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Abstract: This paper presents the effectiveness of soft computing algorithms in analyzing the bond 

behavior of fiber reinforced polymer (FRP) systems inserted in the cover of concrete elements, commonly 

known as the near-surface mounted (NSM) technique. It focuses on the use of Data Mining (DM) 

algorithms as an alternative to the existing guidelines’ models to predict the bond strength of NSM FRP 

systems. To ease and spread the use of DM algorithms, a web-based tool is presented. This tool was 

developed to allow an easy use of the DM prediction models presented in this work, where the user simply 

provides the values of the input variables, the same as those used by the guidelines, in order to get the 

predictions. The results presented herein show that the DM based models are robust and more accurate than 

the guidelines’ models and can be considered as a relevant alternative to those analytical methods.  
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1. Introduction 

The strengthening technique that uses fiber reinforced polymers (FRP) inserted in the concrete cover of 

the element to be strengthened is known as near-surface mounted (NSM) technique. In the last 15 years 

intensive research has been devoted to the NSM technique, becoming a widespread technique in practical 

applications in the last years [1, 2].  

Nevertheless, the NSM technique presents many challenges to overcome. In particular, the 

characterization of the transfer of stresses between the FRP system and the surrounding concrete, i.e. the 

bond behavior of NSM FRP systems, is not yet completely understood. The bond behavior has been 

studied through direct pullout tests (DPT) and/or beam pullout tests (BPT). Figure 1 presents a generic 

example of both tests including some of the parameters used to quantify the bond strength discussed later 

in this paper.  

In Coelho et al. [2], a review on these bond tests was presented and two databases collecting a 

wide range of DPT and BPT results were presented and used for better understand key parameters 

affecting the bond performance of the NSM system. These databases were also used to evaluate the 

accuracy and limitations of two of the most relevant guidelines for predicting the bond strength of NSM 

FRP systems in concrete. The first formulation is included in the “Guide for the Design and Construction 

of Externally Bonded FRP Systems for Strengthening Concrete Structures” from the American Concrete 

Institute [3]. The second guideline is the “Design handbook for reinforced concrete structures retrofitted 

with FRP and metal plates: beams and slabs” from Standards Australia [4]. In this paper, those guidelines 

will be referred to as ACI and SA, respectively. 

The difficulties in modeling the bond performance arise from the high complexity of the NSM 

technique which involves three different materials (FRP, adhesive and concrete) and two different 

interfaces (FRP/adhesive and adhesive/concrete). The variety of properties (physical and mechanical) of 

each material and interface leads to the existence of several failure modes. However, ACI and SA 

guidelines are not able to capture explicitly all of them. On the other hand, that large variety of properties 

is associated to a large number of variables and their influence on the bond behavior of NSM FRP is far 

from being completely understood [2]. 

In an attempt to provide an alternative to the referred guidelines, this paper introduces the use of 

prediction models based on Data Mining (DM) algorithms. In order to provide some insights on the use of 

DM in structural engineering, the following section presents a brief overview on DM, focusing on its use 



in the context of this work. However, contrarily to what is common in the literature, no theoretical or 

mathematical formulations will be provided herein. Alternatively, basic concepts will be presented since, 

once the fundamental concepts are perceived, extensive existing literature exists on the mathematical 

background and implementation of these algorithms. Some examples will be provided latter. 

Finally, the results of a comparison between the accuracy of the existing guidelines (ACI and 

SA) and DM models is presented. This comparison was made using the same databases of pullout tests as 

used before to assess the accuracy of the guidelines models [2]. 

 

2. Data Mining 

Traditionally, the procedure adopted to achieve any design model is fundamentally empirical and ends up 

being a trial and error process. Three generic main steps can be outlined: (i) identify the problem, define 

an initial hypothesis and define a method for testing; (ii) run the test; (iii) analyze the test results and try 

to infer them to identical situations. In the present work the problem to be studied is the estimation of 

bond strength between FRP and concrete, which is believed to be assessable by bond tests. The traditional 

procedure is to perform a large set of bond tests, analyze the results and extrapolate them to identical 

situations. For instance, the guidelines presented later in this work were developed in this way. Regarding 

the third step, the most common procedure is a trial and error fitting of a mathematical expression 

(normally chosen in order to have physical significance in that context) to the results obtained in the tests 

using a set of previously chosen input parameters and regression analysis. If the tests are representative of 

the phenomenon being studied and if the obtained expression fits well the tests results, then it would be 

possible to use that expression in identical scenarios. All these steps are iteratively run until an acceptable 

solution is found for the model describing the phenomenon being studied. 

