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Dynamic nuclear polarisation by thermal mixing: quantum
theory and macroscopic simulations

Alexander Karabanov ∗1, Grzegorz Kwiatkowski 1, Carlo Perotto 2, Daniel Wiśniewski 1,
Jonathan McMaster 2, Igor Lesanovsky 1 and Walter Köckenberger 1

A theory of dynamic nuclear polarisation (DNP) by thermal mixing is suggested based on purely
quantum considerations. A minimal 6-level microscopic model is developed to test the theory and
link it to the well-known thermodynamic model. Optimal conditions for the nuclear polarization en-
hancement and effects of inhomogeneous broadening of the electron resonance are discussed.
Macroscopic simulations of nuclear polarization spectra displaying good agreement with experi-
ments, involving BDPA and trityl free radicals, are presented.

1 Introduction
Highly polarised nuclear spins have applications in many fields,
from high-resolution spectroscopy and material science to parti-
cle physics and medical diagnostics (see, for example,1–6). Solid
state DNP is a process of polarising a nuclear spin ensemble by an
ensemble of unpaired electron spins irradiated by a microwave
field at a certain frequency. Unlike the method of brute force
where the nuclear system is transferred to a low temperature
equilibrium7, DNP is a dynamical process where the high nuclear
polarisation is achieved by driving the electron-nuclear spin sys-
tem far from its thermal equilibrium8. Due to electron-nuclear
spin interactions, the high thermal polarisation of electrons is
transferred to the nuclei resulting in a nuclear polarisation much
higher than their thermal polarisation. In practice it is realised in
single crystals or powder crystalline dielectrics doped with para-
magnetic centres or diluted and then frozen samples doped with
free radicals5,6.

Three basic mechanisms are well-known to be responsible for
DNP in solids5, depending on the effective number of electron
spins: solid effect (SE)9, cross effect (CE)10–12 and thermal mix-
ing (TM)13–15. The SE involves single electron spins transferring
their polarisation to nuclei via either zero- or double-quantum
transitions. In the CE, a triple spin flip of two electrons and one
nuclear spin transfers the polarization difference between the two
electrons to the nuclear spin. TM is characterised by strong inter-
actions between many electron spins making the electron spin
ensemble act as a whole, transferring its uniform polarisation to
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nuclei via processes described in analogy to thermodynamic cool-
ing. Recently, the importance of the direct electron-nuclear cross-
relaxation, the Overhauser effect, as a basic mechanism for solid
state DNP has also been experimentally and theoretically demon-
strated16.

Two basic approaches towards a theoretical description of DNP
exist: microscopic quantum mechanical and macroscopic ther-
modynamic. In the quantum mechanical approach, dynamical
ensembles are represented by sets of spins characterised by quan-
tum operators with algebraic properties of an angular momen-
tum. Spin interactions are represented by tensor products of in-
dividual spin operators and the dynamics behind DNP processes
is represented in terms of the density operator obeying a master
equation with given Hamiltonian and dissipative parts. The ther-
modynamic approach is based on the concept of spin temperature
where different parts of the spin Hamiltonian are treated as heat
reservoirs having thermal contacts with each other and exchang-
ing their effective temperatures by thermodynamic rules leading
to sets of linear rate equations describing the spin polarisation.

The SE and CE cases are currently well studied from both
thermodynamic and quantum points of view. Minimal micro-
scopic models have been developed and analysed. The difficul-
ties caused by large dimensions of state spaces involved in the
dynamics were overcome using averaging and projection tech-
niques. Strong links to macroscopic simulations are established.
The details of these aspects can be found in several works17–23. In
the case of TM, the full qualitatively relevant and quantitatively
applicable microscopic picture is missing. The TM DNP mecha-
nism and its links to macroscopic experiments are currently dis-
cussed from a purely thermodynamic point of view.

The details of the thermodynamic model of TM DNP are well
described and can be found in original works13–15,24 and re-
views5,25,26 (some recent developments linking the spin temper-
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ature concept applied to DNP with quantum mechanics can be
found in27–30). According to the thermodynamic (spin temper-
ature) model, the mechanism involves three energies: the elec-
tron Zeeman energy HS = ωSSz (where ωS is the electron fre-
quency), the electron-electron coupling energy HSS and the nu-
clear Zeeman energy HI = ωIIz (where ωI is the nuclear fre-
quency). Each energy forms a heat reservoir with its own spin
temperature, TS, TSS and TI respectively, and the density operator
of the system is represented by the joint Boltzmann distribution
σ ∼ exp(−βSHS−βSSHSS−βIHI) where the coefficients β are ex-
pressed via the corresponding temperatures as β = h̄/kT (so β

are often called inverse temperatures). In the high-temperature
limit σ ∼ 1− βSHS − βSSHSS − βIHI , the three energies gener-
ate the observables (polarisations) 〈Sz〉, 〈HSS〉, 〈Iz〉 proportional
to their inverse temperatures: 〈Sz〉 ≡ Tr(σSz) ∼ −βSωSTr(S2

z ),
〈HSS〉 ≡ Tr(σHSS) ∼ −βSSTr(H2

SS), 〈Iz〉 ≡ Tr(σ Iz) ∼ −βIωITr(I2
z ).

In the absence of the microwave irradiation, the system is at
thermal equilibrium where all three inverse temperatures are the
same β 0

S = β 0
SS = β 0

I (defined by the temperature of the environ-
ment). Since ωS� ωI , D̃ (where D̃ is the effective strength of the
electron-electron coupling), the electron-electron and nuclear po-
larisations are negligibly small in comparison with the electron
polarisation, 〈HSS/D̃〉, 〈Iz〉 � 〈Sz〉. The microwave irradiation cre-
ates a thermal contact between the electron Zeeman and electron-
electron coupling reservoirs: the microwave irradiation energy
absorbed by the electron Zeeman reservoir is transferred to the
electron-electron coupling energy increasing its inverse temper-
ature βS and polarisation 〈HSS〉. The electron-nuclear coupling
creates a thermal contact between the electron-electron coupling
and nuclear Zeeman reservoirs: the electron-electron coupling
energy is passed on to the nuclear Zeeman energy leading to both
nuclear inverse temperature and polarisation βI , 〈Iz〉 enhance-
ment. As a result, the electron Zeeman reservoir is “heated” while
the electron-electron coupling and the nuclear Zeeman reservoirs
are simultaneously “cooled” establishing new non-thermal equi-
librium inverse temperatures β ∗S , β ∗SS, β ∗I . The dynamics of the
“cooling process”

β
0
S = β

0
SS = β

0
I −→ β

∗
S , β

∗
SS, β

∗
I (1)

is described in the microwave rotating frame by linear rate equa-
tions for the observables 〈∆Sz〉 (where ∆ = ωS−ω0 is the offset
of the the microwave frequency from the electron resonance),
〈HSS〉 and 〈ωIIz〉 obtained purely thermodynamically involving
phenomenological heat capacities and relaxation parameters of
the three reservoirs.

