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Abstract—Decision support systems (DSSs) are a convenient
tool to aid plant operators in the selection of process set
points. Inputs to these systems for variables that are not easily
measured online often come from assessments made by experts,
with an associated degree of uncertainty. The application of
fuzzy sets and systems as part of DSSs provides a systematic
approach to addressing the uncertainty in its variables. This
paper builds on prior work on DSSs utilising fuzzy cognitive
maps and introduces a non-singleton fuzzification stage which
directly addresses uncertainty in system inputs. The motivation
of the proposed system is grounded in the real world challenges of
producing high-quality olive oil and the paper provides promising
application and analysis results as part of the Virgin Olive Oil
Production Process.

Index Terms—Nonsingleton Fuzzification, Fuzzy Cognitive
Map.

I. INTRODUCTION

The virgin olive oil production process (VOOPP) is an
industrial process with many relevant process variables and
conflicting production objectives. A fundamental tradeoff be-
tween the quality of the produced virgin olive oil (VOO)
and the obtained quantity – extraction yield – conferes a key
relevance to the choice between production objectives, as it
greatly influences the economic revenue of the activity.

The selection of the set points of the process variables is
a major step in the VOOPP, as these values determine the
operation of the plant, and, consequently, the achievement of
the production objective. This selection requires addressing the
process from a global point of view, taking into account the
constraints imposed by the properties of the incoming olives
and the influence of the process variables on the production
process and thus the potential of meeting the objectives.

In the VOOPP, there are many relevant variables of the
process that are difficult to measure, which are thus typically
assessed by expert operators. The properties of the incoming
olives and the organoleptic quality of the produced olive oil
are some examples of this type of variables. This difficulty has
implications in two different facets: on the one hand, it hinders
the construction of process models suitable to be used for the
design of high-level controllers capable of providing the most

appropriate value for the process set points, as experimental
data is scarce and expensive to obtain. On the other hand, these
estimations naturally convey a certain degree of uncertainty
about the true values of the estimated parameters, inherent to
the approximate and, to some extent, subjective nature of the
assessments (e.g. flavour). This uncertainty is often apparent
when more than one expert provides an assessment for the
same property, as their assessments usually do not exactly
match.

In previous works [1] we have addressed the first challenge,
by proposing a decision support system (DSS) capable of
suggesting adequate set points for the VOOPP. The lack of
experimental data and the high number of relevant process
variables and production scenarios led to the design and
construction of a model of the process based on Fuzzy
Cogninitive Maps (FCMs) [2], [3]. FCMs are a convenient
tool for modeling complex systems with many variables. They
provide an intuitive representation of the relationships between
the variables, allow to easily decompose the model into simpler
parts and facilitate an incremental approach in the construction
of the model.

In [1], a set of set points of the process variables were
provided by the solution of an optimization problem that used
the FCM model a contraint. The inclusion of an observer for
the process outputs enabled the inclusion of feedback to the
system, as well as the updating of specific set points if the
production objective were not met using the initially suggested
values.

In this work we address the second facet of the problem, and
analyze the modelling and the effect of the uncertainty on the
decision making process. The uncertainty affecting an actual
value of a given parameter can be modeled using a fuzzy set
[4], that can in turn be used as input to the decision support
system (DSS), instead of feeding a singleton fuzzy set that
would disregard the available information about the incertainty.
This approach follows the same principle as applied in non-
singleton fuzzy logic systems, where a non-singleton fuzzy set
is used to model input uncertainty as part of a traditional fuzzy
logic inference model. Non-singleton fuzzy logic systems have



been explored and shown to have substantial potential in a
variety of contexts [5], [6], [7].

In particular, the objective of this paper is to explore
the implications of using nonsingleton fuzzification with the
FCM modeling approach and to analyze its application to
a simplified DSS for the VOOPP. The rest of the paper is
organized as follows: Section II presents some background
of the problem, briefly addressing FCM, the VOOPP and
nonsingleton fuzzication. In turn, Section III deals with the
analysis of nonsingleton FCM, while Section IV addresses
their application to the VOOPP decision support system.
Finally, Section V includes the conclusions of the work.

II. BACKGROUND

A. Fuzzy Cognitive Maps in the context of Fuzzy Logic Systems

Fuzzy Cognitive Maps (FCM) are a convenient modeling
approach for systems with a high number of variables. This
methodology eases the elicitation of knowledge from experts
and allows to use a systematic approach in this elicitation of
the knowledge.