Data Mining (DM) [5], which aims at the semi-automatic extraction of useful knowledge from 

raw data, is an interesting alternative tool to ease and speed up the last step of the process described 

above. In fact, one of the several tasks that DM algorithms are capable of performing is regression, i.e. 

finding a data-driven model that is capable of predicting the real value of some (dependent) variable when 

some (independent) input variable(s) is(are) provided. The main drawback of using DM rather than 

traditional data analysis procedure is that the former, depending on the algorithm used, might not allow 

obtaining a closed form expression (easy to understand) for the prediction model. Instead, several DM 

models are based in terms of complex mathematical functions or rules, thus the user can only see the 



input and output variables, in what is often termed as “black-box” models [6]. As an advantage, the DM 

approach simplifies the data analysis process [7]. In effect, DM models tend to be more flexible, being 

capable of predicting complex nonlinear mappings and dealing with large amounts of data or noise. Such 

model learning flexibility often leads to higher predictive performances when compared with classical 

statistical models (e.g., multiple regression). 

DM algorithms have been successfully used in regression tasks in many areas, including Civil 

Engineering [8-11]. More specifically, in the field of concrete structures strengthened with FRP systems 

there are examples where DM algorithms have been used to predict the lateral confinement coefficient for 

reinforced concrete columns wrapped with CFRP [12], the strength of FRP confined concrete cylinders 

[13], the shear strength of reinforced concrete beams reinforced with FRP systems using either the 

externally bonded (EBR) [14] or the NSM [15] techniques or even the bond strength of FRP EBR 

systems in concrete [16]. According to the author’s best knowledge, only one work of their authorship is 

available where DM algorithms were applied to predict the bond strength of NSM FRP systems in 

concrete [17]. 

In this work, two DM algorithms were used: the Artificial Neural Networks (ANN) and the 

Support Vector Machines (SVM). These DM algorithms are briefly presented in the following sections. 

 

2.1. Artificial Neural Networks 

The Artificial Neural Network (ANN) is an algorithm that is inspired in the behavior of the human central 

nervous system. Hence, the learning ANN algorithm aims at finding the best connection weights in which 

a set of artificial neurons should communicate with each other in order to attain a certain target [18]. 

Figure 2 presents two ANN examples: (i) Figure 2(a) corresponds to a multiple linear regression, 

which is a widely known and commonly accepted type of regression model. This is an example of the 

simplest ANN, without hidden nodes; (ii) Figure 2(b) corresponds to a more complex ANN with one 

hidden layer and two hidden neurons (HN). As it can be seen, the only difference between them is the 

existence or not of an intermediate layer of hidden neurons. 

In the multiple linear regression, several input variables (x) affected by different weights are 

combined and an output variable (y) is obtained. In the ANN with one hidden layer intermediary weights 

are also introduced thus a nonlinear relation between x and y can be obtained. The number of hidden 



layers and neurons can be different from this example and, by increasing them, the degree of nonlinearity 

increases. 

If the value of y is known a priori, then the multiple linear regression model is an expression 

identic to expression (1), where the only unknown is the set of weights (w) that make the equality true. In 

the case of ANN with hidden layers, such an expression is no longer straightforward to obtain. However, 

a similar procedure minimizing the difference between the predicted and observed values can be used to 

find the optimal weights, in a process called training.  

The type of ANN adopted in this work uses only one hidden layer since this is the simplest 

nonlinear ANN and was found to attain good results. The number of hidden neurons determined during 

the analysis by comparing the quality of fit with increasing number of neurons (between 0 and 9) and 

selecting the one which presents lower prediction errors (when considering training data).  
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2.2. Support Vector Machines 

Support vector machines (SVM) can be seen as an upgrade to the ANN and were initially developed for 

classification tasks [19]. Considering the classification purpose, the basic concept of SVM is finding an 

optimal hyperplane for linearly separate patterns, i.e., finding the plane which maximizes the separation 

between the different patterns that exist in the analyzed data. To ease the understanding of SVM 

functioning in a classification task, Figure 3 presents an example of a database with two input variables 

(x1 and x2) divided in two patterns (circles and squares). In the database real space (middle chart in Figure 

3) those patterns can only be separated using a curved line. However, it can be found a function  which, 

applied to the original data, can transform it into a new high dimensional space where the two patterns 

can actually be separated by a straight line. SVM algorithm optimizes the position of that single line such 

that it maximizes the separation of the two patterns. Several division lines can exist and are represented as 

full lines in the left side of Figure 3. However, in this case, the line that maximizes the separation of the 

patterns is the thicker one represented in that figure. Remark that, in more complex examples (with 

several variables), the lines would be actually hyperplanes, as referred before. In the end, since the 

optimal hyperplane is known, the relative position of all the data points, especially those passed by the 

dashed lines (designated by support vectors) is also known. Hence, a model traducing the separation of 



the patterns can be defined which corresponds to the classification model that was sought in the 

beginning. 

SVM were latter extended to also perform regression tasks, which are the important ones in the 

scope of this work, being its functioning similar to the classification case. However, in regression, another 

function  will transform the original data in order to find a line that passes through all data points (right 

chart in Figure 3). That line is the regression function which allows predict the value of each data point. 