The thermodynamic approach has a number of unsatisfactory
aspects. First, in order to linearise the effective rate equations,
the high-temperature approximation is required, although it is
not valid at very low solid state temperatures. Second, the ther-
modynamic approach does not allow dynamical calculations on
individual spin level necessary for a detailed description, espe-
cially in solids where spatial spin geometries play an important
part resulting in more complicated pictures due to spin and spec-
tral diffusion. Third, the thermodynamic concept does not pro-
vide any causal insight why the electron, electron-electron and

nuclear ensembles can be treated in the “thermodynamic way”.
Besides, as evidenced by many experiments5,16–18,22,24,28,29,31,
depending on joint properties of paramagnetic impurities and nu-
clei as well as physical conditions, in practice several basic DNP
mechanisms can simultaneously occur, so all mechanisms must be
simultaneously studied and applied. This makes the development
of the quantum theory of TM, along with its links to macroscopic
simulations, a highly relevant problem.

The lack of the comprehensive quantum theory of TM is caused
by the fact that large electron spin ensembles are involved in the
TM dynamics. Such ensembles are hardly tractable either analyti-
cally or numerically. Their properties strongly depend on their ge-
ometric features and cannot be replaced by combinations of small
spin systems or statistical methods based on small spin systems.

In the following work we develop a theory of TM based on
purely quantum considerations. In section 2 the quantum de-
scription of a general TM DNP model is summarised, the role
of asymmetry of the electron-electron coupling is discussed and
eigenstates of the electron ensemble are described. We develop
then a minimal 6-level microscopic model and test the theory and
relate it to the thermodynamic picture. Optimal conditions for
the nuclear polarisation enhancement are presented. In section
3, effects of inhomogeneous broadening of the electron param-
agnetic resonance (EPR) are taken into account and macroscopic
simulations of DNP spectra are performed. We demonstrate the
good agreement of the suggested theory with experiments involv-
ing samples doped with BDPA or trityl free radicals.

2 Quantum theory of TM
Due to the large numbers of spins involved, it is impossible to ex-
actly solve the problem in its full quantum notations, so a simpli-
fied qualitatively minimal model is necessary where the electron
ensemble, absorbing the microwave power and acting on nuclei,
is considered as a whole, without specifying its spatial geometry
and the coupling values. Below, we derive such 6-level minimal
quantum model, which is sufficient to fully clarify and illustrate
the quantum theory of TM as well as to demonstrate its links to
the thermodynamic model. We start from the general quantum
description of the TM mechanism, the role of the asymmetry of
electron-electron coupling and the analysis of eigenstates of the
electron ensemble.

2.1 General quantum description of TM mechanism

TM DNP is observed most commonly in materials where EPR spec-
tra of the paramagnetic impurities have a dominating homoge-
neous broadening. This is the case, for example, in single crystals
or systems containing concentrated free radicals with negligibly
small g-anisotropy and hyperfine splitting. For such systems the
effective electron-nuclear spin Hamiltonian can be written in the
form

H = ωIIz +∆Sz +ω1Sx +HSS +HIS.

Here I= ∑Ik, S= ∑S j are the total nuclear and electron spins, ωI

is the nuclear frequency, ∆ is the offset of the microwave fre-
quency from the centre of the EPR line, ω1 is the microwave
field strength. The terms HSS, HIS describe the electron-electron
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and electron-nuclear interactions which are of dipole-dipole na-
ture and are given by the secular expressions commuting with the
electron Zeeman term ∆Sz

HSS = ∑
j< j′

D j j′

(
2S jzS j′z−

1
2

S+j S−j′ −
1
2

S−j S+j′

)
,

HIS =
1
2 ∑

k, j

(
Bk jI

+
k +B∗k jI

−
k

)
S jz.

For simplicity we do not write out interactions between the nu-
clear spins which are assumed to be all of one species and spin
1/2.

Quantum mechanically, the TM mechanism can be described as
follows. In solid state, the dipole-dipole spin interactions are not
rotationally invariant and strongly depend on spatial orientations
and lengths of interacting pairs. This means that the electron-
electron part HSS does not commute with the microwave ω1Sx and
electron-nuclear HIS terms, and the interaction strengths D j j′ , Bk j

are not symmetric with respect to electron spin permutations. As
a result, the combined action of HSS and ω1Sx creates polarisa-
tion gradients between different electron spins, and the combined
action of HSS and HIS transfers the difference in polarization be-
tween electron spins to nuclear spins.

The mechanism is most efficient at either edge of the homoge-
neous EPR spectrum, i.e., for ∆∼±D̄, where D̄ is the halfwidth of
the EPR line. In the case ∆ ∼ D̄, the initially populated ground
state of the electron Hamiltonian ∆Sz + HSS becomes degener-
ate, causing a resonant exchange of populations between eigen-
states of the Zeeman and electron-electron parts ∆Sz, HSS. The
microwave energy absorbed by the electron Zeeman part is ef-
ficiently transferred to the energy of the electron-electron cou-
pling. Due to the presence of the nuclear Zeeman term ωIIz, the
magnitude D̄ should not be too small compared to ωI , so as to
provide an appreciable difference between the effective frequen-
cies ∼ ωI ± D̄ of the electron-nuclear term HIS in the frame of
ωIIz +HSS. In this case, electron spin flip-flops induce fast nu-
clear spin flips leading to an efficient transfer of the energy of the
electron-electron coupling to the nuclear Zeeman energy. Sim-
ilarly, for ∆ ∼ −D̄, the initially populated highest energy state
of ∆Sz + HSS becomes degenerate, and the nuclear spins gain
the same polarisation but with the negative sign. Note that for
∆ ∼ ±ωI (and not very large D̄) the SE mechanism occurs in the
system, so both TM and SE contributions should be expected in
the DNP spectrum.

