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Self-similarity and Reynolds number invariance in Froude modelling 

 

ABSTRACT 

This review aims to improve the reliability of Froude modelling in fluid flows where both the Froude 

number and Reynolds number are a priori relevant. Two concepts may help to exclude significant 

Reynolds number scale effects under these conditions: (i) self-similarity and (ii) Reynolds number 

invariance. Both concepts relate herein to turbulent flows, thereby excluding self-similarity observed 

in laminar flows and in non-fluid phenomena. These two concepts are illustrated with a wide range of 

examples: (i) irrotational vortices, wakes, jets and plumes, shear-driven entrainment, high-velocity 

open channel flows, sediment transport and homogeneous isotropic turbulence and (ii) tidal energy 

converters, complete mixing in contact tanks and gravity currents. The limitations of self-similarity 

and Reynolds number invariance are also highlighted. Many fluid phenomena with the limitations 

under which self-similarity and Reynolds number invariance are observed are summarised in tables, 

aimed at excluding significant Reynolds number scale effects in physical Froude-based models. 

 

Keywords: Froude similarity, Laboratory studies, Reynolds number invariance, Scale effect, Scale 

invariance, Self-similarity, Similarity (scaling) theory. 

 

1 Introduction 

1.1 Context of Froude modelling 

Most physical model studies in hydraulic engineering involving free surface flows are modelled with 

Froude similarity. Froude similarity is based on the assumption FM = FP (subscript M for model and P 

for prototype) with the Froude number F defined as 

 

F = V/(gL)1/2.          (1) 

 

In Eq. (1) V is a characteristic velocity, typically the mean flow velocity, L a characteristic length, 

typically the water depth, and g is the gravitational acceleration. The Froude number is the square root 

of the ratio of inertial force L2V2 to gravity force L3g, with the fluid density , such that the interplay 

of inertial and gravity forces is correctly represented in a Froude model. Other force ratios, such as the 

Reynolds number 

 

R = LV/,           (2) 

 

which represents the ratio of inertial force to viscous force with kinematic viscosity , and the Weber 

number (inertial force to surface tension force) may be represented incorrectly in a Froude model. This 

may result in significant scale effects (Heller, 2011; Hughes, 1993; Le Méhauté, 1990). 
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Different strategies to deal with scale effects in Froude models were reviewed by Heller (2011) 

including avoidance, compensation and correction. In order to avoid scale effects, an a priori defined 

limiting R, Weber number and others have to be exceeded, as shown for landslide-tsunamis in Heller, 

Hager, and Minor (2008), for dike breaching in Schmocker and Hager (2009) and for impulse wave 

run-up and run-over in Fuchs and Hager (2012). However, why can significant scale effects be 

excluded with a limiting R? 

This article aims to address this question and to support Froude modelling of phenomena where 

both the Froude and Reynolds number R are a priori relevant. Two concepts are identified under 

which R scale effects may be excluded, namely (i) Self-Similarity (SS) and (ii) R Invariance (RI). 

These two concepts are reviewed and illustrated with a wide range of examples. This is expected to 

assist the design and improve the reliability of many Froude model studies in hydraulic engineering 

for phenomena where inertial, gravity and viscous forces are a priori relevant: hydraulic jumps, high-

velocity open channel flows, landslide-tsunami generation, wave breaking, wakes in rivers and waves, 

sediment transport, dike breaching, plumes and jets entering rivers and waves, turbulent flows, 

entrainment, and others. 

 

1.2 SS and RI 

SS, self-preservation, fractals, dimensional analysis, dynamic similarity, universality, symmetry, 

scaling laws, RI, scale invariance and insignificant scale effects are all interrelated phenomena 

(Cantwell, 2002; Dodds & Rothman, 2000; Ercan, Kavvas, & Haltas, 2014; Foss, Panton, and Yarin, 

2007). The interrelation of the most relevant concepts for this article, namely SS, RI and scale 

invariance (no source of scale effects), are addressed in the following sections. These sections show 

that the two concepts SS and RI both explain why significant R scale effects can be excluded with a 

limiting R. However, the physical background of the two concepts and how an insignificant scale 

effects condition is approached are different such that SS and RI are addressed individually herein. 

 

SS 

The concept of SS in mathematical physics can be traced back to Fourier (1822), where it was applied 

to heat conduction. A time-developing (and/or spatial) phenomenon is called self-similar if the spatial 

distribution of its properties at various different instances in time (and/or spatial locations) is obtained 

from one another by a similarity transformation (Barenblatt, 1996; Cantwell, 2002; Chanson & Carosi, 

2007; George, 1989; Gratton, 1991; Pope, 2000). As a consequence, self-similar profiles of velocity 

(or any other quantity) can be brought into congruence by simple scale factors which depend on only 

one of the variables such as location x or time t. A further consequence for self-similar flows is that 

there exist solutions to its dynamical equations and boundary conditions for which, throughout its 

evolution, all terms (of dynamic significance) show the same relative value at the same relative 

location (George, 1989). 
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SS can be observed, at least in the sense of an idealised asymptotic condition, in many phenomena 

in nature and everyday life. Figure 1 shows some examples including the geometry of Romanesco 

broccoli, fern and river networks. Many further phenomena were described as self-similar including 

the geometry of the coastline (Mandelbrot, 1983), laws in finance (Drożdż, Grümmer, Ruf, & Speth, 

2003), the size distribution of turbidite deposits (Doods & Rothman, 2000) and most physical laws 

with respect to a space and time translation (Cantwell, 2002; Frisch, 1995; Wang, 1998). It is argued 

herein that SS is a highly useful feature in hydraulic engineering as it may reveal universal features 

valid for all the spatial and temporal ranges observed in fluid flows, both within a particular 

phenomenon and also between a phenomenon and its model at reduced scale (note that scale refers to 

spatial scale hereafter, if not otherwise stated).  

The identification of self-similar fluid flow features is desirable due to the following interrelated 

key reasons (Barenblatt, 1996; Foss et al., 2007; Gratton, 1991): 

(i) universal applicability, independent of the instance in time and/or spatial location, 

(ii) simple computation as self-similar flows are commonly based on an Ordinary Differential 

Equation (ODE) rather than a Partial Differential Equation (PDE), 

(iii) requirement of a reduced volume of experimental work and/or simplified data processing, 

(iv) collapse of data points to a single curve or surface, and 

(v)  scale invariance often applies such that small and cost efficient models may be used. 

This article focuses on the large class of self-similar flow features observed at large R. Self-similar 

phenomena observed in laminar flows and in non-fluid phenomena are therefore excluded hereafter, as 

only SS observed at large R helps to understand why significant scale effects can be excluded with a 

limiting R. Many turbulent flow features are self-similar and this concept is particularly popular in 

environmental and geophysical fluid dynamics at sufficient high R to describe wakes (Ali & Abid, 

2014; Cantwell, 2002; George, 1989; Nedić, Vassilicos, & Ganapathisubramani, 2013; Redford, 

Castro, & Coleman, 2012; Sreenivasan, 1981; Uberoi & Freymuth, 1970), jets (Carazzo, Kaminski, & 

Tait, 2006; Craske, Debugne, & van Reeuwijk, 2015; Foss et al., 2007; George, 1989; Gutmark & 

Wygnanski, 1976; Hussein, Capp, & George, 1994; Pope, 2000), plumes (Carazzo et al., 2006; Foss et 

al., 2007; Morton, 1971), shear-driven entrainment (Jonker, van Reeuwijk, Sullivan, & Patton, 2013; 

Kundu, 1981), mixing layers (Champagne, Pao, & Wygnanski, 1976) and homogeneous isotropic 

turbulent flows (Batchelor, 1953; Cantwell, 2002; Kolmogorov, 1941; Pope, 2000). The concept of SS 

was also applied to core hydraulic engineering phenomena such as turbulent free surface flows 

including the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level 

(Chanson & Carosi, 2007). 