Since finding such a line is quite complex, there are two new important parameters in the SVM for 

regression, namely the regularization parameter (C) and a loss function that in this work is the -

insensitive (). The first defines the tradeoff between complexity and accuracy of the model to be found, 

while the second defines the width of a region in which the data points inside it are assumed to be on the 

regression line, thus an insensitive region. The data points outside this region are the support vectors in 

the regression SVM. 

Besides these two parameters, the success of SVM for regression tasks is influenced by a kernel 

function. In this work, the Gaussian radial basis kernel function was adopted (2). This has only one 

hyperparameter, , which was adjusted using a greedy search (between 2-15 and 23). Similar procedure 

was also adopted for parameter , while parameter C was considered equal to 3 [20].  
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2.3. Rminer tool 

Nowadays, there are several tools that allow an easy application of DM algorithms with a limited 

knowledge of the mathematical background required for implementation. In this work, the rminer library 

[20] of the R Statistical Environment [21] was adopted, since it is particularly suited for generating ANN 

and SVM data-driven models. 

Among the several features included in rminer, in this work the functions mining, fit and predict 

were used. For simplicity, the functions will be described using a parallel with a simple regression model.  

The function fit allows finding an analytical expression in the form y = mx + b with m and b 

adjusted to the database in analysis. Having the expression calibrated, predict gives the results (y) for new 

values of the independent variable (x) by replacing it in the expression found by fit. The function mining 

is a more sophisticated function. It performs several runs (i.e., sequences of fit and predict executions) 

under a user selected validation method. It is important to emphasize that, while fit uses the entire 



database to adjust a model, mining only uses part of it, being the fitted model tested in unseen data (i.e., 

test set). This aspect is very important since it allows evaluating the performance of the adjusted model 

when applied to new data (depending on the validation method), thus measuring the true generalization 

capacity of the DM model. In this work, a holdout split validation method was adopted, in which 2/3 of 

the data entries were randomly selected as training data and the remaining 1/3 samples were used as test 

data. Another important difference is that only fit function allows storing a model that can be then used, 

like an analytical expression, to perform new predictions. In fact, depending on the chosen division of sets 

and number of runs, for example, mining function can produce a huge number of models. For practical 

reasons, the rminer library does not store any of these models. 

 

3. Tests and analyses 

The following paragraphs present the databases of tests used in this work. Then the ACI and SA 

analytical formulations, used as reference, are presented. Finally, the DM analyses carried out in this 

work are detailed.  

 

3.1. Databases of pullout tests 

As referred, two databases of pullout tests were built, one including 363 direct pullout tests (DPT) and 

other with 68 beam pullout tests (BPT). In the context of the present work, it was decided to build up a 

webpage to store the referred databases (www.frpbondata.civil.uminho.pt). It is believed that providing 

the scientific community free access to the vast majority of pullout tests available in the literature makes 

the process of continuously improving the existing prediction models faster and easier. It is expected that, 

with the contribution of all the researchers working in this field, this website will be continuously 

updated. 

The referred website includes, besides the databases, a page to perform predictions of the 

maximum pullout force (Ffmax) using different formulations. It includes ACI and SA guidelines and the 

DM models developed herein. It is also believed that, by providing in the website an easy way of using 

and testing DM models, the acceptance and use of such powerful tools will increase. Hence, providing the 

required input variables, results obtained using all the prediction formulations described herein will be 

readily available. 

http://www.frpbondata.civil.uminho.pt/


To help the community in improving prediction models for NSM bond behavior a detailed and 

comprehensive data visualization tool is also included in the webpage. In addition, a Forum is also 

available to ease the interaction between all the researchers contributing for the website. 

Regarding the details of the databases used in this work, for the sake of brevity, Table 1 presents 

an overview of the variables available in each database included in the final models only. This table also 

shows the range of values used for each parameter, identifying bounds of application of the proposed 

models. 

More detailed information regarding the other variables included in the databases, as well as an 

overview of some of the main conclusions that can be drawn from these databases can be found in the 

webpage referred above and in [2]. 

 

3.2. Analytical formulations 

ACI and SA formulations are summarized in Table 2. A detailed description of the guidelines and of their 

application to the databases presented can be found in [2].  

Since in all the analyses, mean values for the mechanical properties and no additional safety 

factors or strength reductions were considered, a slight modification was made to ACI and SA 

formulations. This included the use of FRP ultimate tensile strength (ffu) and concrete mean compressive 

strength (fcm), instead of using their design values as defined in the guidelines. Those values (ffu and fcm) 

were estimated experimentally by the authors of the experimental works included in the databases.  