2.2 Asymmetry of electron-electron coupling

As mentioned previously, the requirement of strong asymmetry
of electron-electron coupling is necessary for the TM mechanism
to work. This requirement consists in the fact that the cou-
pling is anisotropic, [HSS,Sx] 6= 0, and the distribution of the sums
dq ≡∑q′ Dqq′ (each being the sum of couplings of a given electron
to all other electrons) has a strong non-zero dispersion, i.e., the
magnitudes dq are not the same but widely distributed around
their average value d̄.

To illustrate the crucial role of this asymmetry in TM, we nu-

merically simulated a model of three interacting electrons 1, 2
and 3 and one nucleus, for simplicity interacting with only elec-
tron 1, with the standard relaxation model we used earlier19.
Since two-electron systems are always symmetric, the three-
electron model is the simplest case where the electron-electron
coupling asymmetry is possible. The results are shown in Fig.1
where two cases are plotted: an asymmetric case with respect to
permutations of electrons 2 and 3, D12 6∼ D13 with d2 6∼ d3, and
a symmetric case D12 ∼ D13 with d2 ∼ d3. In both cases, we kept
the same average value d̄ = 0 to have the plots symmetric with
respect to the zero microwave frequency offset ∆ = 0. It is evident
that the polarisation difference between electrons 2 and 3, strong
in the asymmetric case and quenched in the symmetric case, is
transferred during TM to the nucleus connected with electron 1,
while the polarisation differences between electrons 1, 2 and 1, 3
are not transferred.
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Fig. 1 The nuclear (blue) and electron (green, red and cyan)
polarisations as a function of the microwave offset ∆ for the model
containing three electrons and one nucleus, in two situations: the
strongly asymmetric case D12 =−D13 = 40 MHz, D23 = 0 (top) and the
close to symmetric case D12 = 40 MHz, D13 = 32 MHz, D23 =−72 MHz
(bottom). The narrow blue peaks correspond to SE split by the
electron-electron coupling, the wide blue peaks correspond to TM. It can
be seen that TM is due to the transfer of the polarisation difference
between electrons 2 and 3 (dotted line), large in the asymmetric case
and quenched in the symmetric case, to the nucleus connected to
electron 1. Results are shown for t = 100 s starting from the thermal
state. The system parameters are p = 0.9, ω1 = 100 kHz, ωI = 100 MHz,
B1 = 1 MHz, T1e = 1 s, T2e = 10 µs, T1n = 100 s, T2n = 1 ms.
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2.3 Eigenstates of electron ensemble

The basic 3-electron model considered in the previous subsection,
although illustrating the complex nature of TM and importance of
the asymmetry, does not fully reflect the real situation. First, in
the electron ensemble each electron spin is closely surrounded
with more than two electrons, so an interplay between all pos-
sible electron polarisation gradients becomes responsible for the
dynamics. Second, the distribution of the electron-electron cou-
plings D j j′ , which essentially determine the dynamics, is different
for each electron: in frozen samples and powders these couplings
are randomly distributed, so their statistical properties within the
whole ensemble of simultaneously interacting electrons should be
considered.

At low temperatures, the thermal polarisations of the electron
spins are approximately equal, and the most populated state is
the Zeeman state χ(0) where all electron spins are in the state
“down” (or “up” depending on the chosen sign of the electron gy-
romagnetic ratio). The state χ(0) is an eigenstate of both ∆Sz and
HSS with the eigenvalues −N∆/2, d = ∑d j/4 respectively, where
N is the number of electrons in the system and d j = ∑ j′ D j j′ .

Other common eigenstates of ∆Sz and HSS belong to invari-
ant subspaces V (m) spanned by electron Zeeman states with ex-
actly m spins in the state “up” and N − m spins in the state
“down”. The electron Zeeman energy ∆Sz in these subspaces
equals (m−N/2)∆. The energy of the electron-electron coupling
HSS is distributed inside each subspace V (m) between some val-
ues −D(m)

− and D(m)
+ depending on the strength of the electron-

electron coupling. See Fig.2, top, where the structure of the (low-
est) quantum states of the electron Hamiltonian is schematically
depicted.

The microwave irradiation term ω1Sx generates an exchange
of populations between the ground state χ(0) and the excited
eigenspaces V (1), V (2), ... For relatively small values of ω1 and
relatively large values of ∆, the most efficient exchange occurs
between χ(0) and the first subspace V (1), so the influence of the
higher subspaces V (m), m > 1, can be treated as negligible.

Denoting s(1)q the Zeeman state with the qth electron spin in
the state “up” and all other electron spins in the state “down”,
the operator Sx couples the ground state χ(0) to the symmetric
combination of s(1)q ,

χ
(1) ≡ Sxχ

(0) = S+χ
(0)/2 = ∑

q
s(1)q /2.

We have
HSSs(1)q =

(
−dq +d

)
s(1)q −

1
2 ∑

q′ 6=q
Dqq′s

(1)
q′ (2)

and so
HSSχ

(1) = dχ
(1)− 3

4 ∑
q

d̃qs(1)q , d̃q = dq− d̄ (3)

where we used the facts that dq = ∑q′ Dqq′ and d̄ ≡ ∑d j/N� d =

∑d j/4.

Due to the asymmetry of the electron-electron coupling
(caused, for example, by defects of the crystalline lattice or ge-
ometric distortions of the frozen solution or powder), the distri-
bution of the centralised magnitudes d̃q has a nonzero dispersion,

Fig. 2 Top: the schematic representation of the ground state χ(0) and
the first excited subspace V (1) of the electron Hamiltonian ∆Sz +HSS
before TM reaches its maximum, ∆� D. At ∆∼ D the ground state
becomes degenerate with V (1) causing a resonant exchange between
the electron-electron coupling and electron Zeeman energies leading to
TM. Bottom: the schematic representation of the TM process based on
the minimal 6-level model, ∆∼ D̄� ωI/2. The electron Zeeman energy
is transferred to the energy of the electron-electron coupling and then to
the nuclear Zeeman energy. At D̄∼ ωI/2, the excited product states
(χ

(1)
+ ,s−), (χ

(1)
− ,s+) become degenerate leading to the maximal nuclear

polarisation enhancement.

D′ = (∑ d̃2
q)

1/2 > 0. The same shift d is present in all diagonal el-
ements of the matrix for HSS. It means that χ(1) is expanded into
eigenstates χ

(1)
q of HSS with energies between the values d− D̄

and d + D̄, where d is exactly the energy of the ground state χ(0)

in HSS and D̄ > 0 is proportional to D′. We assume for simplicity
that the corresponding eigenstates are distributed symmetrically
around d (Fig.2, top).