The proposed modeling method is based on Simplified
Dynamic Cognitive Networks (sDCN) [8]. Formally, the model
is defined as a tuple:

M = ⟨V,A⟩, (1)

where V designates the set of nodes – representing variables
–, and A being the set of arcs – representing relationships
between the variables.

The nodes of the network can act as predecessor or succesor
nodes, according to their role in the computation process.
Predecessor nodes are similar to variables included in the
antecedent part of a fuzzy rule, while successor nodes can
be identified with the variables in the consequent part of the
rule. Figure (1) shows a generic multiple-input single-output
one-layer model for traditional singleton FCM. For multilayer
models, a node can play both roles, if there are arcs both
incoming and departing from the node.

For each node vi ∈ V of the network, the following
properties are defined:

• Uvi : the universe of discourse of the node. It is the set
that contains all the possible crisp values of the variable
represented by vi.

• Hvi : the collection of terms (fuzzy sets) Lk
vi

defined in
Uvi :

Lk
vi

= {⟨x, µLk
vi
(x)⟩ : x ∈ Uvi}, (2)

Hvi = {Lk
vi , k = 1, 2, · · · ,Ki}. (3)

Here, Ki represents the total number of sets defined in
the node.

• Sf (vi): an array containing the degree of membership of
for each fuzzy set Lvi of a given vi for one crisp input
(see Fig. 1).

Sf (vi) = [µL1
vi
, · · · , µ

L
Ki
vi

]T . (4)
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Figure 1. Generic multi-input single output model for traditional, singleton
FCM. A more complex model can be built by composition of this elementary
structure.

• Sc(vi): the crisp value assigned to the node. If vi acts
as a successor node, this value is computed using the
method explained below in Equations (6)–(8). If vi acts
as a predecessor node, this value is considered already
available, either provided by an external input to the
node – if the node does not have any predecessors – or
previously computed.

In turn, for each arc aij the following properties are defined:
• ωij : intensity of the relation between the nodes vi and vj .
• Rij : causal relationship matrix. The entries of this matrix

are required to be non-negative, and they define the
relationship between the fuzzy sets of the predecessor and
the succesor nodes connected by the arc. The size of the
matrix is Ki ×Kj , with Ki and Kj being the number of
labels in Hvi and Hvj respectively.

These properties of the arcs ωij and Rij play a similar role
to the rules in a rule-based FLS, as these elements encode the
relationships between the different variables of the system. In
the Rij matrix, each row is associated with a fuzzy set defined
in Uvi , and each column is associated with a fuzzy set defined
in Uvj . Each entry of Rij can be thought of as a rule relating
the value of the predecessor (node vj) with the successor (vi),
where the rule weight is given by the value of the entry times
the weight associated with the arc. For example, let Lk

vi
be

triangular fuzzy sets and let qi = [q1i q2i · · · qKi
i ]T denote the

peaks of these fuzzy sets. Then, each matrix entry is associated
to a rule of the type:

If vj is Lb
vj Then vj is qai , with weight ωij R

ab
ij .

As an example, consider the following matrix:

Rij =

0 0 1
0 1 0
1 0 0

 . (5)

The shape of the matrix denotes that three fuzzy sets have
been defined in both Uvi and Uvj , and the associated rules are:

If vj is L1
vj Then vi is q3i , with weight ωij.



If vj is L2
vj Then vi is q2i , with weight ωij.

If vj is L3
vj Then vi is q1i , with weight ωij.

The computation of the value of a successor node, given
the value of its predecessors, is computed as follows:

1) The impact received by the node i is defined as:

wi =

ni∑
j=1

ωij RijSf (vj) = [w1
i w

2
i · · · wKi

i ]T (6)

2) The computation of the crisp value Sc(vi) of the node
is performed using a weighted average combination of
the value of the peak of each fuzzy set using the impact
received by the node:

Sc(vi) =

∑Ki

k=1 w
k
i qki∑Ki

k=1 w
k
i

. (7)

3) Finally, the fuzzy state vector of the node Sf (vi) cap-
tures the membership values for each label as follows:

Sf (vi) = [µL1
vi
(Sc(vi)) µL2

vi
(Sc(vi)) · · · µ

L
Ki
vi

(Sc(vi))]
T .

(8)
Equation (7) perform the inference and defuzzification steps

simultaneously, and is very similar to the zero-order Takagi-
Sugeno-Kang (TSK) model computation of the crisp value of
the output of a set of rules.