 

3.3. Data mining analyses 

A total of eight DM analyses were performed for each database, as shown in Table 3. Firstly, two types of 

analyses, denoted A and B, were considered. In the first, the input variables were defined based on the 

guidelines (ACI and SA). In the second type the input variables were estimated during the analysis by 

using an automatic selection process (RM) or by combining that with expert judgment (User). This 

resulted in 4 sets of input variables. For each set of input variables, models using both ANN and SVM 

algorithms were generated. The next paragraphs detail each of these analyses. 

Analyses Type A were conducted assuming for DM models the same input variables as used by 

the guidelines’ models. Hence, one analysis used the input variables considered by ACI (Lb, pf, Af, ffu) 



while the other used those from SA (Lb, Af, ffu, dg, bg, Ef, fcm). This allowed the direct comparison between 

the performance of DM and guidelines’ models.  

Each analysis of Type A consisted on running mining function over each database. A total of 20 

runs were imposed being the database divided in four random sets of equal size (3 for training and 1 for 

testing). Then the prediction error metrics fluctuation was analyzed in order to check generalization 

capacity of each DM algorithm. To this purpose, the 95% t-student confidence interval was adopted. 

Finally, the error metrics obtained in all the 20 runs were averaged to allow comparisons between model’s 

accuracy. 

In analyses Type B, it was assumed that the input variables were not known a priori. Hence, 

besides the four and seven variables used by ACI and SA, respectively, all the numeric variables present 

in more than 2/3 of the records in each database were also included. This resulted in more than 20 input 

variables available on each database at the beginning of the calibration process.  

The same procedure used in the analyses Type A was used for these new and larger databases. In 

the end of the mining sequence, a sensitivity analysis was performed in order to identify the most 

important variables in a backward selection procedure. After identifying the most important variables, the 

procedure was repeated with the limited input variables. This process was carried out several times, being 

the number of input variables successively reduced. In the end, a final set of input variables could be 

proposed as well as the DM models using those input variables. 

Since this sensitivity analysis is influenced by the representativeness of each variable in the 

database, in some cases the final set of variables was found to be meaningless for design purposes. Hence, 

a different type of models were generated, taking into account the evolution of the variable’s importance 

in the sensitivity analyses and also including all the variables thought meaningful for design.  

Since in the first case the variables were chosen taking into account only the rminer sensitivity 

analysis, these were designated by RM. In the second case, since the choice was made by the user, the 

designation User was adopted instead. 

Finally, it should be emphasized that all the analyses carried out used the maximum pullout force 

(Ffmax) as the only output variable. Also, in all the analyses, variables normalization was considered using 

a zero mean and a one standard deviation transformation for all input and output variables (-1 to 1 scale). 

Then, the inverse procedure was performed for the output variable in order to export it in its original 

scale. 



 

4. Results 

For each analysis three error metrics were calculated, namely, the mean absolute error (MAE), the root 

mean squared error (RMSE) and squared correlation coefficient (R2). Those are defined in the equations 

(3) to (5), respectively. In these equations, the error ei for the ith specimen of the total N, is the difference 

between the numerical prediction of the maximum pullout force (Ffmax,Num) and its experimental value 

(Ffmax,Exp), as illustrated in equation (6). In equation (5), the parameters with an upper bar, represent the 

average value of the corresponding parameter. 
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Analyses Type A 

Tables 4 and 5 present the average error metrics (MAE, RMSE and R2) obtained in the 20 runs of 

mining function performed for all the analyses with DPT and BPT databases, respectively. Those metrics 

include, in parenthesis, the correspondent 95% t-student confidence intervals to allow verifying the 

stability of the predictions. For all the analyses presented, it was found that they are quite stable and 

capable of being used in unseen data since they presented simultaneously low errors and low dispersion 

values along the 20 runs performed on different data sets as shown by the low values of 95% t-student 

confidence intervals obtained. 

Additionally, in these tables are also included the same error metrics obtained when applying to 

each database ACI and SA formulations, as defined in each guideline. Note that the number of specimens 

considered was not the same in all the analyses. This number depends on the input variables required in 

each analysis, which were not always available in the databases because the authors of the corresponding 



experimental tests did not provide them. Nevertheless, the analyses can still be compared since the same 

number of specimens was used for each group of analyses using the same input variables.  

Comparing the analyses Type A (using ACI and SA input variables) it can be seen that, for both 

databases, the worst results (higher MAE and RMSE and lower R2) were obtained by the guidelines. As 

already verified in a previous work, SA presents better performance than ACI even though its R2 value is 

lower [2]. 

In terms of DM models, for both databases, using SA input variables attained better results. 

Regarding DPT database, when ACI input variables are used, MAE and RMSE of both DM models (ANN 

and SVM) are at least 20% lower while R2 is at least 40% bigger. When SA input variables are used, 

MAE and RMSE of both DM models (ANN and SVM) are at least 24% lower while R2 is at least 50% 

bigger. In the case of BPT database, the improvement in the results is even bigger. The major difference 

when compared with the results of DPT database, is the fact that the error metrics are almost the same in 

both analyses Type A and B. This means that the improvements achieved with the DM models obtained 

in analyses Type B were lower for BPT database. 