2.4 Minimal 6-level microscopic model

Suppose we are interested in polarisation of a single nuclear spin
I. Then only the single term Ix ∑B jS jz is present in the electron-
nuclear part HIS. Adding the “up” and “down” states s± of the
nucleus, we come to the set of eigenstates (χ(0),s±), (χ

(1)
q ,s±) of

the electron-nuclear Hamiltonian ∆z +HSS +ωIIz with the ener-
gies d±ωI/2, d+Dq±ωI/2 respectively, where Dq are distributed
within the interval (−D̄, D̄) and we let for definiteness ωI > 0.

For large values of ∆, the strongest population exchange be-
tween the ground state χ(0) and the first excited subspace V (1)

corresponds to the states with the smallest energy gap, i.e., the
states (χ(0),s±) and (χ

(1)
− ,s±) where χ

(1)
− has the smallest energy

d − D̄ in V (1). The strongest population exchange between the
“up” and “down” subspaces of the nucleus corresponds to the
states, for which the relevant energy gap is the smallest, that is the
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states (χ(1)
+ ,s−) and (χ

(1)
− ,s+), where χ

(1)
+ has the maximal energy

d + D̄ in V (1). Thus, the three eigenstates χ(0), χ
(1)
± of HSS are the

most important, and along with the two states of the nucleus we
come to a 6-level minimal model describing TM. See Fig.2, bot-
tom, where the TM process based on the 6-level minimal model
is schematically shown.

The TM mechanism becomes maximally efficient when ∆ ∼ D̄
where the ground state χ(0) becomes degenerate with the first
excited state χ

(1)
− causing, via the presence of the microwave ir-

radiation, an equilibration of their populations and a resonant
exchange between the electron Zeeman and the electron-electron
coupling energies. Due to the presence of the electron-nuclear
coupling, an exchange between populations of the excited prod-
uct states (χ

(1)
− ,s+), (χ

(1)
+ ,s−) occurs resulting in transfer of pop-

ulation from one nuclear state s+ to the other s−. The opposite
process s−→ s+ also simultaneously occurs but the two processes
have different transition frequencies ∼ωI±2D̄, so one of the pro-
cesses dominates. An exchange between the electron-electron
coupling energy and the nuclear Zeeman energy occurs, lead-
ing to an enhancement of negative nuclear polarisation. The dif-
ference of the electron-nuclear energy ∆S̄z + H̄SS +ωIIz between
(χ

(1)
− ,s+) and (χ

(1)
+ ,s−) is ∼ ωI − 2D̄, therefore the maximal nu-

clear polarisation enhancement is achieved in systems with strong
electron-electron coupling, to satisfy the condition ∆ ∼ D̄ ∼ ωI/2
(Fig.2, bottom). Conversely, at ∆ ∼ −D̄, a population exchange
between the ground state χ(0) and the excited state products
(χ

(1)
+ ,s−), (χ

(1)
− ,s+) dominates instead, leading to a positive nu-

clear polarisation enhancement (in analogy to the zero-quantum
and double-quantum “forbidden transitions” in SE).

The important characteristic parameter D̄, responsible for the
positions of TM peaks in the DNP spectrum, is comparable to the
half-width of the homogeneous EPR line. Indeed, the Fourier
spectrum of the operator Sx in the frame rotating with HSS,
eiHSStSxe−iHSSt , featuring the energy differences between χ(0) and
χ
(1)
q ∈ V (1), belongs exactly to the interval (−D̄, D̄). The val-

ues ±D̄ define the edges of the homogeneously broadened (low-
temperature) EPR spectrum.

The simplest realisation of the Hamiltonian is to let the mi-
crowave part H̄MW =ω1Sx couple χ(0) to a symmetric combination
of χ

(1)
± and let the electron contribution to the electron-nuclear

part L̄z = ∑B jS jz couple χ
(1)
− to χ

(1)
+ . Indeed, for pairs of spa-

tially close electrons, typically dq − dq′ ∼ Dqq′ , so non-diagonal

terms of HSS in the basis {s(1)q } are not quenched, see equa-
tion (2). It means that in eigenvalues of HSS the Zeeman states
s(1)q are strongly mixed. In particular, χ

(1)
± = ∑c±q s(1)q with some

nonzero coefficients c±q . Hence, 2χ(1) = (∑c+q )χ
(1)
+ +(∑c−q )χ

(1)
− +

..., where, due to the symmetry of the defects dq, we obtain
∑c+q ∼ ∑c−q . Nuclei remote from electrons can get their polarisa-
tion only from nuclei close to electrons via spin diffusion. Hence,
it is reasonable to assume that the nucleus I is close to one of
electrons, i.e., in L̄z one of the strengths B j dominates. We have

2S jχ
(1)
± = c±j s(1)j −∑ j′ 6= j c±j′ s

(1)
j′ . Since χ

(1)
± are orthogonal and nor-

malised, we obtain 2S jzχ
(1)
± = c+j c−j χ

(1)
∓ + ..., so L̄z indeed sym-

metrically mixes the eigenstates χ
(1)
± . The states χ(0), χ

(1)
± are

eigenstates of the electron and electron-electron parts ∆Sz, HSS,
the ground state χ(0) is an eigenstate of L̄z. Keeping the only in-
formative traceless parts of Sz, HSS and utilizing the Hermitian
form of the Hamiltonian, we come to the representation of the
electron ensemble by a 3-level quantum system with the matrix
expressions in the basis χ(0, χ

(1)
− , χ

(1)
+

∆S̄z =
∆

2

 −N 0 0
0 2−N 0
0 0 2−N

 −→ ∆

3

 −2 0 0
0 1 0
0 0 1

 ,

H̄SS =

 d 0 0
0 d− D̄ 0
0 0 d + D̄

 −→ D̄

 0 0 0
0 −1 0
0 0 1

 ,

L̄z =
1
2

 −b1 0 0
0 0 b2

0 b2 0

 , H̄MW = ω̄1

 0 1 1
1 0 0
1 0 0

 .

