monte Carlo replications.

The results are reported in Panel A of Table 1. Strong evidence of explosive be-

haviour (which can be interpreted as a rational bubble given the lack of evidence for

explosive behaviour in the dividends) is detected by the PSY test, with the null of

no bubble rejected at the 0.01-level, in line with the results of PWY. Focusing on

the longest contiguous segment of bubble evidence, the PSY dating scheme estimates

the bubble to be present from 1998:11 to 2000:12, although evidence for explosive be-
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haviour is present in 2001:2, and the PSY dating statistic is also very close to detecting

explosivity in 2001:1; moreover, evidence for explosive behaviour is found in a number

of periods between 1995:8 and 1998:8, although only one contiguous explosive period

that exceeds blnT c observations is identified over these dates (1997:6-1997:12). In ad-
dition to this primary bubble period in the data, the PSY approach also identifies a

short-lived period of explosive behaviour between 1987:2 and 1987:10.

Turning to application of the BICopt algorithm, we find that the selected model is

Model 3 (unit root, then bubble, then collapse to sample end), with a bubble present

from 1998:11 to 2000:9. The start date therefore matches that of the PSY approach,

but the BICopt procedure identifies an earlier end date for the period of explosive

behaviour. Given that the PSY approach identifies a potential second earlier bubble

(1987:2-1987:10), we also checked the robustness of the BICopt results by splitting

the sample to exclude this earlier potential explosive regime. Applying the BICopt
procedure to the sample period 1987:11-2005:6, and setting s = 0.1 for this smaller

sample (as in the simulations), we again find that Model 3 is selected with exactly the

same period identified for the presence of bubble behaviour (1998:11-2000:9).

As discussed at the beginning of this section, an interesting and important finding

by PWY is that their dating technique suggests the bubble began in mid-1995, pre-

dating comments made in December 1996 by the then Chairman of the Federal Reserve

Alan Greenspan regarding the presence of irrational exuberance affecting US stock

prices. Compared to the PWY results, the estimated beginning of sustained explosive

behaviour that the PSY and BICopt methods identify (1998:11) is much later than

when the Greenspan comments were made. Thus these procedures raise the interesting

possibility that rather than simply responding to current empirical explosivity, Alan

Greenspan’s comments might actually have anticipated irrational exuberance.

When interpreting and comparing the results from these types of econometric pro-

cedures for dating stock market bubbles it is also important to consider the results

within the wider context of global macroeconomic events and relevant monetary policy

at the time. In this particular case, it is interesting that a start date for the bubble of

1998:11 is consistent with the fact that the Federal Reserve opted to cut interest rates

in late-1998 as a response to the East Asian financial crisis in the summer of 1997, the

Russian default on their huge dollar debt in August 1998, and the collapse of the Long

Term Capital Management (LTCM) hedge fund that followed. Specifically, between

1998:8 and 1998:12, the Federal Open Market Committee (FOMC) lowered interest

rates (specifically their target federal funds rate) on three separate occasions in the

hope of avoiding a financial crisis (September 29, 1998; October 15, 1998; November
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17, 1998) by a total of 75 basis points, and this easing of monetary policy by the Fed-

eral Reserve was repeated by several other European and Asian central banks under

their G7 commitment. This significant shift in monetary policy has been interpreted

as having been successful, in the sense that it prevented a significant financial and

macroeconomic downturn, but it also is thought to have contributed to the huge in-

flation of equity prices that occurred in 1999 (e.g. see Klein, 2015). Indeed, between

late-1998 and late-1999, the Nasdaq index nearly doubled. In his own account of this

period, Alan Greenspan notes:

“I suppose we might have guessed that the last year of the millennium would be the

wildest, giddiest boom year of all. Euphoria swept the U.S. markets in 1999, partly

because the East Asian crises hadn’t done us in. If we’d made it through those, the

thinking went, then the future was bright for as far as the eye could see.” (Greenspan,

2007, p.294)

Thus, it appears there are coherent economic arguments to support the conclusion

that the explosive Nasdaq bubble began in earnest in late-1998.

In terms of the estimated end dates obtained using the different dating procedures,

Figure 5 provides a plot of the time series with the different end (and start) dates

superimposed. The end date identified by the BICopt algorithm (2000:9) is only six

months after the Nasdaq composite’s numerical peak (2000:3), and appears to be the

more plausible of the two estimated end dates, with the PSY end date placed a few

months later and during the collapse phase identified by BICopt. Our finding that

the estimated PSY end date occurs later than the BICopt end date is what might be

expected given the discussion in section 6, i.e. that a potential exists in finite samples

for the PSY scheme to estimate a delayed end date relative to the true termination

of the bubble phase. The end date identified by PWY was either 2001:2 or 2001:7, so

both PSY and BICopt detect an earlier end of bubble; interestingly, the BICopt end date

of 2000:9 is also consistent with the date suggested by the rolling regression robustness

check reported by PWY (p.215).

Although primarily designed for dating historical episodes of explosive (and col-

lapse) behaviour, the BICopt procedure can also be implemented in a real-time manner

to detect the end of a bubble regime. As an illustration of this, suppose first that we

had been conducting an analysis of the Nasdaq composite index in 2000:9 (the last date

where a bubble is deemed to be present according to our BICopt results). The results

reported in Panel B of Table 1 show that in such a scenario, we would have concluded

that a bubble exists (due to the strong rejections obtained by the PSY test), and both

the PSY and BICopt dating methods would have identified the bubble as running up to
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the end of the sample period (note that here BICopt selects Model 1, consistent with a

bubble running to the sample end). Moving forwards in a pseudo real-time fashion, for

the next two months (2000:10 and 2000:11), Panel B of Table 1 shows that the same

analysis would again have concluded that a bubble was still continuing, regardless of

which dating method was used. However, if the analysis had been done in 2000:12,

while the PSY approach would have indicated that the bubble was still ongoing, the

BICopt algorithm would now have switched into Model 3 (where the bubble terminates

prior to the sample end and begins to collapse) with the end date identified as 2000:9.