 

Analyses Type B 

For analyses Type B, the first result to be considered is the importance of each variable in the 

prediction of the bond strength. In Tables 4 and 5, these variables are presented by decreasing order of 

importance. Further discussion about this subject will be given in following paragraphs. 

A common aspect for both databases is that all analyses Type B presented better results than 

those from the guidelines, being the best results obtained using SVM and ANN algorithms for DPT and 

BPT databases, respectively. When compared with ACI results, the three metrics of the all four DM 

models are at least 50% better. When compared with SA results, the three metrics of the all four DM 

models are at least 40% better. In both cases, better means that MAE and RMSE are lower while R2 is 

bigger. 

In the case of DPT database, the RM input variable’s selection, lead to include, as input variable, 

the concrete block length (Lc – see Figure 1). However Lc is not relevant from design viewpoint. On the 

other hand, RM selection did not included any input variable related with concrete nor adhesive 

mechanical properties. Hence, User selection process, which took into account both importance and 

relevance of each variable, proposes a different set of input variables where adhesive and concrete 



mechanical properties are also represented. Analyzing the error metrics, it can be seen that RM analyses 

are slightly better. However, taking into account that User input variables are more reasonable to be used, 

the error metrics are still acceptable. 

In the case of BPT database, the major difference between RM and User input variables is 

related with the removal of FRP modulus of elasticity (Ef), since there was already a more important 

variable related with FRP mechanical properties, and the inclusion of adhesive compressive strength (fac), 

in order to have the adhesive mechanical properties represented. Regarding the error metrics, User 

analyses attained better results. 

The relative importance of each input variable obtained in all analyses Type B is summarized in 

Figure 4. Comparing the relative importance of each variable when the RM input variable’s selection is 

used, the results differ between DPT and BPT databases. In DPT (Figure 4a), since the geometric 

variables appear in larger number, it seems that the geometry of specimen and the configuration of the 

strengthening have more impact in the predictions than the mechanical properties of the involved 

materials. In BPT (Figure 4c), both geometric and mechanical parameters appear in the same number.  

Another interesting aspect is related with the variables’ interaction that was found during the 

process of selecting the input variables. For example, considering the importance ranks depicted in Figure 

4a and b it can be seen that, besides Lb, there is no other common variable in the two figures. However, as 

referred above, the only actions taken when moving from RM to User analysis, were the removal of Lc 

and the addition of fat and fcm. But when the sensitivity analysis was re-run, using the new set of variables, 

it was found that pf, pg and ae were more important than their equivalents in RM set, i.e. Af, dg and bc, 

respectively a variable referring to FRP geometry, groove geometry and location of the NSM FRP system 

in the concrete element. This suggests that there is interaction between variables which is the reason why 

the final set of variables suggested by the User (Figure 4b) is completely different from RM final set 

(Figure 4a). 

 

5. Using DM models 

As referred before, the analyses carried out using mining function do not allow storing a prediction 

model. Hence, the final DM models to be proposed were obtained by running fit function over each entire 

database. Since those final models were intended to be made available in the website that stores the 

databases (see section 3.1), where also guideline formulations can be easily applied, only DM models 



using guideline input variables were generated. Hence, those willing to compare the maximum pullout 

force (Ffmax) obtained in their pullout tests, just need to provide the guidelines input variables and specify 

the type of test they are comparing with. Then, by clicking the “Calculate” button available in the 

website’s page, six values of Ffmax prediction are obtained. The first two correspond to the guidelines ACI 

and SA (the step-by-step calculation procedure can also be seen). The remaining four predictions 

correspond to those obtained by DM models. Two correspond to the two DM models based on ANN 

algorithm using either ACI or SA input variables. The last two predictions are identic to the former two, 

but are based on SVM algorithm instead. Figure 5 presents an example of a prediction run in the website. 

Remark that the experimental value of that example was 20.4 kN. 

Table 6 presents the error metrics for these final four models for both DPT and BPT databases. 

As it can be seen, the error metrics of these models are even lower than all the corresponding analyses 

presented so far. This is mainly related with the fact that fit function uses the entire database to adjust a 

model while in all the analyses with mining function only 3/4 of each database were being used for 

models adjustment. 

To ease the comparison between guidelines and DM models prediction capability, Figure 6 

presents the relationship between experimental and predicted pullout force obtained when each DM 

model included in Table 6 is applied and also when ACI and SA guidelines are applied. As it can be seen 

the clouds of points related with the guidelines models are larger than those of the DM models, revealing 

higher dispersion of the predictions. 