 

RI and its relation to SS 

RI is a main reason as to why some phenomena in short, highly turbulent flows (e.g. hydraulic jumps, 

breaking waves, landslide-tsunami generation) can be modelled with Froude similarity. This may not 
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be intuitive, given that Froude similarity considers the interplay of inertial and gravity forces only, 

which is most applicable to free surface flows where viscous effects are negligible (e.g. deep-water 

waves, flows over weirs). 

RI refers herein to idealised fluid conditions which are asymptotic approached with increasing R, 

i.e. the conditions become R invariant because R increases. This is illustrated with a well-known 

example in hydraulic engineering, namely pipe flow energy head losses expressed in the Moody 

diagram (Massey, 1989). The Moody diagram provides the Darcy-Weisbach friction factor as a 

function of the relative pipe roughness and R, defined with the pipe diameter d and the mean flow 

velocity. The friction factor shown in the Moody diagram heavily depends on R in the laminar and 

transition regime, whilst it is R invariant in the fully turbulent regime. The friction factor for a given 

relative roughness is therefore the same at small scale (small d and R) and large scale (large d and R), 

as long as R is large enough to ensure fully turbulent flow. This example shows that an R invariant 

phenomenon directly implies scale invariance (involves no scale effects). 

The technical literature includes a number of hints which may help to understand RI. Firstly, R → 

∞ corresponds to  → 0, such that the effect of the viscosity becomes negligible for high R flows. This 

is related to the observation that fluid flows around cylinders at low R show a number of symmetries. 

An object is symmetrical if one can subject it to a certain operation and it appears exactly the same 

after the operation (Cantwell, 2002). These symmetries start to vanish with increasing R, but some of 

them are restored in a statistical sense far from the boundaries for fully developed turbulence (Frisch, 

1995). Further, R → ∞ also corresponds to large scale motions (L → ∞, V → ∞), such that RI can be 

achieved with a large model size. This may be the reason why many studies aim to exclude significant 

scale effects with a limiting scale factor  = LP/LM rather than with the more sound criterion of a 

limiting R (Heller, 2011). 

Frisch (1995) discusses symmetries applying to the Navier-Stokes Equations (NSEs). For an 

incompressible fluid under spatial periodic boundary conditions, there exists a scale symmetry 

described by 

 

t, r, v → 1‒mt, r, mv  with   +, m   and  = 0     (3) 

 

In Eq. (3) r = (x, y, z) is the position vector and v the velocity vector. Equation (3) applied to the NSEs 

multiplies all terms by 2m‒1, apart from the viscous term which is multiplied by m‒2. Equation (3) for 

 ≠ 0 would only apply for a scaling exponent m = ‒1, resulting in Reynolds similarity with RM = RP 

(Frisch, 1995). It follows that scale invariance for this example applies for any real number m only if  

= 0 (R = ∞). This indicates that the NSEs support asymptotic conditions (R → ∞) for which scale 

invariance is achieved. Note also that the value m = 1/2 in Eq. (3) corresponds to Froude scaling. 

Table 1 summarises the similarities and differences between SS and RI. Whilst SS may be 

observed for flows at any R, the additional assumption of a high R is used for the large class of self-
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similar flows addressed herein to exclude the dependence on the viscosity. RI directly implies scale 

invariance, but this is not necessarily the case for a self-similar feature as a phenomenon may be self-

similar relative to a time or velocity scale, rather than a length scale. Both SS and RI may not be 

reached until the initial conditions are over-come. Further, both concepts may be obstructed in vicinity 

of solid boundaries as R is locally too small to achieve RI and the solid boundary implies a 

dependence on rather than an independence of a length scale, preventing SS (Table 1). Also, an R 

invariant feature is directly approached with increasing R, which is not necessarily the case for SS; 

whilst for the class of self-similar features addressed herein the collapse of data points to a single 

curve or surface is still expected with an even larger R, scale effects do not necessarily further reduce 

with increasing R. The two concepts are interrelated as both result in a reduced number of independent 

variables in a phenomenon. The most relevant similarity in the context of Froude modelling is, 

however, that both concepts reflect idealised asymptotic conditions which are useful in excluding 

significant scale effects in Froude models. 

 

1.3 Aims and content 

This article aims to improve the reliability of Froude modelling in fluid flows where both the Froude 

number and R are a priori relevant. The article reviews various model strategies using SS and RI in the 

context of Froude modelling with illustrations of where and when these idealised asymptotic 

conditions occur. Section 2 provides the theoretical base of SS. Self-similar phenomena at large R are 

reviewed in Section 3.1 and R invariant phenomena are addressed in Section 3.2. Section 4 describes 

over-shadowing along with other limitations of the reviewed concepts in ruling out significant R scale 

effects. The most relevant findings are summarised in the Conclusions. 

 

2 Theoretical base of SS 

SS is based on symmetry analysis, where an object is symmetrical if one can subject it to a certain 

operation and it appears exactly the same after the operation. The object is then said to be invariant 

with respect to the given operation (Cantwell, 2002). This article focuses on fluid features (objects), 

e.g. the mean velocity profile, which appear the same after applying a stretching operation in all three 

coordinate directions, such that the mean velocity profile is scale invariant. An important 

transformation in symmetry analysis is the one-parameter Lie group transformation, applied in a study 

reviewed in Section 3.1. 

Hydrodynamics problems are generally described by PDEs, implying that their solutions depend on 

several variables such as location and/or time. These PDEs are commonly nonlinear and reduce to 

linear equations in certain simple cases. The solution of such linear and nonlinear PDEs is a much 

more complicated task than that of ODEs where functions of a single variable are sought. If a PDE is 

two-dimensional or axisymmetric, it will reduce to an ODE when a length scale (or possibly a time or 
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velocity scale) is excluded. This was particularly important in the pre-computer era (Gratton, 1991). A 

first sign of the existence of SS is thus if a PDE reduces to an ODE (Cantwell, 2002; Foss et al., 2007).  

SS is introduced more formally with a mathematical physics problem in two independent variables, 

namely radial position r and time t, requiring the solution of PDEs. In this problem, SS means that 

variable scales of a parameter of a reference (subscript 0) value u0(t) at reference position r0(t) can be 

chosen such that in the new scales the properties of the phenomenon can be expressed by functions of 

one SS variable  as 

 

u = u0(t)F()  with  = r/r0(t)       (4) 

 

The solution of this problem is thus reduced to the solution of a system of ODEs for the vector-

function F() (Barenblatt, 1996). Equation (4) indicates that the scaled parameter u as a function of  

depends only on one variable, namely t. Examples with similar features are shown in Figs 4 to 7, as 

discussed below. 

Once recognised, SS can readily be found analytically or numerically, with Foss et al. (2007), 

George (1989), Gratton (1991) and Pope (2000) providing a selection of examples. Here the example 

of vortex diffusion of Foss et al. (2007) is presented based on Fig. 2a. This example does not 

necessarily rely on a high R, in contrast to all other examples reviewed in Section 3.1 and Table 2. 