In 2001:1, the BICopt algorithm would again have indicated that the bubble had ter-

minated in 2000:9; at this point, the PSY dating approach would also no longer have

found evidence for a bubble at the 0.05-level, also signifying that the bubble regime

had come to an end.9 However, the evidence for bubble behaviour at that point would

have been only just below the 0.05-level threshold, and if the analysis had been done

in 2001:2, the PSY approach would again have detected bubble behaviour at the final

observation, introducing a lack of clarity as to whether or not the bubble regime had

terminated. It would not have been until 2001:3 that the PSY approach would have

delivered clear evidence that the bubble had terminated. Potentially then, in situations

where rapid determination of a bubble’s end date is considered important, the BICopt
procedure could be of use.

8 Conclusion

In this paper we have proposed estimates of the start and end dates of a single bub-

ble episode in an asset price series. Our method utilises a minimum sum of squared

residuals type approach for a variety of potential bubble specifications, which are then

distinguished using BIC-based model selection. The proposed procedure differs from

existing methods of bubble dating which rely on sequences of recursive DF statistics

exceeding certain threshold values. Conditional on detecting a bubble using PSY’s test,

our simulation results demonstrate that the new BICopt approach can offer improved

levels of accuracy in dating the bubble’s origination and, especially, termination point.

A by-product of the dating scheme is that the form of bubble process is correctly iden-

tified asymptotically; in particular, this may inform us as to whether the bubble is

ongoing or has terminated in some form of collapse.

A potential criticism of our current analysis is that it only dates a single bubble

9Note that similar results are obtained when applying BICopt to the sub-samples beginning in
1987:11 (using s = 0.1).
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episode. We have envisaged how our proposed techniques might be extended to dating

multiple bubbles. The PSY test will reject in the presence of multiple bubbles, and

the PSY dating methodology provides an indication of the number of distinct bubbles.

Conditional on this information on the number of bubbles, two natural approaches can

in principle be taken for dating along the lines of the BICopt procedure. One method is

to use an extended version of the algorithm that admits multiple bubble and collapse

regimes. However, we would not recommend using such a procedure to fit multiple

bubble episodes jointly, due to the number of model possibilities involved when more

than one bubble is present. For example, if PSY identifies two bubble episodes, an

extended BICopt algorithm would require allowing for 12 possible model combinations

to select between, while in the case of three bubble episodes, there are 28 possible

models. This, we feel, is unlikely to prove successful in samples of typical size as

the number of competing models is simply too large. A second approach is to split

the data and apply our one-bubble BICopt procedure separately on data subsets. For

example, if the PSY approach identified and dated two bubble episodes, this approach

would bifurcate the data at some point inbetween the two episodes, and then apply the

BICopt algorithm to the two sub-samples individually. In effect, we would then be using

the PSY dates as initial estimates, then using the BICopt procedure to subsequently

improve the accuracy of the start and end date estimates for each bubble episode. In

addition, for historical bubble episodes there is usually consensus amongst economists

as to approximately when they occurred, hence such a priori information could also

be brought to bear in determining the appropriate points to split the sample. Finally,

sample splitting and applying the one-bubble BICopt procedure to each sub-sample is

unlikely to have a significant cost in terms of effi ciency, relative to using a full-sample

BIC-based procedure to fit multiple bubble episodes jointly, because it is diffi cult to

envisage that there is much information in one bubble episode that is of direct relevance

to another. Our preferred approach would therefore be for the sample splitting method,

although it would be interesting to examine the two possible procedures more formally

in future research.

In summary, we feel that our results indicate that there is a worthwhile role for the

new BICopt algorithm for dating the timeline of a bubble episode, complementing the

existing testing procedures of PSY for detecting the presence of a bubble regime.
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Appendix: Proof of Theorem 1

We will show the result of part (IV) of Theorem 1; the other parts of Theorem 1 follow

in a similar fashion. In what follows we assume that µ = 0 in (1) and simplify to the

case where there is no sub-sample demeaning i.e. Model 4 reduces to

∆yt = δ̂1Dt(τ 1, τ 2)yt−1 + δ̂2Dt(τ 2, τ 3)yt−1 + v̂4t. (A.1)

The same results obtain for the sub-sample demeaned case, however, since our approach

only relies on orders of magnitude. In what follows we make repeated use of the order

results collected in the following lemma:
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Lemma 1 Let ST = bτ 1,0T c (1 + δ1)
2(bτ2,0T c−bτ1,0T c) and RT = (1− δ2)2(bτ3,0T c−bτ2,0T c).

Then:

(i) y2bτ2,0T c = Op(ST ),

(ii)
∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1 = Op(ST ),

(iii)
∑bτ2,0T c

t=bτ1,0T c+1 vtyt−1 = Op(S
1/2
T ),

(iv) y2bτ3,0T c = Op(RTST ).

Proof of Lemma 1

(i) We can write

ybτ2,0T c = (1 + δ1)
bτ2,0T c−bτ1,0T c ybτ1,0T c +

∑bτ2,0T c−bτ1,0T c−1
j=0 (1 + δ1)

j vbτ2,0T c−j

so that

S
−1/2
T ybτ2,0T c = S

−1/2
T (1 + δ1)

bτ2,0T c−bτ1,0T c ybτ1,0T c + S
−1/2
T

∑bτ2,0T c−bτ1,0T c−1
j=0 (1 + δ1)

j vbτ2,0T c−j

= Op(1) +Op(T
−1/2).

Hence ybτ2,0T c = Op(S
1/2
T ) and y2bτ2,0T c = Op(ST ).

(ii) Now write

ybτ2,0T c = (1 + δ1)ybτ2,0T−1c + vbτ2,0T c

S−1T y2bτ2,0T c = (1 + δ1)
2S−1T y2bτ2,0T c−1 + op(1).