Here b1∼∑B j, the magnitude b2 characterises the length of the

projection of L̄zχ
(1)
− to χ

(1)
+ and depends on the electron-nuclear

interaction strengths B j as well as statistics of the distribution
{dq}, ω̄1 is the effective microwave power proportional to ω1 but
depending also on D̄ because the latter defines the contributions
of the states χ

(1)
± to χ(1) = Sxχ(0). Below we treat b1,2 and ω̄1

as independent effective “fitting” parameters. For further details
see the next section and the considerations around the gener-
alised equations (5), (6). Adding the two nuclear states “up” and
“down” s± with the standard 2-level nuclear operators

Iz =
1
2

(
−1 0
0 1

)
, I+ = (I−)∗ =

(
0 1
0 0

)
,

we obtain finally a 6-level quantum system with the Hamiltonian

H = ωIIz +∆S̄z + H̄MW + H̄SS + IxL̄z.

To take thermal spin relaxation into account, we note that
at a low temperature thermal equilibrium the electron spins
are approximately equally polarised, and the population of the

ground state χ(0) equals
(

1+ p
2

)N
while the populations on

the first excited subspace V (1) equal
1− p

2

(
1+ p

2

)N−1
where

p = tanh
h̄|ωS|
2kT

∈ (0,1). Even at low temperatures, the nuclear po-

larisation is negligibly small compared to p. It means that, up to
a scaling factor and the requirement of trace 1, the initial thermal
density operator in the basis χ(0), χ

(1)
− , χ

(1)
+ is written as

σ0 =
1

3− p

 1+ p 0 0
0 1− p 0
0 0 1− p

 .

In the thermal electron relaxation back to the state σ0 the most
effective are spontaneous jumps between the excited states χ

(1)
±

and the ground state χ(0) reducing the microwave excitation of
the latter. For the thermal nuclear relaxation, jumps between the
“up” and “down” states are the most important. Assuming that
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these quantum jump processes are of Markovian nature, we come
to the Lindblad form of the relaxation superoperator

Γ̂ = ∑
s=1,2

[
R+

1 D̂(K̄+
s )+R−1 D̂(K̄−s )+R2D̂(K̄sz

]
+

+r1
[
D̂(I+)+ D̂(I−)

]
+ r2D̂(Iz),

where the standard notation for the dissipator is used

D̂(X)σ = XσX∗− 1
2
(X∗Xσ +σX∗X) ,

the operators Ksz, K±s are given by the matrix expressions

K1z =
1
2

 1 0 0
0 −1 0
0 0 0

 , K+
1 = (K−1 )∗ =

 0 1 0
0 0 0
0 0 0

 ,

K2z =
1
2

 1 0 0
0 0 0
0 0 −1

 , K+
2 = (K−2 )∗ =

 0 0 1
0 0 0
0 0 0

 ,

and the rates are proportional to the corresponding longitudinal
and transversal relaxation rates,

R±1 =
1± p
2T1e

, R2 =
2

T2e
, r±1 =

1
2T1n

, r2 =
2

T2n
.

The dynamics of the density operator is described then by the
master equation

σ̇ =−i[H,σ ]+ Γ̂σ

with the initial state being the thermal state σ(0) = σ0.

In Fig.3, the evolution of the steady-state nuclear (blue) and
electron (green) DNP spectra of the minimal model from the dom-
inating SE to strong TM is shown for increasing electron-electron
coupling D̄ while other system parameters are kept fixed. It is ev-
ident that at ∆ ∼ ±D̄ there is a resonant transfer of the absorbed
microwave energy to the nucleus due to TM. The maximal nu-
clear polarisation enhancement is observed at ±∆ ∼ D̄ ∼ ωI/2 as
described. In this optimal case the nuclear polarisation has also
the shortest build-up time.

To illustrate the link to the thermodynamic model and the
“cooling process” (1), in Fig.4, the steady-state DNP spectra
(blue), the relative electron depolarisation (〈S̄z〉 − 〈S̄z〉0)∆/ωI

(green) and the relative polarisation of the electron-electron cou-
pling 〈H̄SS〉/ωI (red) are plotted for the same four values of D̄
with the same system parameters as in Fig.3. All three curves
have peaks near the same value ∆∼±D̄, which means that maxi-
mal TM corresponds to the simultaneously resonant exchange be-
tween the nuclear Zeeman energy, electron-electron coupling en-
ergy and electron Zeeman energy absorbed from the microwave:
the electron Zeeman reservoir is “heated” while the electron-
electron coupling and the nuclear Zeeman reservoirs are simul-
taneously “cooled” in good agreement with the thermodynamic
model. It is seen in Fig. 4 that for increasing D̄ the electron
depolarisation and electron-electron coupling polarisation tend
to equalise, establishing a “temperature balance”, i.e., for strong
electron-electron coupling in the “cooling process” (1) the inverse
temperatures βS, βSS behave in such way that the magnitude

Tr(σH0) ≡ ∆〈Sz〉+ 〈HSS〉 is an integral of motion with the same
steady-state value as in the thermal state: 〈HSS〉+∆〈Sz〉 = 〈Sz〉0,
as might be expected from the thermodynamic model13. The nu-
clear polarisation is comparable with the other two for small val-
ues of D̄, becomes larger than those for intermediate values and
becomes smaller than those for large values of D̄.

The nuclear polarisation arising from TM strongly depends on
the strength of the effective electron-nuclear coupling parameter
b2 showing a nonlinear behaviour with a certain optimal value
where the TM peaks are maximal. Since b2 is proportional to the
reciprocal cube of the electron-nuclear distance, nuclei very close
to electrons or remote far away from them are less polarised — a
phenomenon observed also in the SE and CE cases19,20. This is
explained by the fact that strong values of B j and the presence of
single-quantum nuclear coherences in the operator HIS cause an
additional saturating effect on the nuclear polarisation. Small val-
ues of B j are not sufficient for enabling an efficient transfer of the
nuclear polarisation from the electrons. Decreasing/increasing
the microwave field strength ω̄1 leads to narrowing/broadening
of the TM peaks, preserving their positions and heights. There
are also nonlinear dependencies of heights and widths of the TM
peaks on the ratio D̄/ωI and the spin relaxation rates.

3 Macroscopic simulations and links to ex-
periments

The microscopic theory developed in the previous sections is di-
rectly applicable to macroscopic calculations in cases where the
EPR line has a negligible inhomogeneous contributions: for exam-
ple, single crystals or free radicals with a very small g-anisotropy.
We can assume here that each electron spin belongs to a single
spin frequency package and transfers its polarisation to a bulk
nucleus in a manner defined by the minimal model .