Nevertheless, it is a simple illustration of how a self-similar solution can be found. The vorticity 

transport equation is obtained by applying the curl operator to the NSEs resulting for planar motion in 

 

∂ω

∂t
=

v

r

∂

∂r
(r

∂ω

∂r
)          

 

Equation (5) describes an irrotational (free) vortex with vorticity  = curlv, with v as the velocity 

vector and r as the radial coordinate. It is assumed that the flow at time t depends on r only and is 

circular symmetric. The strength of the vorticity is characterised by the initial (subscript 0) circulation 

0. For an initially pointwise vortex the corresponding azimuthal (subscript ) velocity at t = 0 is 

 

v = 0/(2r).          (6) 

 

As no cross-sectional radius is given in the present vortex (idealised as a pointwise vortex) an arbitrary 

length scale L is taken for the following derivation. Dimensional considerations result in the time scale 

L2/ and corresponding vorticity scale 0/L2. Any solution of Eq. (5) should have the dimensionless 

(subscript dim) form dim = f(tdim, rdim), with dim = /(0/L2), tdim = t/(L2/) and rdim = r/L. This yields 

the dimensional vorticity 

 

 = (0/L2)f(tdim, rdim).         (7) 
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SS requires that the final result is independent of the arbitrary length scale L. This is satisfied by a 

dimensionless function f depending only on tdim of the form 

 

f(tdim, rdim) = (1/tdim)F1() with  = rdim/tdim
1/2       (8) 

 

and thus 

 

 = (0/t)F1()  with  = r/(t)1/2.      (9) 

 

Equation (9) of this problem corresponds to the general Eq. (4). The function F1() can be found by 

substituting Eq. (8) into Eq. (5) and solving the resulting ODE with the initial condition  = 0 for r > 0 

and boundary condition  → 0 for r → ∞ (the limit used in this example is r/L → ∞), resulting in 

 

F1(η)=
1

4π
exp (‒

r2

4t
).         (10) 

 

The corresponding azimuthal velocity field becomes 

 

vθ=
Γ0

2πr
[1‒exp (‒

r2

4t
)].       (11) 

 

The vorticity field is self-similar as  

 

ω

Γ0/(t)
=F1(η).          (12) 

 

Equation (12) expresses the vorticity magnitude at a particular location and time via its magnitude at 

any other location and time, while also excluding any length scale L. Note that this example assumes 

idealised conditions including an initially pointwise vortex. A real vortex, as shown in Fig. 2b, has a 

finite core which may be described with solid-state rotation.  

 

3 Phenomena involving SS and RI 

3.1 SS phenomena at large R 

Figure 3 shows examples of self-similar features at large R. This includes a turbulent wake behind an 

aerofoil (Fig. 3a), a volcanic plume (Fig. 3b), turbulent air-water mixture on a chute (Fig. 3c) and 

suspended sediment transport in a river (Fig. 3d). Table 2 summarises features which are self-similar 

involving a large R and the conditions under which they are observed. Self-similarities of the 

phenomena shown in Fig. 3 are individually addressed hereafter. 

 

Wakes 
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Turbulent wakes are observed downstream of many structures in hydro- or aerodynamics, including 

bridge piers, aerofoils (Fig. 3a) and risers. Many of these wake generators are observed in free surface 

flows such as open channels, rivers and waves, which are commonly modelled with Froude similarity. 

Turbulent wakes downstream of different objects were investigated by Nedić et al. (2013), Pope 

(2000), Redford et al. (2012), Uberoi and Freymuth (1970) and Wygnanski, Champagne, and Marasli 

(1986). 

Wygnanski et al. (1986) investigated plane (2D) wakes downstream of different wake generators, 

namely circular cylinders, a symmetrical aerofoil, a flat plate and screens with 30, 45, 70 and 100% of 

solidity located in a wind tunnel. Their tests were conducted at flow speeds of 2 to 35 m/s and R, 

defined with the free stream velocity u∞ and the thickness of wake generator in cross-flow direction 

y, was varied between 1,360 and 6,500. Typical velocity defects in the centre of the wake were 0.03 - 

0.15u∞ and measurements were taken with hot-wire probes between 100 and 2,000 momentum 

thicknesses  = CDy/2, with CD as the drag coefficient. The flow in the wake at sufficient high R is 

expected to be self-similar, described by a single velocity scale uc (the velocity defect on the 

centreline (subscript c)) and length scale Lc (the distance to the cross-flow position y where the 

velocity defect is 0.5uc). 

Figure 4 shows data presented by Wygnanski et al. (1986). The normalised mean velocity defect 

profiles for a 30% solidity screen in Fig. 4a collapse on an exponential function (point (iv) in Section 

1.2). Such self-similar features in a wake may only be observed at a particular spacing downstream of 

the wake generator (e.g. for 200 < (x – x0)/2 < 700 in Fig. 4a, with x0 as the virtual origin). SS may 

not be observed in close proximity of the wake generator due to the initial conditions, nor further 

downstream as the wake effects are smoothed out and over-shadowed by background turbulence. 

Figure 4b compares the normalised Reynolds stresses for an aerofoil, a 70% solidity screen and a solid 

strip. The data are approximately self-similar for each individual wake generator; however, the overall 

functions describing the data are clearly not universal as they are distinct for each individual wake 

generator. Whether the velocity and length scales would become universal functions of x/ at 

extremely large values of x/, similar as for turbulent jets (Carazzo et al., 2006), remained open in the 

study of Wygnanski et al. (1986).  

More research about the potential existence of a universal self-similar regime downstream of 

axisymmetric wakes, irrespective of the initial conditions, was conducted by Redford et al. (2012). 

They studied the wakes generated by two different initial conditions (spherical like wake generators of 

diameter d), under constant net momentum defect (drag), with Direct Numerical Simulations (DNSs). 

The two initial conditions were (a) a series of slightly perturbed vortex rings and (b) low-level 

random-phase velocity fluctuations added to the mean-velocity profile taken from (a). The mean wake 

R was uc(x = 0)[Q/(2uc(x = 0))]1/2/ = 2,171 for both conditions (a) and (b), with the velocity 

defect on the centreline uc and the volume-flux defect Q. SS was identified for the mean velocity 
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defect profile in both cases, although they are only universal for a distance x > 5000d. In other words, 

Redford et al. (2012) revealed that a universal self-similar regime for the mean velocity defect profile 

exists, irrespective of the initial conditions. However, given that this universal self-similar regime is 

observed for extremely large distances from the wake generator, this regime may not appear in flows 

of practical interest or may be over-shadowed by background turbulence (Section 4). 

 

Jets and plumes 

SS is widespread in jet and plume investigations as it allows for a simple parameterisation (Hussein et 

al., 1994; Pope, 2000). Plumes arise from smoke, effluent from submerged pollution outlets, nuclear 

accidents, seafloor hydrothermal vents, convection in clouds and explosive volcanic eruptions (Fig. 

3b) and are dominated by buoyancy with negligible momentum flux at the source. Jets include water 

jet fountains, water cannons for firefighting or jet packs dominated by momentum and showing 

negligible buoyancy flux at the source. 

Complete SS in a jet and plume assumes that the profiles of mean vertical velocity and mean 

buoyancy force in horizontal sections are similar at all heights z/d, with d as the source diameter. 

Under self-similar conditions a solution to the averaged equations of the form u = u0(x)F2() for the 

mean velocity profiles is sought, in analogy to Eq. (4). This involves a reference velocity u0 and the SS 

variable  = r/(x – x0) with the radial coordinate r, the distance from the source x and the virtual origin 

x0. Hussein et al. (1994) conducted detailed measurements in an axisymmetric turbulent air jet at R = 

100,000 with hot-wire techniques and Laser-Doppler Anemometry. The mean velocity profile of the 

jet is shown in Fig. 5 where the data collapse on a curve for measurements taken beyond 30d. If the 

function of this curve is known a priori of an experiment, then only one velocity value at one point is 

required to describe the jet in the entire self-similar regime, enormously reducing the volume of 

experimental work (point (iii) in Section 1.2). 

 

Shear-driven entrainment 

Shear-driven entrainment is particularly relevant for the deepening of oceanic boundary layers due to 

surface winds or wind-driven atmospheric boundary layers. An example in hydraulic engineering is 

the bottom boundary layer development on spillways, although in this case SS from the boundary 

layer may be over-shadowed by background turbulence (Section 4). 