As pointed out in [9], for general FCM, the main constraint
of the methodology is the fact that rules can only have
a single variable in the premise clause. Part of the appeal
of FCMs is that the selection of different matrices enables
the direct capture of potential intuitive behaviours that may
be perceived by experts, such as the ones presented in [1].
FCMs traditionally allow having cycles in the graph, however,
the FCM framework introduced in [1] currently does not
contemplate having them in the models. More details on the
reasons for this decision are found in [1].

B. Virgin Olive Oil Production Process

The VOOPP is usually considered to begin with the re-
ception of olives at the factory. However, aspects such as the
harvesting date, the harvesting method and the time elapsed
from grove to factory are also important aspects to consider,
since they affect properties of the olives that influence the final
characteristics of the oil.

Olives usually arrive with some dust, leaves and small
pebbles that need to be removed before their processing. Once
the olives are clean, they are fed into hoppers where they are
stored for a certain period of time, and then crushed to form
the so called olive paste. The state of the paste as it comes out
of this operation is not fit for the separation of the oil, as it
would not allow a good separation yield. In order to improve
this yield, the paste is fed into a thermomixer where it is gently
stirred and heated to promote the coalescence of the oil drops.
After this step, the paste is fed into a solid-bowl horizontal
centrifuge where oil is separated from the pomace (solids and
water). The moisture and impurity content of the oil is not
yet adecquate for its storage, so a further separation step is

Figure 2. Block diagram of the olive oil production process.

Table I
VARIABLES INVOLVED IN EACH OPERATION CAPTURED IN FIG. (2)

Operation Symbol Variable

Paste preparation

ts Storage time
C Size of the sieve hole
tb Kneading time
Tb Kneading temperature
At Microtalc addition

Separation

Fp Paste flow into decanter
Fw Additon water flow into decanter
r1 Oil outcome weirs position
∆ω Screw-bowl differential velocity

Humidity removal
tr Residence time in settling tank
fp Purge frequency of settling tank

Fw,vc Addition water flow to vertical centrifuge

performed in vertical centrifuges or static settling tanks. After
this step, the oil is prepared for its storage. Fig. 2 shows a
block diagram of the process.

Overall, three different major operations make up this
process: paste preparation, oil-pomace separation and impurity
and humidity removal. The paste preparation includes all the
operations until feeding the paste into the horizontal centrifuge,
where the oil-pomace separation operation is performed. The
impurity and humidity removal comprises the remaining oper-
ations.

The main high level output parameters of the process are the
quality of the oil and the extraction yield. Olive characteristics
impose an upper bound on these two variables, while the
different technical variables involved in the process further
determine their final values within those bounds. The paste
preparation step exerts a key influence on the quality of the
oil, and sets an upper bound on the yield. In turn, the separation
step does not play a significant role for the quality, but greatly
determines the yield, as sub-optimal values may be obtained
if the operation is not carried out properly. The humidity
and impurity removal step, although important for the proper
storage of the oil, plays a more subtle role in the process [10],
and is usually not considered, as its influence on the outputs
is lower compared to the other two steps. The major technical
variables of each phase are presented in Table I.

During regular VOOPP operation, many of the relevant
process variables are assessed and set by expert operators.
Some variables are inherently uncertain and only assessed
through the experience and expertise of the expert operators
of the process. An example of this is paste preparation, which
is an assessment of the expert based on some features of the
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Figure 3. Intersection of Gaussians with increasing values of σ with triangular
membership functions. Gaussians with higher σ intersect more labels, and at
higher membership values.

paste inside the thermomixer – granularity, cleanness of the
blades and color of the paste, mainly. This variable provides
information on the expected yield before the separation process
is carried out.

Some other variables, such as the maturity and the moisture
content of the olives, do have definite crisp values; however,
given the conditions of normal operation of the factory (e.g.,
where multiple batches or olives with different properties
are mixed), the only information about their values during
production is an assessment provided by one or more expert
operators, and decisions are made based on this input.

Given the nature of these assessments and the heterogenity
of the batches of olives being processed, a considerable degree
of uncertainty is commonplace even where some numeric
properties of specific olive batches are known. It is interesting
to consider the effect of these uncertainties on the decision-
making process of a decision support system in order to enable
a robust manufacturing process which can reliably achieve
optimal production.