Rearranging we obtain

S−1T y2bτ2,0T−1c = (1 + δ1)
−2S−1T y2bτ2,0T c + op(1)

which leads to the following recursion for 0 ≤ t ≤ bτ 2,0T − τ 1,0T − 1c

S−1T y2bτ2,0T−tc = (1 + δ1)
−2tS−1T y2bτ2,0T c + op(1).
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Then

S−1T
∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1 = S−1T

∑bτ2,0T c
t=bτ1,0T c y

2
t − S−1T y2bτ2,0T c

= S−1T
∑bτ2,0T c−bτ1,0T c−1

t=0 (1 + δ1)
−2ty2bτ2,0T c + S−1T y2bτ1,0T c − S

−1
T y2bτ2,0T c + op(1)

= S−1T y2bτ2,0T c
∑bτ2,0T c−bτ1,0T c−1

t=0 (1 + δ1)
−2t − S−1T y2bτ2,0T c + op(1)

=
(1 + δ1)

2

(1 + δ1)2 − 1
S−1T y2bτ2,0T c − S

−1
T y2bτ2,0T c + op(1)

=
1

δ1 (δ1 + 2)
S−1T y2bτ2,0T c + op(1)

and so
∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1 = Op(ST ) in view of Lemma 1(i).

(iii) Write

S
−1/2
T ybτ2,0T c = (1 + δ1)S

−1/2
T ybτ2,0T c−1 + op(1).

Rearranging we obtain

S
−1/2
T ybτ2,0T c−1 = (1 + δ1)

−1S
−1/2
T ybτ2,0T c + op(1)

which leads to the following recursion for 0 ≤ t ≤ bτ 2,0T − τ 1,0T − 1c

S
−1/2
T ybτ2,0T c−t = (1 + δ1)

−tS
−1/2
T ybτ2,0T c + op(1).

Then, since S−1/2T vbτ2,0T c+1ybτ2,0T c and
∑bτ2,0T c−bτ1,0T c−1

t=0 (1 + δ1)
−tvbτ2,0T c−t+1 are Op(1),

S
−1/2
T

∑bτ2,0T c
t=bτ1,0T c+1 vtyt−1 = S

−1/2
T

∑bτ2,0T c
t=bτ1,0T c vt+1yt − S

−1/2
T vbτ2,0T c+1ybτ2,0T c

=
∑bτ2,0T c−bτ1,0T c−1

t=0 vbτ2,0T−t+1cS
−1/2
T ybτ2,0T−tc + S

−1/2
T vbτ1,0T c+1ybτ1,0T c

−S−1/2T vbτ2,0T c+1ybτ2,0T c

= S
−1/2
T ybτ2,0T c

∑bτ2,0T c−bτ1,0T c−1
t=0 (1 + δ1)

−tvbτ2,0T c−t+1

−S−1/2T vbτ2,0T c+1ybτ2,0T c + op(1)

= Op(1).

(iv) Write

ybτ3,0T c = (1− δ2)bτ3,0T c−bτ2,0T c ybτ2,0T c +
∑bτ3,0T c−bτ2,0T c−1

j=0 (1− δ2)j vbτ3,0T c−j
= (1− δ2)bτ3,0T c−bτ2,0T c {(1 + δ1)

bτ2,0T c−bτ1,0T c ybτ1,0T c

+
∑bτ2,0T c−bτ1,0T c−1

j=0 (1 + δ1)
j vbτ2,0T c−j}+

∑bτ3,0T c−bτ2,0T c−1
j=0 (1− δ2)j vbτ3,0T c−j
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using the expansion for ybτ2,0T c from Lemma 1(i). Now (2) implies

(1 + δ1)
−(bτ2,0T c−bτ1,0T c) (1− δ2)−(bτ3,0T c−bτ2,0T c) = o(1)

R
−1/2
T S

−1/2
T = o(T−1/2)

and, since

S
−1/2
T

∑bτ2,0T c−bτ1,0T c−1
j=0 (1 + δ1)

j vbτ2,0T c−j = Op(T
−1/2),∑bτ3,0T c−bτ2,0T c−1

j=0 (1− δ2)j vbτ3,0T c−j = Op(1)

we can write

R
−1/2
T S

−1/2
T ybτ3,0T c = R

−1/2
T (1− δ2)bτ3,0T c−bτ2,0T c S−1/2T (1 + δ1)

bτ2,0T c−bτ1,0T c ybτ1,0T c

+R
−1/2
T (1− δ2)bτ3,0T c−bτ2,0T c S−1/2T

∑bτ2,0T c−bτ1,0T c−1
j=0 (1 + δ1)

j vbτ2,0T c−j

+R
−1/2
T S

−1/2
T

∑bτ3,0T c−bτ2,0T c−1
j=0 (1− δ2)j vbτ3,0T c−j

= R
−1/2
T (1− δ2)bτ3,0T c−bτ2,0T c S−1/2T (1 + δ1)

bτ2,0T c−bτ1,0T c ybτ1,0T c + op(1)

= Op(1)

and hence y2bτ3,0T c = Op(RTST ).

Proof of main result

For (A.1), we may write

SSR4(τ 1, τ 2, τ 3)−
∑T

t=2 ∆y2t = −
(
∑bτ2T c

t=bτ1T c+1 ∆ytyt−1)
2∑bτ2T c

t=bτ1T c+1 y
2
t−1

−
(
∑bτ3T c

t=bτ2T c+1 ∆ytyt−1)
2∑bτ3T c

t=bτ2T c+1 y
2
t−1

and it follows that

SSR4(τ̂ 1, τ̂ 2, τ̂ 3)−SSR4(τ 1,0, τ 2,0, τ 3,0) =
(
∑bτ2,0T c

t=bτ1,0T c+1 ∆ytyt−1)
2∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1

−
(
∑bτ̂2T c

t=bτ̂1T c+1 ∆ytyt−1)
2∑bτ̂2T c

t=bτ̂1T c+1 y
2
t−1

+
(
∑bτ3,0T c

t=bτ2,0T c+1 ∆ytyt−1)
2∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1

−
(
∑bτ̂3T c

t=bτ̂2T c+1 ∆ytyt−1)
2∑bτ̂3T c

t=bτ̂2T c+1 y
2
t−1

≤ 0.
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Now suppose that τ̂ 1, τ̂ 2 and τ̂ 3 are such that bτ̂ iT c = bτ i,0T c + ki, i = 1, 2, 3, where