Jonker et al. (2013) conducted a DNS to investigate the deepening of a shear-driven turbulent layer 

penetrating into a linearly stratified quiescence fluid. Their simulations are based on the Boussinesq 

approximation (small density differences) of the NSEs. Jonker et al. (2013) conducted six tests 

involving two shear velocities u* = 1 and 3.86 cm/s and three buoyancy frequencies N = 1.51/2, 3.751/2 

and 7.51/2 Hz where N = (∂b/∂z)1/2 with vertical coordinate z, buoyancy b = ‒g( – 0)/0 and local  
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and reference density 0. The Prandtl number was unity for all experiments and the buoyancy R = 

u*2/(N) was varied from 36 - 1,214. 

Figure 6 shows some results of Jonker et al. (2013) and illustrates how self-similar data collapse in 

dimensionless form (point (iv) in Section 1.2). Figure 6a shows the boundary layer growth of the 

shear-driven boundary layer versus time and Fig. 6b shows the collapse of the same data on a straight 

line (power law) in dimensionless form using the reference length scale u*/N and the reference time 

scale 1/N. The results in Fig. 6b are R invariant and reveal a growth law h  t‒1/2 for the mixed 

boundary layer depth. This growth law was confirmed with a SS analysis (Kundu, 1981) by Jonker et 

al. (2013).  

 

High-velocity open channel flows 

High-velocity open channel flows are a core topic of hydraulic engineering, typically being modelled 

with Froude similarity. These flows are observed on hydraulic structures such as spillways and chutes 

(Fig. 3c). Chanson and Carosi (2007) investigated high-velocity turbulent open channel air-water 

skimming flows on a stepped chute and suggested several self-similar features. A broad-crested weir 

was built in a 1 m wide and 3.2 m long flume followed by ten identical 0.10 m high and 0.25 m long 

steps. The flow features were measured with single- and dual-tip conductivity probes under variation 

of the discharge Q and the critical flow depth hc. The physical Froude model tests were conducted in 

the fully turbulent regime at R = 380,000 to 710,000, involving the hydraulic diameter and the mean 

flow velocity in R. 

Chanson and Carosi (2007) suggest self-similar processes for various flow features including the 

distributions of void fraction, bubble count rate, interfacial velocity and turbulence level. All of these 

processes should be scale invariant and useful, as a first approximation, to characterise the air-water 

flow field on similar stepped spillway structures at different scales. Perhaps the most characteristic 

self-similar feature observed by Chanson and Carosi (2007) is shown in Fig. 7, namely the 

dimensionless void fraction distribution C(). 

 

Sediment transport 

Sediment transport is relevant in areas such as fluvial hydraulics (Fig. 3d) and coastal engineering. RI 

in sediment transport may be observed in the Shields diagram (Shields, 1936) where the critical 

Shields stress becomes independent of the boundary R, defined with the grain diameter dg and the 

shear velocity u*, for approximately R > 400. 

Carr, Ercan, and Kavvas (2015) investigated SS and scale invariance in one-dimensional (1D) 

unsteady suspended sediment transport (Fig. 3d). They applied the one-parameter Lie group of point 

scaling transformation (Cantwell, 2002) to the governing equations (Saint-Venant, unsteady 1D 

suspended sediment transport) and to the initial and boundary conditions. This resulted in a set of 
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scaling laws, which were used to transform the parameters from the full scale (or space) to the model 

scale and vice versa. Note that the Lie group scaling itself does not introduce any limitations, meaning 

that the solutions are expected to be symmetrical (self-similar) under the applied stretching operations 

(transformation) if the governing equations and initial and boundary conditions correctly capture the 

physics of the problem (Cantwell, 2002). A key advantage of the Lie group scaling is that, in contrast 

to traditional Froude modelling in sediment transport (Kamphuis, 1974), the transformed parameters 

require no scaling of the sediment diameter and of the density, such that RM = RP. 

Carr et al. (2015) applied the derived scaling laws to scale the geometry and initial conditions of a 

test case modelled with a 1D channel network model. The grain Reynolds number was in the range 10 

≤ R ≤ 400. Figure 8 shows the suspended sediment concentration calculated at full scale (prototype) 

and the corresponding data simulated at reduced scale and up-scaled based on the Lie group scaling 

(Case 2L), resulting in an excellent agreement (SS). Carr et al. (2015) modelled the same case with 

traditional Froude modelling (vertically distorted by a factor of 14.14 and scaled sediment density) 

with the up-scaled results also included in Fig. 8 (Case 2F). Scale effects are observed, essentially due 

to deviating R between the prototype and Case 2F. In contrast, R in Case 2L is identical to that in the 

prototype. 

 

Homogeneous isotropic turbulence and locally homogeneous isotropic turbulence 

In homogeneous isotropic turbulence the average properties of a random motion are independent of 

the position and direction of the axes of reference in the fluid (Batchelor, 1953). The following shows 

that under these conditions, the statistics of the longitudinal velocity differences between two points is 

self-similar in a particular range. This is different to the previous examples of Section 3.1 where a 

solution of a particular problem was found to be self-similar rather than the statistics of flow features. 

It is further worth noting that the hereafter presented features of turbulent fluid flows can be derived 

without using the NSEs. 

An important concept in fully turbulent flows is the energy cascade model (Kolmogorov, 1941; 

Richardson, 1922). In this model the turbulence is composed of eddies of different sizes as 

schematically shown in Fig. 9. An eddy is a turbulent motion, localised within a region of size l with a 

characteristic velocity V(l). Kinetic energy enters the turbulent flow at the largest or initial scales of 

motion l0, strongly influenced by the geometry of the flow. These large eddies are unstable and break 

up, transferring their energy to somewhat smaller eddies, which undergo a similar process and transfer 

their energy to even smaller eddies. This process continues until the Reynolds number R(l) = lV(l)/ is 

sufficiently small (≈ 1), such that the eddy motion is stable, and molecular viscosity is effective in 

dissipating the kinetic energy (Batchelor, 1953; Pope, 2000). 

Kolmogorov (1941) postulated that at sufficient high R, the small-scale turbulent motions are 

statistically isotropic (hypothesis of local isotropy). This implies that the statistics of the small-scale 

motions are universal (self-similar) in the sense that they do not remember the geometry of the large 
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eddies. This size range is referred to as the universal equilibrium range, given by sizes < lEI (subscript 

EI for energy-inertial) as shown in Fig. 9. Kolmogorov further postulated in his 1st similarity 

hypothesis that the statistics of the small-scale motions (l < lEI) have a universal form that is uniquely 

determined by the kinematic viscosity  (m2 s–1) and the dissipation rate  (m2 s–3). Simple dimensional 

considerations result in the Kolmogorov (subscript K) microscale K = (3/)1/4 determining the size of 

the smallest eddies. The universal equilibrium range may be further separated into the inertial 

subrange lID ≤ l ≤ lEI (subscript ID for inertial-dissipation), where the statistics of the motions of eddies 

is uniquely determined by  (2nd similarity hypothesis), and the dissipation range l < lID, where the 

statistics of eddies depends on both  and  (Fig. 9). 

The energy spectrum E() is a common way to investigate how the turbulent kinetic energy is 

distributed among the eddies of different sizes, where  = 2/l corresponds to a wave number. A direct 

consequence of Kolmogorov’s 1st and 2nd similarity hypotheses is that the energy spectra in the inertial 

range is given by 

 

E) = CK2/3‒5/3           (13) 

 

where CK = 1.5 is a universal constant (Pope, 2000). This is the famous Kolmogorov ‒5/3 spectrum, 

which was confirmed in countless studies in the past 50 years (e.g. Champagne et al., 1976; Frisch, 

1995; Parsons & García, 1998; Pope, 2000; Uberoi & Freymuth, 1970; Vassilicos, 2015). An example 

about gravity currents will be discussed in Section 3.2 (Fig. 10c). 