Among such radicals, the most commonly used is the α,γ-
bisdiphenylene-β -phenylallyl abbreviated shortly as BDPA. In-
deed, TM DNP has been observed for the first time in m-xylene
doped with BDPA at cryogenic temperatures ∼ 0.5 K and a static
field of 2.5 T. Strong SE and TM contributions to the proton DNP
spectrum were simultaneously observed24. To simulate the ex-
perimental DNP profile, i.e., the dependence of the proton polari-
sation pn(∆) on the offset ∆ of the microwave frequency from the
centre of the EPR spectrum, we used the simple linear combina-
tion formula

pn(∆) = c1 p(SE)
n (∆)+ c2 p(T M)

n (∆)

accounting for solid effect and TM contributions.
For 2.5 T the proton frequency is ωI ∼ 106 MHz, and the EPR

line g(ω) can be simulated as a single Lorentzian spin package
of half-width D ∼ 10 MHz. Since D� ωI , there are no apprecia-
ble CE contributions, and the normalised SE shape of the DNP
spectrum can be simulated as

p(SE)
n (∆) = g(∆+ωI)−g(∆−ωI), g(ω) =

(
1+

ω2

D2

)−1

. (4)

To simulate the TM shape, we applied our minimal model where
we chose D̄ comparable with the basic half-width of the EPR line.
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Fig. 3 The transition of the nuclear (blue) and electron (green) DNP spectra of the minimal model from the dominating SE to strong TM with
increasing electron-electron coupling D̄ = 7 MHz (top left), D̄ = 23 MHz (top right), D̄ = 72 MHz (bottom left) and D̄ = 137 MHz (bottom right). The
narrow blue peaks correspond to SE split by the electron-electron coupling ∆∼ ωI ± D̄,−ωI ± D̄, the wide peaks ∆∼±D̄ correspond to TM. The green
narrow peaks are due to transfer of the absorbed microwave energy to the nucleus during TM. The calculation is after t = 100 s starting from the
thermal state σ0. The system parameters are p = 1, ω̄1 = 50 kHz, ωI = 144 MHz, b1 = b2 = 0.5 MHz, T1e = 1 s, T2e = 10 µs, T1n = 100 s, T2n = 1 ms.

The results are shown in Fig.5 where we chose c1 = 1.1, c2 = 1
and compared the simulated DNP spectrum with the normalised
experimental one pn,exp(∆)/max pn,exp. The relaxation rates were
chosen typical for low temperature experiments (T1e = 1 s, T2e =

10 µs, T1n = 100 s, T2n = 1 ms) and the parameters b1, b2 and ω̄1

were adjusted to get the best fit with the experimental data. The
plot presented shows a good agreement with the experiment.

Unlike BDPA, most free radicals have an appreciably
anisotropic electron g-tensor. At high magnetic fields, in frozen
samples doped with such radicals, due to powder averaged spa-
tial orientations of g, the EPR spectrum receives strong inhomo-
geneous broadening. The minimal model developed in the previ-
ous section cannot be directly applied to macroscopic simulations
in this case, and an expansion allowing for the inhomogeneous
broadening is required.

Ignoring for simplicity effects of hyperfine splitting of the elec-
tron spectrum, we have to add to the initial Hamiltonian the g-
anisotropy term

HIB = ∑
j

∆ jS jz, ∑
j

∆ j = 0

where ∆ j are deviations of the electron frequencies from the aver-
age offset ∆. The symmetrised electron Zeeman Hamiltonian ∆Sz

does not change, while the electron-electron coupling Hamilto-
nian changes to H̃SS = HSS +HIB. In the basis, where the two
Hamiltonians are diagonal, H̃SS has again the energy d in the
ground state χ(0) (since ∆ j are centred around zero), while equa-
tions (2), (3) change to

HSSs(1)q =
(
−dq +∆q +d

)
s(1)q −

1
2 ∑

q′ 6=q
Dqq′s

(1)
q′ (5)

and so
HSSχ

(1) = dχ
(1)− 3

4 ∑
q

(
d̃q−∆q

)
s(1)q . (6)

It is seen from the above formulas that packages of electron
spins with similar inhomogeneous shifts ∆q tend to behave in the
same way as a single spin package but with the energies of the
states χ

(1)
± shifted as d +∆q± D̄ where D̄ ∼ max |dq|, defined by

the same defects of the lattice, is similar for all packages. For a
package with a shift ∆̄, the traceless operator H̄SS is modified as

H̄SS =

 d 0 0
0 d− D̄+ ∆̄ 0
0 0 d + D̄+ ∆̄

 −→
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Fig. 4 The DNP spectrum (blue), the relative electron depolarisation (〈S̄z〉−〈S̄z〉0)∆/ωI (green) and the relative polarisation of the electron-electron
coupling 〈H̄SS〉/ωI (red) for D̄ = 7 MHz (top left), D̄ = 23 MHz (top right), D̄ = 72 MHz (bottom left) and D̄ = 137 MHz (bottom right). The calculation time
and system parameters are the same as in Fig.3. All three curves have peaks near the same value ∆∼±D̄, so the maximal TM corresponds to the
simultaneously intensive exchange between all three energies, in good agreement with the thermodynamic model. For increasing D̄ the electron
depolarisation and electron-electron coupling polarisation tend to equalise. The nuclear polarisation is comparable with the other two for small values
of D̄, becomes larger than those for intermediate values and becomes smaller than those for large values of D̄.

 −2∆̄/3 0 0
0 −D̄+ ∆̄/3 0
0 0 D̄+ ∆̄/3

 .

Comparing this with the formula for the traceless operator S̄z, it
is obvious that the minimal model is modified by the simple shift
∆→ ∆+ ∆̄.

The number of nuclei in close vicinities to electrons from each
package is proportional to the numbers of electrons in the pack-
ages defined by the inhomogeneous component of the EPR spec-
trum. Since electron spins from packages with similar shifts ∆̄∼ ∆̄′

still interact with each other, each package contributes to the to-
tal TM DNP profile with a certain weight gIB(∆̄), where the cen-
tralised profile gIB characterises the inhomogeneous component
of the EPR line with some broadening caused by the interactions
between the electron spin packages. Hence, we come to the aver-
aged formula for the total TM DNP spectrum

p(T M)
n (∆) =

∫ +∞

−∞

gIB(∆̄)p̄(T M)
n (∆+ ∆̄)d∆̄ =

=
∫ +∞

−∞

gIB(∆̄−∆)p̄(T M)
n (∆̄)d∆̄,

(7)

where p̄(T M)
n is the TM profile calculated by the minimal model

and gIB is normalised as
∫

gIB(ω)dω = 1.