In the importance charts presented in Figure 4 the bonded length (Lb) was always found to be the 

most important variable in the prediction of the maximum pullout force. Hence, Lb was selected to access 

the stability of the predictions obtained by each model. Figure 7 presents the relationship of the ratio 

between the quantities plotted in Figure 6, i.e. maximum pullout force predicted by each model (Ffmax,Num) 

and that obtained in the experimental tests (Ffmax,Exp), versus the bonded length. This figure allows to see 

that the guidelines’ models performance is influenced by Lb, producing safe results for lower values of Lb 

and results successively more unsafe as Lb increases. Contrarily, this ratio for DM models is almost 

constant, revealing that the performance of DM models is not influenced by the variation of Lb.  

Nevertheless, it is interesting to verify that, for both guidelines (ACI and SA) and with both 

databases (DPT and BPT), the amount of data points below the 45º line in Figure 6 or below the line 



where the ratio Ffmax,Num/Ffmax,Exp is 1 in Figure 7, is in general greater than above these lines. This means 

that the guidelines’ predictions tend to be conservative, as already verified in a previous work [2].  

In order to show the generalization capability of the proposed DM models, Figure 8 presents 

variable effect characteristic (VEC) curves [6,22] for bonded length, Lb. These curves reproduce the 

influence of Lb in the predictions, as it changes from its minimum to its maximum value in each database. 

The VEC curves were obtained by dividing, in each database, the range of Lb into several parts. Then, all 

the final DM models included in Table 6, as well as both ACI and SA guidelines, were applied using each 

value of Lb and the average values of all the remaining variables required by each model.  

As can be seen, in terms of ACI and SA guidelines predictions, Figure 8b is just a zoom of 

Figure 8a, due to the smaller range of Lb values available in BPT database. If ACI and SA curves in both 

figures were overlapped, they will coincide, since the same variables were applied for both DPT and BPT 

databases. These curves show that using SA guideline the “average specimen” (fictitious specimen with 

all parameters on their average value) has a development length, Ld, of about 270 mm. Such threshold Ld 

was not predicted by ACI guideline. 

Analyzing DM models predictions, two main conclusions can be drawn. The first is that, except 

for the model SVM_ACI (using SVM algorithm and ACI input variables) in Figure 8a, all other DM 

models in both figures present either ACI or SA guidelines’ trends. Secondly, for those DM models that 

captured Ld, for values of Lb greater than Ld, the maximum pullout force (Ffmax) remained almost constant, 

as it should be. These two conclusions show that the DM models developed herein have the required 

generalization capacity. 

 

6. Conclusions 

In this work, a better understanding of the bond performance of NSM FRP systems was achieved by 

using data mining (DM) as an alternative to the existing analytical formulations (ACI and SA guidelines 

models) to predict the bond strength of such strengthening systems. All the analyses presented in this 

work were based on two large databases of direct and beam pullout tests with NSM FRP systems.  

Regarding analyses Type A (using the input variables suggested by ACI and SA guidelines): 

- they showed a direct comparison between the predictive capacity of guidelines models and DM 

models using the same input variables. In the end, all DM models performed better than the equivalent 

guidelines models; 



- the DM models were find to be stable since the fluctuation of the error metrics was found to be 

quite low along the 20 runs conducted for each DM model. 

Regarding analyses Type B (using sets of input variables suggested in this work): 

- they showed that the maximum pullout force in NSM FRP bond tests could be better predicted 

if a set of input variables different from those adopted by guidelines is used; 

- the sensitivity analyses conducted to choose the new input variables can lead to include 

variables that are not relevant for design, thus it was necessary to replace some input variables by other 

thought more significant. However, the impact in the predictive capacity of the DM models with this new 

set of input variables was quite low, thus there can be obtained DM models suitable for design and 

maintaining high accuracy. 

Regarding the database website: 

- in order to spread and encourage the use of DM in this field, the best DM models obtained 

herein were made available in a website built for that purpose. Only DM models using the same input 

variables as used in the analyzed guidelines were considered; 

- the guidelines models predictive capacity seems to be influenced by the value of the bonded 

length. Contrarily, the predictive capacity of the final DM models were found to be independent from this 

important variable. 

Finally, the generalization capacity of the proposed DM models was demonstrated. For this 

purpose, the bonded length was selected to conduct the parametric studies. These studies proved that the 

DM models are in agreement with the guidelines, thus they have the required generalization capacity. 
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Table Captions  

Table 1 – Range of the variables used in the prediction models. 

Table 2 – Summary of ACI and SA guidelines’ formulations. 

Table 3 – Summary of the analyses performed. 

Table 4 – Average error metrics obtained after 20 runs of mining function in the DPT database (best 

values in bold). 

Table 5 – Average error metrics obtained after 20 runs of mining function in the BPT database (best 

values in bold). 

Table 6 – Error metrics for the final models obtained by fitting DM algorithms to each entire database 

(best values in bold). 