Whether the statistics of the velocities in a turbulent flow is self-similar (universal) across a wide 

range of spatial scales is usually investigated by examining the Probability Distribution Function 

(PDF) of longitudinal velocity differences between two points of separation l, u(l) = u(x + l) – u(x), 

where u points along the line connecting the two points. SS requires that the PDFs have a functional 

form independent of the separation l, as the statistics need to be scale invariant. The confirmation of 

the ‒ 5/3 dependency for the inertial subrange in a phenomenon is a strong indication for SS.  

 

3.2 R invariant phenomena 

This section addresses some R invariant phenomena. Figure 10 shows some examples for which R 

invariant features were proposed, including a horizontal axis tidal turbine (Fig. 10a), solute transport 

in a chlorine contact tank (Fig. 10b) and a gravity current in the atmosphere (Fig. 10c). These three 

phenomena are reviewed in more detail hereafter and Table 3 summarises R invariant features of 

various phenomena and the conditions under which they are observed. Further studies including RI are 

presented in Heller (2011) and are not repeated herein. 

 

Tidal energy converters 
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Tidal energy is a promising marine renewable energy source. Tens of Tidal Energy Converters (TECs) 

are currently under research and development (Fig. 10a). Reynolds similarity would be most 

appropriate to model TECs, or marine hydrokinetic turbines in general, at reduced scale as the flow 

mainly depends on R. Froude similarity is inappropriate as free surface effects (gravity) are in most 

situations negligible (Bachant & Wosnik, 2016) and as Froude modelling would result in incorrect 

power output and structural load. If, in addition to Reynolds similarity, the tip-speed ratio is correctly 

modelled, full similarity may be expected. However, Reynolds similarity assuming RM = RP and m = – 

1 in Eq. (3) results in an unpractical scaling law ‒1 for the velocity. This implies that the flow velocity 

in a 1: scale model needs to be  times larger than in the prototype. Similarly, rotation per minute 

need to be 2 times larger in the model than in the prototype. This requires extremely high flow 

velocities in the model and results in secondary effects such as cavitation. Reynolds similarity is 

therefore highly unpractical or even impossible to achieve. 

The most appropriate model strategy for a TEC depends on which parameters are of interest. A 

common approach is to keep the tip speed ratio constant between model and prototype and to select 

the (chord) Reynolds number as large as possible to be close to the R invariant regime (Bachant & 

Wosnik, 2016). Myers and Bahaj (2012), however, modelled TECs as porous actuator disks and were 

interested in the wake structure downstream of TEC arrays, with the correct modelling of the amount 

of thrust force on the fluid flow being considered most important. Consequently, they kept the thrust 

force coefficient constant between model and prototype and ensured that R (based on the free stream 

velocity and water depth) was clearly larger than 2,000. This should assure RI and a similar regime as 

at full scale where fully turbulent conditions are expected, with R ~ 107. Nevertheless, both model 

strategies, based on the tip speed ratio and the thrust coefficient, are likely to result in significant scale 

effects. These uncertainties are the reason why guidelines for investigating TECs strongly recommend 

testing devices at several scales. 

Bachant and Wosnik (2016) investigated a 3-bladed cross-flow (vertical axis) turbine with an 

overall diameter of 1 m in a 36.6 m long, 3.66 m wide and 2.44 m deep towing tank. The Reynolds 

number, defined with the turbine diameter d and the tow carriage velocity (free stream velocity u∞), 

was increased in steps of 105 from 0.3 to 1.3 × 106 to investigate RI on the mean power (subscript P) 

coefficient cP and drag coefficient. The experimental results are shown in Fig. 11 and illustrate the 

asymptotic approach of an R invariant cP level at high R. The R invariant regime is reached at R ≈ 

800,000, which can be achieved in water with a large d and/or u∞ (Bachant & Wosnik, 2016). 

 

Complete mixing in contact tanks 

A contact tank (Fig. 10b) is commonly used to disinfect drinking water prior to distribution. Teixeira 

and Rauen (2014) investigated the effects of scale and discharge variation on solute transport in an L-

shaped chlorine contact tank, where the flow pattern is mostly fully turbulent and tends to complete 
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mixing. The physical and chemical flow processes in a contact tank may depend on F, R and the 

solute residence time, each of which implies a different scaling law for the discharge Q. 

In order to address this challenge and to investigate dynamic similarity, Teixeira and Rauen (2014) 

varied both the model scale and the discharge based on Froude similarity. Their tests involved a full-

scale tank ( = 1) with prototype discharge QP = 0.21 m3/s and Froude models at scales  = 8, 16, 24 

and 50, each tested with model discharges 0.50QM, 0.75QM, QM, 1.25QM and 1.50QM where QM = 

QP/5/2, according to Froude modelling. The corresponding R changed by more than an order of 

magnitude in these experiments. Saline tracer was injected at the tank inlet and measured at the outlet 

with a conductivity probe. Potential scale effects at the outlet were assessed with the residence time 

distribution curves of the different models, where discrepancies were assessed with the curve area 

discrepancy index. Figure 12a shows this index for the tests in the smallest three scale models with  = 

16, 24 and 50 compared with the model with  = 8. As the flow conditions are fully or almost fully 

turbulent, the curve area discrepancy index is scale and discharge invariant, such that the flow 

conditions are indeed in the R invariant regime. 

Using the same method, Teixeira and Rauen (2014) also investigated a contact tank tending to plug 

flow with most data in the laminar (R < 2,000) and transition (2,000 ≤ R ≤ 4,000) regime where no 

scale invariance is expected. The results are shown in Fig. 12b. Increasing scale effects with increasing 

 are indeed observed and scale effects are significant (approximately 20%) for the smallest scale with 

 = 50. 

 

Gravity currents 

Gravity, density or buoyancy currents are buoyancy driven fluid flows moving as a result of density 

differences primarily in the horizontal direction (Fig. 10c). The density difference is caused by 

temperature or by dissolved (salinity) or suspended material (turbidity currents, snow avalanches). 

Examples of gravity currents include thunderstorm outflows, sea-breeze fronts, river front mixing with 

sea water in estuaries, base surges formed from gases and solids from volcanic eruptions, snow 

avalanches and turbidity currents (Simpson, 1997). 

One approach to investigate gravity currents with is the arrested gravity current method. Parsons 

and García (1998) conducted experiments to investigate (self-)similarity with this method in the set-up 

shown in Fig. 13a. The water level in the channel was controlled with an overflow weir and the denser 

fluid was fed through the bottom corner in front of this weir. Clear water was pumped into the other 

channel end such that it flew over the denser fluid and the weir. The channel floor was moved with a 

conveyor belt reaching upfront of the current head such that the quasi steady gravity current was 

approached by a uniform velocity profile. Parsons and García (1998) conducted tests under variation 

of the initial excess density difference, the current height behind the front h5, the height of the current 

front hf and the propagation velocity of the current front u1, corresponding to the conveyor belt 
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velocity (Fig. 13a). The behaviour of the front is described by the dimensionless mixing rate 0.066 ≤ 

g'q/u1
3 ≤ 0.226, the height ratio 0.070 ≤ h5/h1 ≤ 0.114 and the Reynolds number 381 ≤ h5(g'q)1/3/ ≤ 

2,012 defined with h5 as the characteristic length and the cube root of the buoyancy flux into the 

current front (g'q)1/3 as the characteristic velocity, respectively. The parameter h1 is the clear water 

depth, g' = g(( – 0)/0) the reduced gravity and q the specific discharge. The front mixing was 

quantified with a conductivity probe sampling at 800 Hz and visualised with Laser-induced 

fluorescence experiments. 

Parsons and García (1998) showed that the data collapse on a single curve in the form of the power 

spectra for R ≥ 1,000. Tests conducted at lower R deviate considerable from this self-similar statistical 

behaviour. Figure 13b compares the dimensional power spectra Gxx(f) of a test with R = 600 to a self-

similar test with R = 1,108. Considerable differences are observed since the production of turbulent 

energy is being affected by viscosity in the smaller R flow suppressing mixing. In many previous 

studies R was smaller than 1,000, resulting in significant scale effects (Parsons & García, 1998). The 

authors emphasise that their results only apply to the most energetic area of the current front, such that 

other areas may result in scale effects even for R ≥ 1,000. Note that the data in Fig. 13b in the inertial 

subrange reasonably well follows the Kolmogorov ‒5/3 spectrum (Eq. 13). 