The effect of such averaging is broadening and loss of the po-
larisation enhancement in comparison with a single electron fre-
quency package — a result of the diffusion over all possible shifts
∆̄ generated by different electron packages. For wide shapes gIB,
the effective weights participating in the averaging are so small
that the TM enhancement becomes negligible: large inhomoge-
neous broadening tends to quench the TM mechanism giving rise
to CE instead.

The powder average inhomogeneous broadening of the elec-
tron resonance line can be estimated using the principal compo-
nents gs (s= 1,2,3) of the g-tensor, in the standard way described,
for example, in32. The anisotropy of g generates a powder aver-
age shape g0(ω) characterising the distribution of electron fre-
quencies over all possible spatial g-orientations. This distribution
must then be again broadened by a homogeneous distribution
gHB(ω) leading to the convolution formula for the EPR line

gIB(ω) =
∫ +∞

−∞

g0(ω
′)gHB(ω−ω

′)dω
′. (8)

For an axially symmetric g-tensor, g1 < g2 = g3, the shape g0 is
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Fig. 5 Top: the simulated SE p(SE)
n (green) and TM p(T M)

n (blue) shapes
for a Lorentzian EPR line with D = 12 MHz, D̄ = 27.5 MHz, ω̄1 = 40 kHz,
ωI = 110 MHz and the other parameters the same as in Fig.3. Bottom:
the simulated DNP spectrum 1.1p(SE)

n + p(T M)
n (solid line) and normalised

experimental data (squares) for the proton spectrum of m-xylene doped
with BDPA, from 24.

explicitly calculated as

g0(ω) = cν

(
g2

2−ν
2
)−1/2

, ω =
ωeν

2
, g1 < ν < g2

where c is a normalising factor, ωe is the electron frequency at the
centre of the spectrum, and g0 is zero for ν outside the interval
(g1,g2). In most cases, the homogeneous broadening shape gHB

is well approximated by a Lorentzian or Gaussian profile.
On an intermediate position between radicals with very

weak and very strong g-anisotropies is the well-known triph-
enylmethyl radical (trityl). For this radical, as in the BDPA
case, simultaneous SE and TM contributions should be ob-
served, with the difference that the TM mechanism is now
modified due to the appreciable inhomogeneous broadening.
This is indeed confirmed by the experimental data below.
We prepared tris(8-deutero-2,2,6,6-tetramethylbenzo[1,2-
d;4,5-d’]bis[1,3]dithiol-4-yl)methyl (D3-trityl) from tris(8-
deutero-2,2,6,6-tetramethylbenzo[1,2-d;4,5-d’]bis[1,3]dithiol-
4-yl)methanol by adapting the literature methods for the
synthesis of tris(8-ethoxycarbonyl-2,2,6,6-tetramethylbenzo[1,2-
d;4,5-d’]bis[1,3]dithiol-4-yl)methyl.33,34 Tris(8-deutero-2,2,6,6-
tetramethylbenzo[1,2-d;4,5-d’]bis[1,3]dithiol-4-yl)methanol was

synthesised by adapting the literature methods for the synthesis
of tris(8-ethoxycarbonyl-2,2,6,6-tetramethylbenzo[1,2-d;4,5-
d’]bis[1,3]dithiol-4-yl)methanol using D4-methanol in place of
diethyl carbonate.33,34.

The experiments were performed with 15 mM D3-trityl solu-
tions in tetrahydrofuran (THF):toluene (2:1) frozen to a temper-
ature of ∼ 1.5 K, in static magnetic field of 3.4 T and a low mi-
crowave power ω1 ∼ 5 kHz. The spectrum was obtained as fol-
lows. The sample was sonicated for 20 min to aid dissolution of
the radical. Before transfer to the sample cup, the solution was
visually inspected for any residue of undissolved racial. The sam-
ple (∼ 70 µl) was rapidly frozen by inserting it in a pre-cooled
cryostat (T ∼ 2K). Following that, the temperature was equi-
librated at T = 1.4 K for ∼ 30 min and the measurement was
started. Each point of the sweep spectrum was obtained by ir-
radiation at a given microwave frequency for 120 s and reading
the magnetization with a π/2 pulse. Before each measurement a
train of 64 π/2 pulses was used to destroy the polarization. The
amplitude of the signal was obtained by integrating the real part
of the spectrum. All measurements were done using a home built
DNP polariser connected to a commercial Bruker console for the
NMR control35. SE and TM peaks were observed in the proton
DNP spectrum (Fig.6, top). To simulate the DNP spectra, we note
that the g-tensor of D3-trityl is very close to an axially symmetric
tensor with principal components g1 ∼ 2.002, g2 = g3 ∼ 2.003. As
earlier described in this section, we modelled the EPR line g(ω)

using a Gaussian homogeneous broadening gHB by equation (8)
and applied then the same standard formula as in (4) for the SE
shape, with the normalisation g =±1 at the peak points. To sim-
ulate the TM shape p(T M)

n , we used the minimal model and chose
a shifted Gaussian inhomogeneous shape gIB in equation (7). In
Fig.6, bottom, the combined DNP spectrum c1 p(SE)

n + c2 p(T M)
n is

plotted with c1 = 1, c2 = 3, compared with the experimentally
obtained normalised proton DNP profile pn,exp/max pn,exp for the
D3-trityl derivative shown in Fig.6, top. A good agreement with
the experimental data is evident.

4 Conclusions
We have demonstrated that the TM DNP mechanism can be de-
scribed from the purely quantum point of view, without mak-
ing additional thermodynamic assumptions. First, we explain
the energy exchange between the electron Zeeman and electron-
electron coupling parts of the Hamiltonian. We give a full quan-
tum description of the underlying Provotorov saturation theory,
which as we show requires asymmetric distributions of electron-
electron couplings for this mechanism to work. Second, we de-
scribe quantum mechanically how the electron-electron coupling
energy is further transferred to nuclei, using asymmetry in the
electron-nuclear coupling part of the Hamiltonian. To test the
quantum theory and relate it to the thermodynamic picture, we
set up a minimal 6-level model microscopic system and used our
theory to calculate DNP spectra that were compared with experi-
mental data. The optimal conditions for the nuclear polarisation
enhancement were pointed out based on the minimal model. We
have shown how this model can be used in macroscopic simula-
tions and generalised to polarising agents with appreciable inho-
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Fig. 6 Top: the experimental proton polarisation enhancement (in
arbitrary units) of THF:toluene doped with D3-trityl (inset). A strong
mixture of SE and TM contributions is observed. Bottom: the simulated
DNP spectrum p(SE)

n +3p(T M)
n (solid line) compared to normalised

experimental data (squares) for the proton spectrum shown on the top.
The parameters used are g1 = 2.002, g2 = g3 = 2.003, ωe = 94 GHz,
gHB = exp(−ω2/D2