C. Nonsingleton Fuzzification

As commented in the previous Section, the values of input
variables in the VOOPP usually have significant associated
uncertainty. This uncertainty can be modeled using fuzzy sets
to describe the values of the variables assessed by the experts,
instead of just using a crisp value to represent them.

The use of fuzzy sets as inputs to RBFLSs requires defining
a method to compute the firing degree of the rules based on
the interaction of the fuzzy set representing the input and the
fuzzy sets of the antecedent clause of each rule. A common
approach is the sup-min interaction of the fuzzy sets. Let X
denote the fuzzy set representing the value of the input, and L
denote the fuzzy set in the antecedent clause of a rule, then:

µX◦L = supu∈UX
min[µX(u), µL(u)]. (9)

Figure (3) represents the intersection of Gaussian fuzzy
sets with increasing values of their standard deviation (σ) –
representing increasing levels of uncertainty about the input –
with a collection of triangular fuzzy sets. As can be seen in
the Figure, Gaussian sets with a higher degree of uncertainty
intersect more triangular fuzzy sets – meaning that more rules
are to be triggered – and with higher firing degree. This
reflects the intuitive interpretation that as the input is uncertain,
different rules would potentially be fired to higher degrees.

III. NONSINGLETON FUZZY COGNITIVE MAPS

The use of nonsingleton fuzzification in FCM implies
considering that the inputs to the nodes in the first layer (vj)
of the model are no longer crisp values (xj), but fuzzy sets
(Xj). Consequently, the computation of Sf (vj) needs to be
performed taking into account the interaction of Xj and the
fuzzy set associated with each of its entries Lk

vj
. If we choose

sup-min interaction of the sets, then the elements of Sf,ns(vj)
can be computed as:

Sk
f,ns(vj) = supu∈Uvj

min[µXj (u), µLk
vj
(u)] (10)

The left column of Fig. 4 shows plots of the value of the
elements of Sf (vj) when Xk is a Gaussian fuzzy set whose
mean corresponds to the value of the x-axis, for three different
values of σ. As depicted in the Figure, for plots where σ > 0
the elements of Sf (vj) do not add up to one (i.e., for some
vertical slices, the sum of the memberships in the different
MFs is higher than one); in fact, the higher σ, the higher the
value of this sum. As commented in the previous section, this
is a known characteristic of nonsingleton fuzzification, as sets
with higher uncertainty usually trigger more fuzzy rules and
at higher firing values.

In the singleton-FCM, the fuzzy labels defined in the uni-
verse of discourse are chosen such that they constitute a fuzzy
partition, so it was guaranteed that the sum of all the elements
of Sf add up to one. With the nonsingleton fuzzification, that
property is no longer guaranteed. However, to re-establish the
property, we can re-normalise the membership functions as
follows: Sf ,ns(vj) as:

Sf ,ns(vj) = cjŜf ,ns(vj) (11)

with cj =
∑

k S
k
f ,ns(vj) and

∑
i Ŝf

k

,ns = 1. Then, the impact
exerted by node vj on the node vi can be expressed as:

ωijRijSf ,ns(vj) = ωijRijcjŜf ,ns(vj) = ω̂ijRijŜf ,ns(vj)
(12)

This Equation can be interpreted according to the meaning
of the different elements of the FCM model. In the FCM
methodology, the influence of a node vj on its successor vi
can be separated into two aspects:

• First, the relation matrix connecting both nodes (Rij)
defines which rules should be triggerred based on the
value of Sf (vi). This can be seen as a definition of
what the value of the succesor node should be, based
exclusively to the value of this particular input node.

• Second, the relation weight ωij accounts for the intensity
of the influence of vj relative to all the other nodes that
affect the successor. That is, it defines the impact in the
final computation of vi of the value advocated for by vj .

The substitution of Sf (vj) with Ŝf ,ns(vj) can be intuitively
interpreted as changes in the consideration of the influence of
node vj due to uncertainty in its value. The right column of
Fig. 4 shows plots of the value of the elements of Ŝf,ns(vj) for
the corresponding Sf,ns(vj) plotted on the left column. As can
be seen in the plot, the increase in the uncertainty produces a



1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.2

0.4

0.6

0.8

1.0

VL L M H VH

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.2

0.4

0.6

0.8

1.0

VL L M H VH

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.2

0.4

0.6

0.8

1.0

VL L M H VH

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.2

0.4

0.6

0.8

1.0

VL L M H VH

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.2

0.4

0.6

0.8

1.0

VL L M H VH

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.2

0.4

0.6

0.8

1.0

VL L M H VH

Figure 4. Comparison of Sf ,ns(uk) (left) and Ŝf ,ns
(uk) (right) for Sk

f,ns(vj) = supu∈Uvj
min[µXj

(u), µLk
vj

(u)] and σ = [0, 0.25, 0.5] (top to bottom).

decrease in the value of each of the components of Ŝf,ns(vj),
with more elements having nonzero values. This means that
more rules get activated, but at a lower level of certainty each
of them.