 

4 Over-shadowing effects 

The existence of SS does not guarantee that such a motion is actually dominant. Self-similar criteria 

are necessary but not sufficient conditions to explicitly observe SS (Kundu, 1981). A self-similar 

feature may be over-shadowed by other, more dominant effects. For example, the shear-driven 

entrainment experiments described in Section 3.1 reveal a sound self-similar behaviour. However, 

these experiments were highly idealised in the sense that no Coriolis force and other sources of 

background turbulence were present. Background turbulence may be more dominant than the 

entrainment due to the shear layer such that SS would never explicitly be observed under real 

conditions. This may be a main reason why the collapse of the data in Fig. 7 (turbulent air-water 

mixture) is considerable less sound that in Fig. 6b (entrainment in quiescence fluid). Further, SS is an 

idealised asymptotic condition reached after the initial conditions are over-come requiring potentially 

a long time or distance, such that SS may never be reached. 

SS and RI are valuable concepts for Froude modelling to exclude significant R scale effects. 

However, other force ratios may also introduce scale effects, and they may even interfere with features 

a priori believed to be R invariant. For example, in hydraulic jumps energy dissipation is 

approximately correctly modelled in (generalised) Froude models (Le Méhauté, 1990). However, a 

hydraulic jump involves considerable air entrainment depending, amongst other parameters, on 

surface tension (Weber number). Surface tension effects imply that air bubble sizes are incorrectly 

scaled in Froude models (Heller, 2011). Entrainment of a different amount of air in relation to the full 

scale or entrainment of larger air bubbles may have secondary effects and indirectly introduce scale 
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effects on energy dissipation. Potential scale effects due to force ratios other than R may be a further 

reason as to why SS in its purest form is observed for pure water flows such as wakes (Fig. 4) or 

shear-driven entrainment (Fig. 6), whilst self-similar features for two-phase flows, such as high-

velocity open channel flows (Fig. 7), are considerable less sound. 

It is important under which conditions SS and RI are observed in a particular study. The overviews 

of various self-similar and R invariant phenomena in Tables 2 and 3 include this information. For 

example, Ali and Abid (2014) found that the azimuthal velocity profiles in the wake vortex core of a 

rotor behave self-similar with age (time). SS in this example cannot simply be assumed for the entire 

phenomenon, for another parameter then for that identified or for the correct parameter but in relation 

to a spatial rather than a time scale. SS and RI may further only apply to a particular region in the 

flow; the findings of Parsons and García (1998) apply to the gravity current head only. In another 

region, significant R scale effects may be expected. Further, phenomena involving biological or 

chemical processes, such as water and wastewater treatment tanks (Teixeira & Rauen, 2014), may 

require a certain amount of time for the reactions or processes to take place, irrespective of whether 

the turbulent mixing processes are self-similar. 

Despite these limitations, SS and RI are important concepts to exclude significant R scale effects. 

These concepts, along with the various studies summarised in Tables 2 and 3, are hoped to support 

many future Froude model studies where inertial, gravity and viscous forces are a priori relevant.  

 

5 Conclusions 

This review aims to improve the reliability of Froude modelling in fluid flows where both the Froude 

number F and Reynolds number R are a priori relevant. Two concepts are identified which may help 

to exclude significant scale effects under these conditions: (i) Self-Similarity (SS) and (ii) R 

Invariance (RI). 

A time-developing (and/or spatial) phenomenon is called self-similar if the spatial distribution of 

its flow properties at various different instances in time (and/or spatial locations) can be obtained from 

one another by a similarity transformation. The most favourable feature of self-similar data in the 

context of Froude modelling may be their collapse to a single curve or surface. In other words, such 

phenomena may be correctly modelled in Froude models (no significant source of scale effects) for 

phenomena which would otherwise depend on both F and R. Both phenomena SS and RI are based on 

symmetry analysis. RI corresponds to a negligible effect of the kinematic viscosity ( → 0) and/or to a 

large scale motion (characteristic length L → ∞, characteristic velocity V → ∞) and directly implies 

scale invariance (no source of significant scale effects). SS and RI are interrelated as both reduce the 

number of independent variables in a phenomenon and both reflect idealised asymptotic conditions 

which are useful in excluding significant R scale effects in Froude models. 

A wide range of examples illustrating these two concepts are reviewed: (i) irrotational vortices, 

wakes, jets and plumes, shear-driven entrainment, high-velocity open channel flows, sediment 
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transport and homogeneous isotropic turbulence and (ii) tidal energy converters, complete mixing in 

contact tanks and gravity currents. Tables 2 and 3 summarise all these and further phenomena with the 

limitations under which SS and RI are observed, with the aim to assist physical Froude modelling. 

The identification of SS does not guarantee that it is explicitly observed as it may be over-

shadowed by more dominant effects, such as background turbulence. Further, SS and RI are idealised 

asymptotic conditions. For example, to observe SS the initial conditions may have to be over-come, 

potentially requiring a long time or distance such that SS may never be reached in a phenomenon. In 

addition, excluding R scale effects in Froude models leaves still room for significant scale effects from 

other force ratios, such as the Weber number. Despite these limitations, SS and RI are important 

concepts to avoid significant R scale effects in Froude models for phenomena such as wakes, jets and 

plumes. These concepts may further assist in modelling short, highly turbulent phenomena and high-

velocity open channel flows. Both concepts are hoped to support many future Froude model studies. 

RI was applied in many further phenomena, besides these included in Table 3, to exclude 

significant scale effects in Froude models (Heller, 2011). Although scale invariance does not directly 

imply SS, it may be possible to establish SS, at least for some of these R invariant features, in future 

work. 
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Notation 

b  = buoyancy b = ‒g( – 0)/0 (m s–2) 

B  = constant depending on the jet exit conditions (–) 

cP  = mean power coefficient (–) 

C  = void fraction (volume of air per unit volume of air and water) (–) 

CD  = drag coefficient (–) 

CK  = universal constant CK = 1.5 (–) 

d  = cylinder, jet source, pipe, plume source, rotor, sphere and turbine diameter (m) 

dg  = grain diameter (m) 

dh  = hydraulic diameter (equivalent pipe diameter) (m) 

Do  = dimensionless constant for air-water skimming flow (–) 

e  = entrainment rate (m s–1)  

E()  = energy spectra (m2 s–2) 

f  = frequency (s–1) 

Fi, f  = (vector-)function with i = 1, 2 or absent (–) 

F  = Froude number (–) 

g  = gravitational acceleration (m s–2) 

g'  = reduced gravity g' = g(( – 0)/0) (m s–2) 

Gxx(f)  = power spectra (m2 s–3) 

h  = water depth, mixed boundary layer depth (m) 

hc  = critical flow depth (m) 

hf  = height of current front (m) 

h1  = clear water depth (m) 

h5  = current height behind the front (m) 

h90  = depth where C = 90% (m) 

k  = roughness height (m) 

K  = dimensionless integration constant (–) 

l  = size of region of an eddy (m) 

L  = characteristic length (m) 

m = scaling exponent (–) 

M0  = momentum flux at the jet source (m4 s–2) 

N  = buoyancy frequency N = (∂b/∂z)1/2 (s–1) 

q  = specific discharge (m2 s–1) 

Q  = discharge (m3 s–1) 

r  = radial coordinate (m) 

r0  = reference position (m) 

r = position vector r = (x, y, z) (m) 
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R  = Reynolds number (–) 

Ri  = Richardson number Ri = hb/u*2 (–) 