 

  



 

Table 1 – Range of the variables used in the prediction models. 

Direct pullout tests database Beam pullout tests database 

Variable Number of records1 Range Variable Number of records2 Range 

bc [mm] 325 [90-300] Larm [mm] 56 [67-212.4] 

Lc [mm] 361 [152-1000] Lb [mm] 68 [40-304.8] 

bg [mm] 340 [3-50] bg [mm] 68 [3.3-25.4] 

dg [mm] 359 [5-60] dg [mm] 68 [7-26] 

pg [mm] 340 [27.2-100] fcm [MPa] 68 [26.7-73.5] 

ae [mm] 325 [11.5-150] fct [MPa] 68 [2.47-6.01] 

Lb [mm] 363 [30-510] Ec [GPa] 68 [29.54-47.88] 

fcm [MPa] 309 [18.4-65.7] df [mm] 68 [4.55-20] 

Ef [GPa] 361 [37.17-273] Ef [GPa] 68 [33.93-171] 

ffu [MPa] 363 [512-3100] ffu [MPa] 68 [773-2833] 

fu [‰] 363 [7.4-30] fu [‰] 68 [11.21-32.72] 

Af [mm2] 363 [12-201.06] Af [mm2] 68 [12.65-143.14] 

pf [mm] 363 [18.85-84.8] pf [mm] 68 [15.1-45] 

fat [MPa] 307 [8-62.05] fac [MPa] 56 [44.4-87.7] 

Note: 1from a total of 363 specimens; 2from a total of 68 specimens. 

 

  



 

Table 2 – Summary of ACI and SA guidelines’ formulations. 

Parameter ACI guideline SA guideline 
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[Ld] 

f fd

f avg

A f

p 
 

2
per

f

L

EA







max

max
( )

 

Maximum pullout force 

[Ffmax] 

        

  

f fd b d

b

f fd b d

d

A f if L L

L
A f if L L

L








 

       

  

per f f fd b d

b

per f f fd b d

d

L EA A f if L L

L
L EA A f if L L

L

 

 

  



 


max max

max max

( )

( )
 

Comments 6.9 MPa
avg
   

.

max

0 6(0.8 0.078 )
per c

f 
 

 0.5 0.67

max max
0.73

per c
f  

 

   1 2
per g g

d b     

 2 1 2
per g g

L d b     

 

  



 

Table 3 – Summary of the analyses performed. 

Database 

Type A 

(Input variables known a priori) 

Type B 

(Input variables unknown a priori) 

Input variables DM algorithm Input variables DM algorithm 

DPT 

ACI 

ANN 

RM 

ANN 

SVM SVM 

SA 

ANN 

User 

ANN 

SVM SVM 

BPT 

ACI 

ANN 

RM 

ANN 

SVM SVM 

SA 

ANN 

User 

ANN 

SVM SVM 

 

 



 

Table 4 – Average error metrics obtained after 20 runs of mining function in the DPT database (best values in bold). 

Inputs origin 

Type A Type B 

ACI SA RM User 

Input variables Lb, pf, Af, ffu Lb, Af, ffu, dg, bg, Ef, fcm Lb, Af, bc, Lc, dg, fu Lb, pf, fat, fu, pg, ae, fcm 

Model ACI* ANN SVM SA* ANN SVM ANN SVM ANN SVM 

MAE [kN] 14.85 10.10 (±0.14) 9.82 (±0.12) 11.56 7.92 (±0.16) 7.07 (±0.11) 5.64 5.75 6.14 5.70 

RMSE [kN] 19.34 15.38 (±0.29) 14.93 (±0.2) 15.16 11.52 (±0.27) 10.67 (±0.16) 8.60 8.17 8.71 8.22 

R2 [-] 0.58 0.82 (±0.01) 0.83 (±0.01) 0.53 0.80 (±0.01) 0.83 (±0.01) 0.89 0.90 0.88 0.89 

Specimens [-] 363 286 208 

Note: The values in parenthesis are the correspondent 95% t-student confidence intervals. *Analysis according to the guideline. 

 

  



 

Table 5 – Average error metrics obtained after 20 runs of mining function in the BPT database (best values in bold). 

Inputs origin 

Type A Type B 

ACI SA RM User 

Input Variables Lb, pf, Af, ffu Lb, Af, ffu, dg, bg, Ef, fcm Lb, fu, Larm, fctm, Ecm, Ef, df Lb, fu, Larm, fctm, df, fac 

Model ACI* ANN SVM SA* ANN SVM ANN SVM ANN SVM 

MAE [kN] 10.65 3.98 (±0.17) 4.63 (±0.31) 7.18 3.18 (±0.26) 3.62 (±0.16) 3.62 3.67 3.56 3.56 

RMSE [kN] 13.56 5.51 (±0.26) 6.94 (±0.39) 8.90 4.42 (±0.56) 5.54 (±0.23) 4.86 5.10 4.76 4.97 

R2 [-] 0.43 0.88 (±0.01) 0.80 (±0.03) 0.62 0.92 (±0.02) 0.88 (±0.01) 0.88 0.88 0.89 0.88 

Specimens 68 56 

Note: The values in parenthesis are the correspondent 95% t-student confidence intervals. *Analysis according to the guideline. 