k1, k2 and k3 are O(1) integers. Let

F (k1, k2, k3) =
(
∑bτ2,0T c

t=bτ1,0T c+1 ∆ytyt−1)
2∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1

−
(
∑bτ2,0T c+k2

t=bτ1,0T c+1+k1 ∆ytyt−1)
2∑bτ2,0T c+k2

t=bτ1,0T c+1+k1 y
2
t−1

+
(
∑bτ3,0T c

t=bτ2,0T c+1 ∆ytyt−1)
2∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1

−
(
∑bτ3,0T c+k3

t=bτ2,0T c+1+k2 ∆ytyt−1)
2∑bτ3,0T c+k3

t=bτ2,0T c+1+k2 y
2
t−1

.

We next consider the behaviour of F (k1, k2, k3) where one of k1, k2 or k3 is non-zero,

with the other two quantities set to zero. The next three sub-sections deal with these

three cases, beginning with the more involved case of k2 6= 0.

Case 1: k2 6= 0, k1 = k3 = 0

Here,

F (0, k2, 0) =
(
∑bτ2,0T c

t=bτ1,0T c+1 ∆ytyt−1)
2∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1

−
(
∑bτ2,0T c+k2

t=bτ1,0T c+1 ∆ytyt−1)
2∑bτ2,0T c+k2

t=bτ1,0T c+1 y
2
t−1

+
(
∑bτ3,0T c

t=bτ2,0T c+1 ∆ytyt−1)
2∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1

−
(
∑bτ3,0T c

t=bτ2,0T c+1+k2 ∆ytyt−1)
2∑bτ3,0T c

t=bτ2,0T c+1+k2 y
2
t−1

.

We consider the two cases k2 > 0 and k2 < 0 separately.

When k2 > 0, we can write

S−1T
∑bτ2,0T c+k2

t=bτ1,0T c+1 ∆ytyt−1 = S−1T
∑bτ2,0T c

t=bτ1,0T c+1 ∆ytyt−1 + S−1T
∑bτ2,0T c+k2

t=bτ2,0T c+1 ∆ytyt−1

= δ1S
−1
T

∑bτ2,0T c
t=bτ1,0T c+1 y

2
t−1 + S−1T

∑bτ2,0T c
t=bτ1,0T c+1 vtyt−1

+S−1T
∑bτ2,0T c+k2

t=bτ2,0T c+1 ∆ytyt−1

= δ1S
−1
T

∑bτ2,0T c
t=bτ1,0T c+1 y

2
t−1 − δ2S−1T

∑bτ2,0T c+k2
t=bτ2,0T c+1 y

2
t−1 + op(1)

which is Op(1) using the scalings implied by Lemma 1(i)-1(iii) and the fact that k2 is

finite. Also,

S−1T
∑bτ2,0T c+k2

t=bτ1,0T c+1 y
2
t−1 = S−1T

∑bτ2,0T c
t=bτ1,0T c+1 y

2
t−1 + S−1T

∑bτ2,0T c+k2
t=bτ2,0T c+1 y

2
t−1.
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Then

(S−1T
∑bτ2,0T c

t=bτ1,0T c+1 ∆ytyt−1)
2

S−1T
∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1

−
(S−1T

∑bτ2,0T c+k2
t=bτ1,0T c+1 ∆ytyt−1)

2

S−1T
∑bτ2,0T c+k2

t=bτ1,0T c+1 y
2
t−1

=
{δ1S−1T

∑bτ2,0T c
t=bτ1,0T c+1 y

2
t−1 + op(1)}2

S−1T
∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1

−
{δ1S−1T

∑bτ2,0T c
t=bτ1,0T c+1 y

2
t−1 − δ2S−1T

∑bτ2,0T c+k2
t=bτ2,0T c+1 y

2
t−1 + op(1)}2

S−1T
∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1 + S−1T

∑bτ2,0T c+k2
t=bτ2,0T c+1 y

2
t−1

which is >p 0 since the second term involves a numerator (denominator) that is less

than (greater than) the corresponding numerator (denominator) in the first term. Next,

(S−1T
∑bτ3,0T c

t=bτ2,0T c+1 ∆ytyt−1)
2

S−1T
∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1

−
(S−1T

∑bτ3,0T c
t=bτ2,0T c+1+k2 ∆ytyt−1)

2

S−1T
∑bτ3,0T c

t=bτ2,0T c+1+k2 y
2
t−1

=
(−δ2S−1T

∑bτ3,0T c
t=bτ2,0T c+1 y

2
t−1)

2

S−1T
∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1

−
(−δ2S−1T

∑bτ3,0T c
t=bτ2,0T c+1+k2 y

2
t−1)

2

S−1T
∑bτ3,0T c

t=bτ2,0T c+1+k2 y
2
t−1

+ op(1)

= δ22(S
−1
T

∑bτ3,0T c
t=bτ2,0T c+1 y

2
t−1 − S−1T

∑bτ3,0T c
t=bτ2,0T c+1+k2 y

2
t−1) + op(1)

which is >p 0. It then follows that S−1T F (0, k2, 0) >p 0.