 = Real number (–) 

t  = time (s) 

u  = velocity (m s–1) 

u  = vector of a scaled parameter (various) 

u'̅ = mean of the velocity fluctuations (m s–1) 

u'̅2 = Reynolds stresses (m2 s–2) 

u*  = shear velocity u* = ‒(w/0)1/2 (m s–1) 

u0  = reference value (various) 

u1  = velocity of current front (conveyor belt velocity) (m s–1) 

u∞  = free stream velocity (m s–1) 

v  = velocity vector (m s–1) 

v = azimuthal velocitym s–1 

V  = characteristic velocity (m s–1) 

w = channel width (m) 

x  = streamwise coordinate (m) 

x0  = virtual origin (m) 

y = cross-flow coordinate (m) 

z  = vertical coordinate (m) 

Z90  = dimensionless distance normal to chute Z90 = z/h90 (–) 

e  = entrainment coefficient (–) 

  = dimensionless parameter (–) 

b  = buoyance jump at the top of the mixed layer (m s–2) 

Q = volume-flux defect (m3 s–1) 

u = longitudinal velocity difference (m s–1) 

uc  = velocity defect on the centreline (m s–2) 

y  = thickness of wake generator in cross-flow direction, width of slot (m) 

  = dissipation rate (m2 s–3) 

0  = initial circulation (m2 s–1) 

  = self-similarity variable (–) 

K  = Kolmogorov microscale (m) 

  = wave number  = 2/l (m–1) 

  = scale factor (–) 

g = Taylor microscale (m)  
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  = kinematic viscosity (m2 s–1) 

  = vorticity (s–1) 

  = numerical constant (–) 

  = fluid density (kg m–3) 

w  = shear stress (kg m–1 s–2) 

  = momentum thickness (m), azimuth (º) 

 

Subscripts 

c = centreline 

dim = dimensionless 

EI = energy-inertial 

ID = inertial-dissipation 

K = Kolmogorov 

M = model 

P = prototype, power 

 = azimuthal 

0 = initial, reference 

 

Abbreviations 

DNS = Direct Numerical Simulation 

NSEs = Navier-Stokes Equations 

ODE = Ordinary Differential Equation 

PDE = Partial Differential Equation 

PDF = Probability Distribution Function 

RI = Reynolds number Invariance 

SS = Self-Similarity 

TEC = Tidal Energy Converter 

1D, 2D = one-dimensional, two-dimensional 
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Table 1 Differences and similarities of SS and RI 

Criterion SS RI 

Base of concept Symmetry analysis Symmetry analysis 

Restriction to fluid flows No (but mainly reviewed for fluid flows herein) Yes 

Restriction to high R flows No (but often assumed and mainly reviewed for high 

R herein) 

Yes 

Correspondence to scale 

invariance 

Not necessarily, e.g. if observed relative to a time or 

velocity scale rather than a length scale 

Yes 

Reduction of number of 

independent variables 

Yes (length scale, time scale, velocity scale, etc.) Yes (R) 

Idealised asymptotic condition Yes Yes 

Dependent on initial conditions Yes Yes 

Obstructed in vicinity of solid 

boundaries 

Yes Yes 

Useful to exclude significant 

scale effects 

Yes Yes 
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Table 2 Phenomena and quantities involving SS at large R with limitations and references 

Phenomenon Self-similar quantity Investigated 

R range 

Comment Reference 

Axisymmetric jet Front position and spread 

of radial integral of 

ensemble-averaged 

concentration of passive 

scalar transport 

2M0
1/2/ = 

4,815 

Ensemble average over 

16 DNS tests; 

negligibility of viscous 

effects was confirmed 

with additional tests at 

2M0
1/2/ = 6,810 

Craske et al. 

(2015) 

Axisymmetric jet Mean velocity profile (Fig. 

5), centreline velocity and 

many higher order 

moments and velocities 

du/ = 

100,000 

z/d > 50 (not everybody 

agrees, see e.g. Carazzo 

et al., 2006) 

Hussein et al. 

(1994) 

Axisymmetric 

wake downstream 

of a sphere 

Mean velocity defect and 

turbulent velocity 

fluctuation profiles 

du∞/ = 8,600 

 

50 < x/d < 150, data 

collapse to a curve if 

normalised with the 

characteristic velocity 

scale u∞d2/3(x – x0)–2/3 

and the characteristic 

length scale (x – x0)1/3d2/3 

Uberoi and 

Freymuth 

(1970) 

Axisymmetric 

wake downstream 

of a spherical 

body 

Mean velocity defect 

profile 

uc(x = 

0)[Q/(2uc(

x = 0))]1/2/ = 

2,171 

Universal SS for x > 

5000d  

Redford et al. 

(2012) 

Pipe flow Velocity distribution over 

cross-section 

Fully turbulent Universal SS applies to 

smooth and rough 

circular straight pipes 

Taylor (1954) 

Planar jet Mean velocity and velocity 

fluctuation profiles 

yu/ = 

30,000  

x/d > 40 Gutmark and 

Wygnanski 

(1976) 

Planar mixing 

layer 

Mean velocity and velocity 

fluctuation profiles 

Not available, 

nozzle exit 

speed 8 m/s 

Self-similar profiles are 

not universal, as profiles 

may depend on the state 

of the initial boundary 

layer and/or the initial 

flow conditions 

Champagne et 

al. (1976) 

Planar wake 

downstream of a 

circular cylinder, 

screens and solid 

strip, flat plate 

and symmetrical 

aerofoil 

Mean velocity defect 

profiles (Fig. 4) 

1,360 ≤ 

yu∞/ ≤ 

6,500 

Velocity defects 0.03 - 

0.15u∞; SS within 

individual wake 

generators, but no 

universality; 

measurements at 100 ≤  

≤ 2,000 

Wygnanski et 

al. (1986) 
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Plumes Mean velocity profile du/ ≥ 600 For z/d > 50 the 

parameter e becomes 

constant 

Carazzo et al. 

(2006) 

Rotor wake 

vortex 

Vorticity and azimuthal 

velocity profiles 

500 ≤ du/(2) 

≤ 2,000 

Based on DNS Ali and Abid 

(2014) 

Shear-driven 

entrainment into 

a linearly 

stratified fluid 

Growth of boundary layer 

(Fig. 6), mean buoyancy, 

mean horizontal velocity, 

buoyancy flux, momentum 

flux 

36 ≤ u*2/(N) 

≤ 1,214 

Proof of entrainment law 

e/u*  Ri‒1/2 with 

dimensional arguments 

Jonker et al. 

(2013) 

Turbulence in 

quasi-2D 

PDFs for longitudinal 

velocity differences 

Sufficient high  For inertial subrange 

E(k) ~ ‒5/3 (Kolmogorov 

‒5/3 spectrum)   

Kolmogorov 

(1941), Pope 

(2000) 

Turbulence in 

quasi-2D rapidly 

rotating fluid 

PDFs for longitudinal 

velocity differences 

gu'̅/ = 360 For inertial subrange 

E(k) ~ ‒2 (anomaly to 

Kolmogorov ‒5/3 

spectrum) 

Baroud, Plapp, 

She, and 

Swinney 

(2002) 

Turbulent open 

channel air-water 

flow on a stepped 

chute 

Distributions of void 

fraction (Fig. 7), bubble 

count rate, interfacial 

velocity and turbulence 

level 

380,000 ≤ 

dhu/ ≤ 

710,000 

 Chanson and 

Carosi (2007) 

* For explanations of symbols and abbreviations see Notation; note that studies conducted at a larger R than 

investigated are also expected to be self-similar 
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Table 3 Phenomena and quantities involving RI with limitations and references 

Phenomenon R invariant quantity Investigated 

R range 

Comment Reference 

Cross-flow 

turbine 

Mean power coefficient 

(Fig. 11) 

du∞/ ≥ 

800,000 

Tests conducted for 

300,000 ≤ du∞/  ≤ 

1,300,000 

Bachant and 

Wosnik 

(2016) 