 

 



 

Table 6 – Error metrics for the final models obtained by fitting DM algorithms to each entire database 

(best values in bold). 

Inputs origin ACI SA 

Input variables Lb, pf, Af, ffu Lb, Af, ffu, dg, bg, Ef, fcm 

Database DPT BPT DPT BPT 

Model ANN SVM ANN SVM ANN SVM ANN SVM 

MAE [kN] 7.36 6.93 1.87 1.53 3.78 3.87 1.10 0.62 

RMSE [kN] 10.77 10.26 2.50 2.49 5.61 5.77 1.48 1.12 

R2 [-] 0.84 0.86 0.95 0.95 0.91 0.91 0.98 0.99 

Specimens [-] 363 68 286 68 

 

  



Figure Captions 

Figure 1 – Direct (left) and beam (right) pullout tests for NSM FRP in concrete. 

Figure 2 – Example of ANN: (a) without hidden layers; (b) with one hidden layer. 

Figure 3 – Example of SVM classification (left) and regression (right) of non-linear data (middle). 

Figure 4 – Relative importance of each input variable in the analyses Type B (database and input 

variables): (a) DPT and RM; (b) DPT and User; (c) BPT and RM; (d) BPT and User. 

Figure 5 – Maximum pullout force prediction calculated in the website developed. 

Figure 6 – Experimental versus predicted pullout force for the final models obtained by fitting DM 

algorithms (database and input variables): (a) DPT and ACI; (b) DPT and SA; (c) BPT and ACI; (d) BPT 

and SA. 

Figure 7 – Variation of the ratio between experimental and predicted pullout force with the bonded length 

(database and input variables): (a) DPT and ACI; (b) DPT and SA; (c) BPT and ACI; (d) BPT and SA. 

Figure 8 – VEC curves for Lb considering (a) DPT or (b) BPT databases. Note: composite designations 

include the DM model and the type of input variables, as defined in Table 6. 

 

  



 

  

Figure 1 – Direct (left) and beam (right) pullout tests for NSM FRP in concrete. 
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Figure 2 – Example of ANN: (a) without hidden layers; (b) with one hidden layer. 
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Figure 3 – Example of SVM classification (left) and regression (right) of non-linear data (middle). 
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Figure 4 – Relative importance of each input variable in the analyses Type B (database and input 

variables): (a) DPT and RM; (b) DPT and User; (c) BPT and RM; (d) BPT and User. 
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Figure 5 – Maximum pullout force prediction calculated in the website developed. 

 

  



 

  

(a) (b) 

  

(c) (d) 

Figure 6 – Experimental versus predicted pullout force for the final models obtained by fitting DM 

algorithms (database and input variables): (a) DPT and ACI; (b) DPT and SA; (c) BPT and ACI; (d) BPT 

and SA. 
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(c) (d) 

Figure 7 – Variation of the ratio between experimental and predicted pullout force with the bonded length 

(database and input variables): (a) DPT and ACI; (b) DPT and SA; (c) BPT and ACI; (d) BPT and SA. 
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(a) (b) 

Figure 8 – VEC curves for Lb considering (a) DPT or (b) BPT databases. Note: composite designations 

include the DM model and the type of input variables, as defined in Table 6. 
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Notation 

The following acronyms /symbols are used in this paper: 

Acronyms 

ACI American Concrete Institute guideline 

ANN Artificial Neural Network 

BPT beam pullout tests  

DM Data mining 

DPT direct pullout tests  

FRP fiber reinforced polymer 

NSM near-surface mounted technique 

SA Standards Australia guideline 

SVM Support Vector Machine 

  

Symbols 

ae Distance from FRP to closest concrete block edge 

Af FRP cross-section area 

bc Concrete block width 

bg Groove width 

df FRP width or diameter in quadrangular or round bars, respectively 

dg Groove depth 

Ec Concrete modulus of elasticity 

Ef FRP modulus of elasticity 

fu FRP ultimate strain 

fac Adhesive compressive strength 

fat Adhesive tensile strength 

fc Concrete design compression strength 

fcm Concrete cylinder mean compressive strength 

fct Concrete tensile strength  

ffd FRP design tensile strength  

ffu FRP ultimate tensile strength  

Ffmax Maximum pullout force 

Larm Vertical distance from the centroid of the center hinge to FRP centroid 

Lb Bonded length 

Lc Concrete block length 

pf FRP perimeter 

pg Groove perimeter 

 

 