In turn, the conversion of ωij into ω̂ij can be seen as
a change in the relative weights of the system, that is, a
change of the relative strength of the influence of all the nodes
that influence vi. As commented before, higher uncertainty
normally corresponds to higher cj , and, consequently, higher
ω̂ij . This means that variables whose value is more uncertain
are assigned greater influence in the model, which is not
desiderable. This can be corrected by simply ignoring cj in
the model. This way, the computation of the impact of node
vi on vj is defined to be:

wij = ωijRijŜf ,ns(vj). (13)

This equation benefits from the smoothing effect of higher
spread of Ŝf ,ns(vj) (inherent to non-singleton fuzzification)
without artificially altering the weights of the models. The next
Section presents and discusses the different results obtained
considering Eq. (12) and (13) in the computations.

IV. APPLICATION OF NONSINGLETON FCM TO THE
VOOPP

Previous works have dealt the construction of a DSS for
the VOOPP capable of suggesting the values of the set points
of the process variables that maximize some given objective
function, subject to a certain set of characteristics of the input
olives [1]. The DSS consists of a FCM model of the VOOPP
that acts as a set of constraints for an optimization problem.
Figure 5 shows the graph representing the simplified model of
the VOOPP used for the DSS.

Although the main purpose of the DSS is to provide the set
points of the process, which are given by the solution of an
optimization problem, it is interesting to analyse the influence

on the nonsingleton approach on the output variables of the
model.

Figure 6 depicts Kneading State as a function of Incoming
Olive Moisture and Coadjuvant Addition for three levels of
uncertainty in Incoming Olive Moisture – left to right – and
using both the normalized Ŝf ,nf and non-normalized approach
– top and bottom, respectively. In turn, Storage Time in Hop-
per, Kneading Time and Kneading Temperature are fixed. The
inclusion of the uncertainty can be seen to moderately reshape
the colormap, particularly for high values of Incoming Olive
Moisture. There is, however, no visible difference between
the normalized and non-normalized approach because of the
chosen value of Storage Time in Hopper, which has very
similar effects on the output in both approaches.

Figure 7 shows the dependence of Kneading State in
Incoming Olive Moisture and Storage Time in Hopper. In this
plot, the different implications of using the normalized vs. non-
normalized approach become apparent, as increasing levels of
uncertainty produce opposite effects in the area of high values
of Incoming Olive Moisture. We can also see the similarity of
both approaches in the very low range of values of Storage
Time in Hopper.

We now focus on the complete DSS. The variables of
the model can be grouped according to their role in the
optimization problem as:

• Parameters (p): variables whose values are fixed, i.e.,
constants. These include both the properties of the input
olives and other process parameters that can be regarded
as constant. They specify the considered production sce-
nario.

• Outputs (y): variables that constitute the output of the
process. In the model presented in Figure 5, these are
Fruity, Paste Preparation and Defect.

• Decision nodes (u): these are process variables whose
value comprises the output of the DSS, that is, the set
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Figure 6. Kneading State as of function of Coadjuvant Addition (x-axis) and Incoming Olive Moisture (y-axis) for σ = [0.05, 0.25, 0.5] (left to right). Upper
and lower rows represent the normalized and non-normalized approaches, respectively.

points suggested to the operator.
Let’s consider the problem of finding the optimal values of

the decision nodes u that allow obtaining a certain prescribed
value of the outputs y for a given production scenario specified
by the parameters p. This problem can be formalized as:

minimize
uk

J = (y −T)T Q (y −T) + uT R u

subject to y = f(u,p)

p = p0

umin ≤ u ≤ umax.

Here p0 stands for the values of p for the situation at hand,
T represent the prescribed values of y and f(·) denotes the
fuzzy model. The relative weight for the different outputs and

the cost of the decision variables is defined using the matrices
Q and R respectively, as is usual in Model Predictive Control
[11].