Gravity current Mixing processes in 

current front (Fig. 13) 

1,000 ≤ 

h5(g'q)1/3/ ≤ 

2,012 

Applies to most energetic 

region; no RI for 

h5(g'q)1/3/ < 1,000 

Parsons and 

García (1998) 

Pipe flow Energy head losses 

(Moody diagram) 

du/ ≥ 50,000  This R value applies for 

k/d ≥ 0.07, but R needs 

to be larger for k/d < 0.07 

Massey (1989) 

Rough horizontal 

cylinder in steady 

flow 

Drag coefficient CD ≈ 1.2 75,000 ≤ du/ 

≤ 480,000 

d = 0.21 and 0.5 m, 

effective roughness k/d = 

0.038 

Chaplin and 

Subbiah 

(1997) 

Shields diagram Critical Shields stress dgu*/ > 400  Shields (1936) 

Wall-bounded 

turbulence  

Mean flow and Reynolds 

shear stresses in 2D 

channel flow 

1,000 ≤ 

wu*/(2) ≤ 

6,000 

 Schultz and 

Flack (2013) 

Wall turbulence Wake factor in the law of 

the wall/wake 

u∞/ ≥ 

15,000; du/ ≥ 

400,000 

The first criterion is for 

boundary layers and the 

second for pipe flow 

Smits, 

McKeon, and 

Marusic 

(2011) 

Water treatment 

tank (contact tank 

under complete 

mixing) 

Dispersion and mixing 

processes (Fig. 12) 

Not available Turbulent flow for R > 

4,000  

Teixeira and 

Rauen (2014) 

* For explanations of symbols and abbreviations see Notation; note that studies conducted at a larger R than 

investigated are also Reynolds number invariant 
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Figure 1 Examples of geometrical SS in nature: (a) Romanesco broccoli 

(http://www.butterflyeffect.ca/Close/Pages/SelfSimilarity.html, accessed on 02.08.2016), (b) fern 

(http://www.ck12.org/geometry/Self-Similarity/lesson/Self-Similarity/, accessed on 02.08.2016) and 

(c) river networks (Dodds & Rothman, 2000) 

 

 

Figure 2 Vortex: (a) initial condition of idealised irrotational vortex in polar coordinates and (b) real 

intake vortex at Denison Dam, Lake Texoma (http://www.jutarnji.hr/jezero-iz-zone-sumraka-

ogroman-vrtlog-nemilice-guta-vodu--vojska-zabranila-pristup-brodovima/1372254/, accessed on 

02.08.2016) 

 

 

Figure 3 Phenomena involving SS at large R: (a) wake behind an aerofoil 

(http://www.fmrl.uwaterloo.ca/research.html, accessed on 02.08.2016), (b) volcanic plume 

(https://volcanicdegassing.wordpress.com/tag/ash-plume/, accessed on 02.08.2016), (c) turbulent air-

water mixture on Chinchilla weir spillway (Australia) in operation on 8 November 1997 at a low flow 

(Toombes & Chanson, 2007, with permission of Springer and by courtesy of H. Chanson) and (d) 

suspended sediment transport down Rhone River discharging into Lake Geneva 

(http://www.fondriest.com/environmental-measurements/parameters/hydrology/sediment-transport-

deposition/, accessed on 02.08.2016) 

http://www.butterflyeffect.ca/Close/Pages/SelfSimilarity.html
http://www.ck12.org/geometry/Self-Similarity/lesson/Self-Similarity/
http://www.jutarnji.hr/jezero-iz-zone-sumraka-ogroman-vrtlog-nemilice-guta-vodu--vojska-zabranila-pristup-brodovima/1372254/
http://www.jutarnji.hr/jezero-iz-zone-sumraka-ogroman-vrtlog-nemilice-guta-vodu--vojska-zabranila-pristup-brodovima/1372254/
http://www.fmrl.uwaterloo.ca/research.html
https://volcanicdegassing.wordpress.com/tag/ash-plume/
http://www.fondriest.com/environmental-measurements/parameters/hydrology/sediment-transport-deposition/
http://www.fondriest.com/environmental-measurements/parameters/hydrology/sediment-transport-deposition/
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Figure 4 Self-similar features in turbulent wakes: (a) normalised mean velocity defect (u∞ – u)/uc 

versus normalised cross-flow coordinate y/Lc downstream of a 30% solidity screen for 200 < (x – 

x0)/2 < 700 and (b) normalised Reynolds stresses u'̅2/uc
2 versus y/Lc for a solid strip, 70% solidity 

screen and symmetric aerofoil with symbols referring to different downstream locations (Wygnanski 

et al., 1986) 

 

 

Figure 5 Mean velocity profile of axisymmetric turbulent jet with centreline velocity uc = BM0
1/2/(x – 

x0), a constant B depending on jet exit conditions and momentum flux at jet source M0; measurements 

were conducted with stationary hot-wire (SHW), flying hot-wire (FHW) and laser-Doppler 

anemometry (LDA) (Hussein et al., 1994) 
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Figure 6 Growth of shear-driven boundary layers into a linearly stratified fluid: (a) mixed layer depth 

evolution h(t) for six experiments with buoyancy frequencies N and shear velocities u* and (b) 

collapse of data on a straight line in dimensionless form (Jonker et al., 2013) 

 

 

Figure 7 SS in air-water skimming flow on a stepped chute described with analytical solution of 

advective diffusion equation for air bubbles (Theory): dimensionless void fraction distribution C() = 

1 – tanh2() with  = K – Z90/(2Do) + (Z90 – 1/3)3/3Do); C = void fraction, K = tanh−1(0.11/2) + 1/(2Do) – 

8/(81Do), Z90 = z/h90 = dimensionless distance normal to chute, h90 = depth where C = 90% and Do = 

dimensionless constant in function of mean C (Chanson & Carosi, 2007, with permission of Springer) 

 

 

Figure 8 Suspended sediment concentration over time for prototype values (Prototype), for up-scaled 

test case based on Lie group scaling (Case 2L) and for up-scaled test case based on traditional Froude 

modelling (Case 2F) (Carr et al., 2015, with permission from ASCE) 
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Figure 9 Energy cascade model with both energy-containing and universal equilibrium ranges 

 

 

Figure 10 Phenomena involving RI: (a) horizontal axis tidal turbine 

(http://tidalturbines.wikispaces.com/Tidal+Current+Turbines, accessed on 02.08.2016), (b) solute 

transport in a chlorine contact tank (http://www.cortlandwastewater.org/Cl2ContactFrame.html, 

accessed on 02.08.2016) and (c) gravity current in the atmosphere in Khartoum, Sudan 

(http://www.techeblog.com/index.php/tech-gadget/5-fascinating-things-about-gravity-current-

powered-haboobs, accessed on 02.08.2016) 

 

 

Figure 11 Asymptotically approached R invariant power coefficient cP level for a TEC (Bachant & 

Wosnik, 2016) 

 

http://tidalturbines.wikispaces.com/Tidal+Current+Turbines
http://www.cortlandwastewater.org/Cl2ContactFrame.html
http://www.techeblog.com/index.php/tech-gadget/5-fascinating-things-about-gravity-current-powered-haboobs
http://www.techeblog.com/index.php/tech-gadget/5-fascinating-things-about-gravity-current-powered-haboobs
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Figure 12 Complete mixing in a contact tank: variation of curve area discrepancy index with scale and 

discharge for (a) complete mixing and (b) plug flow (Teixeira & Rauen, 2014, with permission from 

ASCE) 

 

 

Figure 13 Gravity current investigated with (a) set-up based on arrested gravity current method and (b) 

power spectra Gxx(f) revealing deviations of low from high R (self-similar) flow data measured in most 

energetic region at current front (reproduced from Parsons & García, 1998, with the permission of AIP 

Publishing) 

 