When k2 < 0, write

S−1T
∑bτ2,0T c+k2

t=bτ1,0T c+1 ∆ytyt−1 = δ1S
−1
T

∑bτ2,0T c+k2
t=bτ1,0T c+1 y

2
t−1 + S−1T

∑bτ2,0T c+k2
t=bτ1,0T c+1 vtyt−1

= δ1S
−1
T

∑bτ2,0T c+k2
t=bτ1,0T c+1 y

2
t−1 + op(1)

= δ1 (1 + δ1)
2k2 S−1T

∑bτ2,0T c
t=bτ1,0T c+1 y

2
t−1 + op(1)

where the last line follows since, for t = bτ 1,0T c+ 1− k2, ..., bτ 2,0T c,

yt−1 = (1 + δ1)
−k2 yt−1+k2 +

∑−k2−1
j=0 (1 + δ1)

j vt−j−1

from which we find

(1 + δ1)
2k2 S−1T

∑bτ2,0T c
t=bτ1,0T c+1 y

2
t−1 = (1 + δ1)

2k2 S−1T
∑bτ2,0T c

t=bτ1,0T c+1−k2 y
2
t−1

+ (1 + δ1)
2k2 S−1T

∑bτ1,0T c−k2
t=bτ1,0T c+1 y

2
t−1

= (1 + δ1)
2k2 S−1T

∑bτ2,0T c
t=bτ1,0T c+1−k2 y

2
t−1 + op(1)

= S−1T
∑bτ2,0T c

t=bτ1,0T c+1−k2 y
2
t−1+k2 + op(1)

= S−1T
∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1+k2 + op(1)
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= S−1T
∑bτ2,0T c+k2

t=bτ1,0T c+1+k2 y
2
t−1 + op(1)

= S−1T
∑bτ2,0T c+k2

t=bτ1,0T c+1 y
2
t−1 + op(1).

So

(S−1T
∑bτ2,0T c

t=bτ1,0T c+1 ∆ytyt−1)
2

S−1T
∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1

−
(S−1T

∑bτ2,0T c+k2
t=bτ1,0T c+1 ∆ytyt−1)

2

S−1T
∑bτ2,0T c+k2

t=bτ1,0T c+1 y
2
t−1

=
{δ1S−1T

∑bτ2,0T c
t=bτ1,0T c+1 y

2
t−1 + op(1)}2

S−1T
∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1

−
{δ1 (1 + δ1)

2k2 S−1T
∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1 + op(1)}2

(1 + δ1)
2k2 S−1T

∑bτ2,0T c
t=bτ1,0T c+1 y

2
t−1 + op(1)

= δ21{1− (1 + δ1)
2k2}S−1T

bτ2,0T c∑
t=bτ1,0T c+1

y2t−1 + op(1)

which is >p 0 since 1− (1 + δ1)
2k2 > 0. Next,

(S−1T
∑bτ3,0T c

t=bτ2,0T c+1 ∆ytyt−1)
2

S−1T
∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1

−
(S−1T

∑bτ3,0T c
t=bτ2,0T c+1+k2 ∆ytyt−1)

2

S−1T
∑bτ3,0T c

t=bτ2,0T c+1+k2 y
2
t−1

=
(−δ2S−1T

∑bτ3,0T c
t=bτ2,0T c+1 y

2
t−1)

2

S−1T
∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1

−
(−δ2S−1T

∑bτ3,0T c
t=bτ2,0T c+1 y

2
t−1 + δ1S

−1
T

∑bτ2,0T c
t=bτ2,0T c+1+k2 y

2
t−1)

2

S−1T
∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1 + S−1T

∑bτ2,0T c
t=bτ2,0T c+1+k2 y

2
t−1

+ op(1)

is >p 0 since

S−1T
∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1 + S−1T

∑bτ2,0T c
t=bτ2,0T c+1+k2 y

2
t−1 > S−1T

∑bτ3,0T c
t=bτ2,0T c+1 y

2
t−1

and

(−δ2S−1T
∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1)

2−(−δ2S−1T
∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1+δ1S

−1
T

∑bτ2,0T c
t=bτ2,0T c+1+k2 y

2
t−1)

2 >p 0.

The second result is true when, in the limit,

δ1S
−1
T

∑bτ2,0T c
t=bτ2,0T c+1+k2 y

2
t−1 < 2δ2S

−1
T

∑bτ3,0T c
t=bτ2,0T c+1 y

2
t−1.
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Expanding these terms separately, it can be easily shown that

δ1S
−1
T

∑bτ2,0T c
t=bτ2,0T c+1+k2 y

2
t−1 = δ1(1 + δ1)

−21− (1 + δ1)
−2|k2|

1− (1 + δ1)−2
y2bτ2,0T c + op(1)

and

δ1(1 + δ1)
−21− (1 + δ1)

−2|k2|

1− (1 + δ1)−2
y2bτ2,0T c =

1− (1 + δ1)
−2|k2|

2 + δ1
y2bτ2,0T c <

1

2 + δ1
y2bτ2,0T c.

Also,

2δ2S
−1
T

∑bτ3,0T c
t=bτ2,0T c+1 y

2
t−1 =

2δ2
1− (1− δ2)2

y2bτ2,0T c + op(1)

and
2δ2

1− (1− δ2)2
y2bτ2,0T c =

2

2− δ2
y2bτ2,0T c.

Then, since δ1 > 0 and 0 < δ2 < 2,

1

2 + δ1
< 0.5,

2

2− δ2
> 1,

1

2 + δ1
<

2

2− δ2

giving the required result. It then follows that S−1T F (0, k2, 0) >p 0.

In combination, the results for k2 > 0 and k2 < 0 imply that when k2 6= 0,

S−1T F (0, k2, 0) >p 0.

Case 2: k1 6= 0, k2 = k3 = 0

Here,

F (k1, 0, 0) =
(
∑bτ2,0T c

t=bτ1,0T c+1 ∆ytyt−1)
2∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1

−
(
∑bτ2,0T c

t=bτ1,0T c+1+k1 ∆ytyt−1)
2∑bτ2,0T c

t=bτ1,0T c+1+k1 y
2
t−1

.

As in Case 1, we consider the cases k1 > 0 and k1 < 0 in turn.