Let’s consider a production scenario where Ripeness is very
low, but with a varying degree of certainty about its true
value. Let’s further suppose that the production objective is
attaining a value of Fruity as close to 4 as possible, and the
highest possible Kneading State, subject to fulfilling the Fruity
objective.

Tables II and III show the prescribed set points for Kneading
Time and Kneading Temperature – the variables whose set
point is to be decided, the value of the rest of the variables is
considered to be fixed – and the values of the output variables
predicted by the model for the case when normalization of
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Figure 7. Kneading State as of function of Storage Time in Hopper (x-axis) and Incoming Olive Moisture (y-axis) for σ = [0.05, 0.25, 0.5] (left to right).
Upper and lower rows represent the normalized and non-normalized approaches, respectively.

Table II
SET POINTS AND EXPECTED OUTPUT VALUES FOR NONSINGLETON MODEL

WITH Snf
f NORMALIZATION FOR GIVEN VALUES OF σ

σ 0 0.05 0.25 0.5
Ripeness 4.00 4.00 4.00 4.00
Fruity 3.95 3.95 3.91 3.93
Kneading State 3.06 2.98 2.85 2.61
Defect 1.00 1.00 1.00 1.00
Kneading Time 3.87 3.26 3.00 3.00
Kneading Temperature 2.00 2.00 1.90 1.62

Table III
SET POINTS AND EXPECTED OUTPUT VALUES FOR NONSINGLETON MODEL

WITHOUT Snf
f NORMALIZATION FOR GIVEN VALUES OF σ

σ 0 0.05 0.25 0.5
Ripeness 4.00 4.00 4.00 4.00
Fruity 3.95 3.94 3.95 3.93
Kneading State 3.06 3.06 3.07 3.04
Defect 1.00 1.00 1.00 1.00
Kneading Time 3.87 3.94 4.00 3.75
Kneading Temperature 2.00 2.00 2.00 2.00

Snf
f is and is not implemented, respectively.

As is clear from Table II, as σ increases, the normalized
Snf
f approach provides more conservative values for assuring

that the Fruity objective is met, that is, decrease Kneading
Time and Kneading Temperature, which makes intuitive sense.
If there is uncertainty about the value of the input, and the
production objective definitely encourages Fruity to reach a
certain threshold, the rational choice is to be conservative in
the selection the set points to assure achieving the primary

objective, at the expense of the secondary objective.
On the other hand, the non-normalized approach (Table

III) initially increases the value of Kneading Time, which is
counter intuitive and definitely not the action an expert operator
of the process would take. This is caused by the modified
weight assigned to the arc relating Ripeness and Fruity due
to the triggering of more rules for the node and at a higher
firing strength. The effect is equivalent to considering that
the influence of having a certain value of Ripeness exerts a
higher influence on Fruity. Since the value is favorable for
obtaining a good value of Fruity, there is more room to pursue
the secondary objective, thus the increase of the Kneading
Time. This effect can be visualized in Figure 8, which depicts
Fruity as a function of Kneading Temperature and Ripeness
for different values of uncertainty in this last variable. The
plots clearly show the increased weight assigned to Ripeness
in the non-normalized approach, apparent in the higher values
of Fruity assigned to low values of Ripeness for high values
of Kneading Temperature (marked with an X on the plot).

V. CONCLUSIONS

In this paper we have analyzed the implications of using
nonsingleton fuzzification for FCM models and its application
to a DSS for the VOOPP. We have seen that normalizing
Sf,ns provides results that correspond better to the decisions
an expert operator would make, and an interpretation of the
cause has been discussed.

Further work will address whether the result is specific to
FCM due to their particular modeling methodology, or is also
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Figure 8. Fruity as of function of Kneading Time (x-axis) and Ripeness (y-axis) for σ = [0.05, 0.25, 0.5] (left to right). Upper and lower rows represent the
normalized and non-normalized approaches, respectively. The X marks a region where show the increased weight assigned to Ripeness in the non-normalized
approach is apparent.

applicable to standar rule-based FLSs. Another current line of
work includes the analysis of the impact of using different rules
for the modelling of the interaction betwen the system inputs
and the antecedent fuzzy sets, in particular for non-symmetric
input fuzzy sets. Finally, we are considering the exploration
of recently introduced variants of non-singleton FLSs which
may provide a better capture of the interaction of input and
antecedent FSs [12].
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