HB), gIB = exp(−(ω + f )2/D2
IB) with DHB = 22 MHz,

DIB = 20 MHz, f = 5 MHz, ω̄1 = 5 kHz, D̄ = 30 MHz, b1 = b2 = 1 MHz.
The other parameters are the same as in Fig.3.

mogeneous broadening of the EPR line caused by g-anisotropy.
We have checked the quantum TM theory against experimental
data and demonstrated the good agreement between the theory
and experiment in the cases of the BDPA and trityl free radicals.
This will help to develop a comprehensive theory of DNP in solids.
The following final remarks are to summarise the essentials of the
results obtained and the advantages of the approach developed in
this work.

The underlying cause of TM is symmetry breaking, which man-
ifests itself in two aspects featuring the solid state nature of the
mechanism. First, the asymmetries caused either by intrinsic de-
fects in crystals or random locations of electron spins in a frozen
sample or powder lead to a strong dispersion of the magnitudes
dq =∑q′ Dqq′ (proportional also to the concentration of the param-
agnetic impurities). As a result, the microwave irradiation part of
the Hamiltonian couples the ground state χ(0) to a state χ(1), non-
trivially expanded via the eigenstates of the electron-electron part
HSS of the Hamiltonian. For this crucial reason, not mentioned in
thermodynamic descriptions, the microwave energy absorbed by
the electron ensemble is distributed into the energy of electron-

electron coupling. In the symmetric case where dq’s are equal,
χ(1) is an eigenstate of HSS with the same energy as the ground
state, so TM is strongly restricted to the area ∆ ∼ 0. This might
well explain our experiments with D3-trityl (Fig.6) where strong
TM components can be attributed to chemical properties of the
(weakly polar aprotic) THF:toluene solvent (chosen because D3-
trityl is not water-soluble) which, after dissolving D3-trityl and
freezing, creates a strongly asymmetric matrix. The matrix of the
(highly polar protic) water:glycerol solvent is much more sym-
metric due to strong intermolecular forces caused by hydrogen
bonding36, so TM peaks are not observed for the (water-soluble)
OX063-trityl. The same refers to the experiments with m-xylene
doped with BDPA (Fig.5) compared, for example, with a Nd+3-
incorporated single crystal of the lanthanum magnesium double
nitrate (LMN)6,24,25. An additional asymmetry is induced by in-
homogeneous broadening of the EPR line considered in Section
3. Second, the electron-nuclear interaction Hamiltonian HIS is
strongly asymmetric with respect to electron spin permutations
causing mixing the eigenstates of HSS by HIS, which in their turn
are strong mixtures of Zeeman states, resulting in a transfer of the
energy of electron-electron coupling to nuclei. The HIS asymme-
try is strongly manifested for nuclei close to electrons, so they are
directly polarised by TM (and transfer then their polarisation to
nuclei remote from electrons via spin diffusion). The minimal 6-
level model we have suggested clearly reflects and exploits these
important features. As follows from considerations in Subsection
2.2, TM is essentially a more than two-electron process where po-
larisation differences between electrons 2, 3 (which are even not
necessarily connected, Fig.1) are transferred to polarisation of a
nucleus connected to electron 1. Thus, TM is a mechanism, fun-
damentally different from the SE and CE mechanisms where ei-
ther single electrons or pairs of electrons, interacting with nuclei,
are sufficient. To avoid terminological ambiguities, we stress here
that TM considered in this work is related to processes, described
by quantum models involving at least three electrons. Moreover,
we rather consider the electron ensemble as a whole, without
specification of its concrete geometric properties and effective
numbers of spins, locally involved in the dynamics. The latter
was possible before only within the thermodynamic picture. Our
model solves this problem purely quantum mechanically.

Despite an obvious analogy between TM and CE where elec-
tron spin polarisation differences are strongly involved in the dy-
namics, in the CE case large electron polarisation differences are
created by a dominating inhomogeneous broadening of the EPR
line (caused by a strong g-anisotropy and hyperfine splitting), and
the maximal effect is observed for EPR linewidths comparable
with or larger than the nuclear Larmor frequency. In the case
of TM, the electron polarisation differences are due to a strong
homogeneous broadening (caused by anisotropic and asymmet-
ric dipole-dipole interelectron coupling), and the effect is already
observed for EPR linewidths much less than the magnitude of
ωI . The transition from TM to CE is realised by a strong disper-
sion of the electron Larmor frequencies due to inhomogeneous
broadening of the EPR line. This is described in Section 3 where
the minimal model was modified to accommodate the simultane-
ous existence of many electron spin packages. In this case, the
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frequency shift differences ∆q−∆q′ tend to quench the electron-
electron coupling, so the latter can be treated as a perturbation
of the same order as the microwave and electron-nuclear parts of
the Hamiltonian, and the resonance condition 2D̄ ∼ ωI takes the
combinational form ∆q−∆q′ ∼ ωI , leading to the CE case where
the model of electron-electron-nucleus triple spin flips is sufficient
to effectively describe the dynamics.

The minimal 6-level quantum model of TM that we developed
is remarkably simple, easy for simulations, in good quantitative
agreement with experimental data, well describes qualitative and
optimal properties of TM DNP and its links with the thermody-
namic picture. The model can be extended in the future to include
more than one nuclear species and/or additional paramagnetic ef-
fects. Formally, it is equivalent to a model of a single nuclear spin
I = 1/2 interacting with a fictitious spin L = 1 representing the
electron ensemble, with the states χ

(1)
0,± standing for the “zero”,

“up” and “down” states. Here the electron-electron coupling is
equivalent to the Zeeman splitting of L, HSS ∼ Lz, while the elec-
tron Zeeman Hamiltonian is represented effectively as the zero
field splitting, Sz ∼ L2

z − 2/3. Since the electron-nuclear Hamil-
tonian HIS mixes the “up” and “down” states of L = 1, the spin
interaction here is of a nonlinear nature featuring effective terms
like Ix

(
L±
)2, impossible in interactions of dipole-dipole type. It

would be interesting to find other physical applications of this
basic model.
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