For k1 > 0, we have

∑bτ2,0T c
t=bτ1,0T c+1+k1 ∆ytyt−1 =

∑bτ2,0T c
t=bτ1,0T c+1 ∆ytyt−1 −

∑bτ1,0T c+k1
t=bτ1,0T c+1 ∆ytyt−1

=
∑bτ2,0T c

t=bτ1,0T c+1 ∆ytyt−1 − δ1
∑bτ1,0T c+k1

t=bτ1,0T c+1 y
2
t−1 −

∑bτ1,0T c+k1
t=bτ1,0T c+1 vtyt−1

and ∑bτ2,0T c
t=bτ1,0T c+1+k1 y

2
t−1 =

∑bτ2,0T c
t=bτ1,0T c+1 y

2
t−1 −

∑bτ1,0T c+k1
t=bτ1,0T c+1 y

2
t−1.
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Thus

F (k1, 0, 0)

=
(δ1
∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1 +

∑bτ2,0T c
t=bτ1,0T c+1 vtyt−1)

2∑bτ2,0T c
t=bτ1,0T c+1 y

2
t−1

−
(δ1
∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1 − δ1

∑bτ1,0T c+k1
t=bτ1,0T c+1 y

2
t−1 +

∑bτ2,0T c
t=bτ1,0T c+1 vtyt−1 −

∑bτ1,0T c+k1
t=bτ1,0T c+1 vtyt−1)

2∑bτ2,0T c
t=bτ1,0T c+1 y

2
t−1 −

∑bτ1,0T c+k1
t=bτ1,0T c+1 y

2
t−1

= δ21

bτ1,0T c+k1∑
t=bτ1,0T c+1

y2t−1 + 2δ1

bτ1,0T c+k1∑
t=bτ1,0T c+1

vtyt−1

−
(
∑bτ1,0T c+k1

t=bτ1,0T c+1 vtyt−1)
2 − 2

∑bτ1,0T c+k1
t=bτ1,0T c+1 vtyt−1

∑bτ2,0T c
t=bτ1,0T c+1 vtyt−1∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1 −

∑bτ1,0T c+k1
t=bτ1,0T c+1 y

2
t−1

−
∑bτ1,0T c+k1

t=bτ1,0T c+1 y
2
t−1(
∑bτ2,0T c

t=bτ1,0T c+1 vtyt−1)
2∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1(
∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1 −

∑bτ1,0T c+k1
t=bτ1,0T c+1 y

2
t−1)

after some simplification. Hence, recalling that k1 is finite,

T−1F (k1, 0, 0) = δ21T
−1∑bτ1,0T c+k1

t=bτ1,0T c+1 y
2
t−1 + op(1) >p 0.

For k1 < 0, write

∑bτ2,0T c
t=bτ1,0T c+1+k1 ∆ytyt−1 =

∑bτ2,0T c
t=bτ1,0T c+1 ∆ytyt−1 +

∑bτ1,0T c
t=bτ1,0T c+1+k1 ∆ytyt−1

=
∑bτ2,0T c

t=bτ1,0T c+1 ∆ytyt−1 +
∑bτ1,0T c

t=bτ1,0T c+1+k1 vtyt−1

and ∑bτ2,0T c
t=bτ1,0T c+1+k1 y

2
t−1 =

∑bτ2,0T c
t=bτ1,0T c+1 y

2
t−1 +

∑bτ1,0T c
t=bτ1,0T c+1+k1 y

2
t−1.

Then

F (k1, 0, 0)

=
(
∑bτ2,0T c

t=bτ1,0T c+1 ∆ytyt−1)
2∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1

−
(
∑bτ2,0T c

t=bτ1,0T c+1 ∆ytyt−1 +
∑bτ1,0T c

t=bτ1,0T c+1+k1 vtyt−1)
2∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1 +

∑bτ1,0T c
t=bτ1,0T c+1+k1 y

2
t−1
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=
(δ1
∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1 +

∑bτ2,0T c
t=bτ1,0T c+1 vtyt−1)

2∑bτ2,0T c
t=bτ1,0T c+1 y

2
t−1

−
(δ1
∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1 +

∑bτ2,0T c
t=bτ1,0T c+1 vtyt−1 +

∑bτ1,0T c
t=bτ1,0T c+1+k1 vtyt−1)

2∑bτ2,0T c
t=bτ1,0T c+1 y

2
t−1 +

∑bτ1,0T c
t=bτ1,0T c+1+k1 y

2
t−1

= δ21

∑bτ1,0T c
t=bτ1,0T c+1+k1 y

2
t−1
∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1 +

∑bτ1,0T c
t=bτ1,0T c+1+k1 y

2
t−1

−2δ1

∑bτ2,0T c
t=bτ1,0T c+1 y

2
t−1
∑bτ1,0T c

t=bτ1,0T c+1+k1 vtyt−1 −
∑bτ1,0T c

t=bτ1,0T c+1+k1 y
2
t−1
∑bτ2,0T c

t=bτ1,0T c+1 vtyt−1∑bτ2,0T c
t=bτ1,0T c+1 y

2
t−1 +

∑bτ1,0T c
t=bτ1,0T c+1+k1 y

2
t−1

−
∑bτ1,0T c

t=bτ1,0T c+1+k1 vtyt−1(
∑bτ1,0T c

t=bτ1,0T c+1+k1 vtyt−1 + 2
∑bτ2,0T c

t=bτ1,0T c+1 vtyt−1)∑bτ2,0T c
t=bτ1,0T c+1 y

2
t−1 +

∑bτ1,0T c
t=bτ1,0T c+1+k1 y

2
t−1

+

∑bτ1,0T c
t=bτ1,0T c+1+k1 y

2
t−1(

∑bτ2,0T c
t=bτ1,0T c+1 vtyt−1)

2∑bτ2,0T c
t=bτ1,0T c+1 y

2
t−1(
∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1 +

∑bτ1,0T c
t=bτ1,0T c+1+k1 y

2
t−1)

after some simplification. Finally, we obtain

T−1F (k1, 0, 0) = δ21T
−1

∑bτ1,0T c
t=bτ1,0T c+1+k1 y

2
t−1
∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1∑bτ2,0T c

t=bτ1,0T c+1 y
2
t−1 +

∑bτ1,0T c
t=bτ1,0T c+1+k1 y

2
t−1

+ op(1)

= δ21T
−1∑bτ1,0T c

t=bτ1,0T c+1+k1 y
2
t−1 + op(1)

which is >p 0.

These two results show that when k1 6= 0, T−1F (k1, 0, 0) >p 0.

Case 3: k3 6= 0, k1 = k2 = 0

Now in this case,

F (0, 0, k3) =
(
∑bτ3,0T c

t=bτ2,0T c+1 ∆ytyt−1)
2∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1

−
(
∑bτ3,0T c+k3

t=bτ2,0T c+1 ∆ytyt−1)
2∑bτ3,0T c+k3

t=bτ2,0T c+1 y
2
t−1

and once again we consider k3 > 0 and k3 < 0 separately.

When k3 > 0,

∑bτ3,0T c+k3
t=bτ2,0T c+1 ∆ytyt−1 =

∑bτ3,0T c
t=bτ2,0T c+1 ∆ytyt−1 +

∑bτ3,0T c+k3
t=bτ3,0T c+1 ∆ytyt−1

= −δ2
∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1 +

∑bτ3,0T c
t=bτ2,0T c+1 vtyt−1 +

∑bτ3,0T c+k3
t=bτ3,0T c+1 vtyt−1.
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Given that

S−1T
∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1 = S−1T

∑bτ3,0T c−1
t=bτ2,0T c y

2
t

= S−1T
∑bτ3,0T c−1

t=bτ2,0T c (1− δ2)
2(t−bτ2,0T c)y2bτ2,0T c + op(1)

= S−1T
∑bτ3,0T c−bτ2,0T c−1

t=0 (1− δ2)2ty2bτ2,0T c + op(1)

=
1

1− (1− δ2)2
S−1T y2bτ2,0T c + op(1)

=
1

δ2(2− δ2)
S−1T y2bτ2,0T c + op(1)

is Op(1), we can write

F (0, 0, k3)

=
(
∑bτ3,0T c

t=bτ2,0T c+1 ∆ytyt−1)
2∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1

−
(
∑bτ3,0T c

t=bτ2,0T c+1 ∆ytyt−1 +
∑bτ3,0T c+k3

t=bτ3,0T c+1 vtyt−1)
2∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1 +

∑bτ3,0T c+k3
t=bτ3,0T c+1 y

2
t−1

=
(−δ2

∑bτ3,0T c
t=bτ2,0T c+1 y

2
t−1 +

∑bτ3,0T c
t=bτ2,0T c+1 vtyt−1)

2∑bτ3,0T c
t=bτ2,0T c+1 y

2
t−1

−
(−δ2

∑bτ3,0T c
t=bτ2,0T c+1 y

2
t−1 +

∑bτ3,0T c
t=bτ2,0T c+1 vtyt−1 +

∑bτ3,0T c+k3
t=bτ3,0T c+1 vtyt−1)

2∑bτ3,0T c
t=bτ2,0T c+1 y

2
t−1 +

∑bτ3,0T c+k3
t=bτ3,0T c+1 y

2
t−1

= δ22

∑bτ3,0T c
t=bτ2,0T c+1 y

2
t−1
∑bτ3,0T c+k3

t=bτ3,0T c+1 y
2
t−1∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1 +

∑bτ3,0T c+k3
t=bτ3,0T c+1 y

2
t−1

+2δ2

∑bτ3,0T c
t=bτ2,0T c+1 y

2
t−1
∑bτ3,0T c+k3

t=bτ3,0T c+1 vtyt−1 −
∑bτ3,0T c+k3

t=bτ3,0T c+1 y
2
t−1
∑bτ3,0T c

t=bτ2,0T c+1 vtyt−1∑bτ3,0T c
t=bτ2,0T c+1 y

2
t−1 +

∑bτ3,0T c+k3
t=bτ3,0T c+1 y

2
t−1

−
∑bτ3,0T c+k3

t=bτ3,0T c+1 vtyt−1(
∑bτ3,0T c+k3

t=bτ3,0T c+1 vtyt−1 + 2
∑bτ3,0T c

t=bτ2,0T c+1 vtyt−1)∑bτ3,0T c
t=bτ2,0T c+1 y

2
t−1 +

∑bτ3,0T c+k3
t=bτ3,0T c+1 y

2
t−1

+

∑bτ3,0T c+k3
t=bτ3,0T c+1 y

2
t−1(
∑bτ3,0T c

t=bτ2,0T c+1 vtyt−1)
2∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1(
∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1 +

∑bτ3,0T c+k3
t=bτ3,0T c+1 y

2
t−1)

and, using the scaling in Lemma 1(iv) and the fact that k3 is finite,

R−1T S−1T F (0, 0, k3) = δ22R
−1
T S−1T

∑bτ3,0T c
t=bτ2,0T c+1 y

2
t−1
∑bτ3,0T c+k3

t=bτ3,0T c+1 y
2
t−1∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1 +

∑bτ3,0T c+k3
t=bτ3,0T c+1 y

2
t−1

+ op(1)

= δ22R
−1
T S−1T

∑bτ3,0T c+k3
t=bτ3,0T c+1 y

2
t−1 + op(1)

31



which is >p 0.

When k3 < 0,

∑bτ3,0T c+k3
t=bτ2,0T c+1 ∆ytyt−1 =

∑bτ3,0T c
t=bτ2,0T c+1 ∆ytyt−1 −

∑bτ3,0T c
t=bτ3,0T c+1+k3 ∆ytyt−1

= −δ2
∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1 +

∑bτ3,0T c
t=bτ2,0T c+1 vtyt−1

+δ2
∑bτ3,0T c

t=bτ3,0T c+1+k3 y
2
t−1 −

∑bτ3,0T c
t=bτ3,0T c+1+k3 vtyt−1.

Then

F (0, 0, k3)

=
(
∑bτ3,0T c

t=bτ2,0T c+1 ∆ytyt−1)
2∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1

−
(
∑bτ3,0T c+k3

t=bτ2,0T c+1 ∆ytyt−1)
2∑bτ3,0T c+k3

t=bτ2,0T c+1 y
2
t−1

=
(−δ2

∑bτ3,0T c
t=bτ2,0T c+1 y

2
t−1 +

∑bτ3,0T c
t=bτ2,0T c+1 vtyt−1)

2∑bτ3,0T c
t=bτ2,0T c+1 y

2
t−1

−

(−δ2
∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1 +

∑bτ3,0T c
t=bτ2,0T c+1 vtyt−1 + δ2

∑bτ3,0T c
t=bτ3,0T c+1+k3 y

2
t−1 −

∑bτ3,0T c
t=bτ3,0T c+1+k3 vtyt−1)

2∑bτ3,0T c
t=bτ2,0T c+1 y

2
t−1 −

∑bτ3,0T c
t=bτ3,0T c+1+k3 y

2
t−1

= δ22
∑bτ3,0T c

t=bτ3,0T c+1+k3 y
2
t−1 − 2δ2

∑bτ3,0T c
t=bτ3,0T c+1+k3 vtyt−1

+

∑bτ3,0T c
t=bτ3,0T c+1+k3 vtyt−1(2

∑bτ3,0T c
t=bτ2,0T c+1 vtyt−1 −

∑bτ3,0T c
t=bτ3,0T c+1+k3 vtyt−1)∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1 −

∑bτ3,0T c
t=bτ3,0T c+1+k3 y

2
t−1

−
(
∑bτ3,0T c

t=bτ2,0T c+1 vtyt−1)
2
∑bτ3,0T c

t=bτ3,0T c+1+k3 y
2
t−1∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1(
∑bτ3,0T c

t=bτ2,0T c+1 y
2
t−1 −

∑bτ3,0T c
t=bτ3,0T c+1+k3 y

2
t−1)

and so

R−1T S−1T F (0, 0, k3) = δ22R
−1
T S−1T

∑bτ3,0T c
t=bτ3,0T c+1+k3 y

2
t−1 + op(1)

which is >p 0.

These two Case 3 results therefore show that when k3 6= 0, R−1T S−1T F (0, 0, k3) >p 0.

Taken together, the results of Cases 1-3 imply that when at least one of k1, k2 and

k3 is non-zero,

F (k1, k2, k3) >p 0.

In order that F (k1, k2, k3) is not positive in the limit, we require that k1 = k2 = k3 = 0.

Hence, it must hold that bτ̂ iT c − bτ i,0T c
p→ 0, i = 1, 2, 3.
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Table 1. Application to Nasdaq composite real price index

PSY BICopt

Test Start End Model Start End

Panel A. Full sample results

1973:2–2005:6 3.07∗∗∗ 1998:11 2000:12 3 1998:11 2000:9

Panel B. Pseudo real-time results

1973:2–2000:9 3.07∗∗∗ 1998:11 2000:9 1 2000:1 2000:9
1973:2–2000:10 3.07∗∗∗ 1998:11 2000:10 1 2000:1 2000:10
1973:2–2000:11 3.07∗∗∗ 1998:11 2000:11 1 1999:12 2000:11
1973:2–2000:12 3.07∗∗∗ 1998:11 2000:12 3 1998:11 2000:9
1973:2–2001:1 3.07∗∗∗ 1998:11 2000:12 3 1998:11 2000:9

Note: ∗∗∗ denotes rejection at the 0.01-level.
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(a) ⌊τ 1,0T ⌋ ± 0 (b) ⌊τ 1,0T ⌋ ± 1 (c) ⌊τ 1,0T ⌋ ± 5

(d) ⌊τ 2,0T ⌋ ± 0 (e) ⌊τ 2,0T ⌋ ± 1 (f) ⌊τ 2,0T ⌋ ± 5

Figure 1. Conditional accuracy of bubble start and end date estimators: DGP 2, τ 1,0 = 0.5, τ 2,0 = 0.7;
BICopt: , PSY: – –

F
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(a) ⌊τ 1,0T ⌋ ± 0 (b) ⌊τ 1,0T ⌋ ± 1 (c) ⌊τ 1,0T ⌋ ± 5

(d) ⌊τ 2,0T ⌋ ± 0 (e) ⌊τ 2,0T ⌋ ± 1 (f) ⌊τ 2,0T ⌋ ± 5

Figure 2. Conditional accuracy of bubble start and end date estimators: DGP 4, τ 1,0 = 0.5, τ 2,0 = 0.7, τ 3,0 = 0.8, δ2 = δ1/2;
BICopt: , PSY: – –

F
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(a) ⌊τ 1,0T ⌋ ± 0 (b) ⌊τ 1,0T ⌋ ± 1 (c) ⌊τ 1,0T ⌋ ± 5

(d) ⌊τ 2,0T ⌋ ± 0 (e) ⌊τ 2,0T ⌋ ± 1 (f) ⌊τ 2,0T ⌋ ± 5

Figure 3. Conditional accuracy of bubble start and end date estimators: DGP 4, τ 1,0 = 0.5, τ 2,0 = 0.7, τ 3,0 = 0.8, δ2 = δ1;
BICopt: , PSY: – –
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(a) DGP 1, τ 1,0 = 0.8, τ 2,0 = 1 (b) DGP 2, τ 1,0 = 0.5, τ 2,0 = 0.7

(c) DGP 3, τ 1,0 = 0.7, τ 2,0 = 0.9, τ 3,0 = 1, δ2 = δ1/2 (d) DGP 4, τ 1,0 = 0.5, τ 2,0 = 0.7, τ 3,0 = 0.8, δ2 = δ1/2

Figure 4. Correct model selection conditional frequencies: BICopt:

F
.4



Figure 5. Logarithms of Nasdaq composite real price index, 1973:2-2005:6, and estimated bubble start and end dates
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