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Abstract

The online bin packing problem is a well-known bin packing variant which re-

quires immediate decisions to be made for the placement of a lengthy sequence

of arriving items of various sizes one at a time into fixed capacity bins with-

out any overflow. The overall goal is maximising the average bin fullness. We

investigate a ‘policy matrix’ representation which assigns a score for each deci-

sion option independently and the option with the highest value is chosen for

one dimensional online bin packing. A policy matrix might also be considered

as a heuristic with many parameters, where each parameter value is a score.

We hence investigate a framework which can be used for creating heuristics via

many parameters. The proposed framework combines a Genetic Algorithm op-

timiser, which searches the space of heuristics in policy matrix form, and an

online bin packing simulator, which acts as the evaluation function. The em-

pirical results indicate the success of the proposed approach, providing the best

solutions for almost all item sequence generators used during the experiments.

We also present a novel fitness landscape analysis on the search space of poli-

cies. This study hence gives evidence of the potential for automated discovery

by intelligent systems of powerful heuristics for online problems; reducing the

need for expensive use of human expertise.
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learning systems, noisy optimization.

1. Introduction

There are many problems in which decisions have to be made without fully

knowing their future implications, hence, the use of a heuristic ‘dispatch pol-

icy’ is common in such situations. Heuristics are usually designed by an expert

through a trial and error process particularly for solving the problems from a

specific domain. Since the time-consuming nature of the overall process, au-

tomated generation of heuristics has been of interest to both academics and

practitioners (Ross, 2005; Chakhlevitch and Cowling, 2008; Burke et al., 2009).

The previous work of Özcan and Parkes (2011) provided an approach for the

automatic production of heuristics. The authors formulated the whole process

as a special type of parameter tuning (Smit and Eiben, 2009; Yarimcam et al.,

2014) in which the number of parameters is much larger than usually considered.

This growth in the number of parameters is due to the use of a matrix encoding

as a heuristic which represents various potential decisions. In a way, a ‘policy

matrix’ defines an ‘index policy’ (e.g., Gittins (1979)) covering the possible

observed states. A potential decision is given a score separately of other decisions

and the decision with the largest score based on a given state is selected.

The online bin packing problem (Coffman et al., 1997; Csirik and Woeginger,

1998) requires immediate decisions to be made for the packing of a lengthy se-

quence of arriving items of various sizes one at a time into fixed capacity bins

without any overflow. In this work, we particularly study the well-known online

bin-packing problem, creating a policy that is based on using a (large) matrix1

of ‘heuristic scores’. An observed state for online bin packing considers the item

to be packed and each open bin in which that item can fit gets a score from the

policy matrix based on its remaining space and the highest value option (open

bin) is chosen for packing. The policy matrix can be viewed as a heuristic with

1Here, the term ‘matrix’ is used as a convenience for a 2-d array; there is no implication

of it being used for matrix/linear algebra
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many parameters requiring optimization yielding scores which can achieve the

highest bin fullness in the overall. We describe a framework which allows the

use of an optimiser for ‘Creating Heuristics viA Many Parameters’ (CHAMP)

and online bin packing simulator that can be used as an evaluation function

for a given policy on a given problem instance. Packing problem instances are

specified in terms of a specified bin capacity and a stochastically generated

sequence of item sizes taken from a specified range. For specific instance gener-

ators, good policies are found using a Genetic Algorithm (GA) as the optimiser

under the CHAMP framework to search the space of matrices, with the matrix-

based policies being evaluated directly by packing a (large) number of items.

The proposed approach can also be considered as an intelligent expert system

which captures the decision-making ability of a human expert as a policy matrix

and uses a GA to automatically create packing heuristics for online bin packing

with the goal of producing better performing packing heuristics than the human

designed ones.

The primary result (reported in Özcan and Parkes (2011) and Asta et al.

(2013a)) is that the GA finds matrices for the specific packing problems that

perform significantly better than the standard general-purpose heuristics such as

first and best fit (Rhee and Talagrand, 1993; Coffman Jr et al., 1999). Yarimcam et al.

(2014) showed that applying a parameter tuning approach does not match the

performance of GA in the overall. Asta et al. (2013b) showed that k-means clus-

tering can be used to generalise the behaviour of GA for solving a given online

bin packing problem. Still, GA performed the best. Asta and Özcan (2015)

embedded a tensor based learning approach into GA to adapt the mutation

rate for each locus. In this paper, we firstly clarify some potentially confusing

and counter-intuitive issues in our search methodology and so our experimental

design which is different than the previous studies. We then investigate vari-

ous parameter settings for the proposed policy matrices, including integer and

binary settings, as well as two different initialisation schemes.

We also conducted, and present here, a fitness landscape analysis (Wright,

1932; Tavares et al., 2008) to better understand the performance of the proposed
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algorithm in relation with the policy matrix representation. To the best of our

knowledge, this is the first study on fitness landscape analysis on the search space

of online bin-packing policies. A fitness landscape is obtained by associating a

fitness value indicating the quality of a solution with each point in the search

space, on which a neighborhood is defined. In a standard landscape analysis it

is the direct solution space that is considered; the novelty of the study here is

that instead it is in the space of the heuristics that are used to construct the

solutions. It is generally not practical to cover all points in the search space,

since the number of points often grows exponentially with respect to the size

of a problem. Hence, except for the instance generator with ‘small’ capacity,

sampling is used. Naturally, as standard for fitness landscape analysis, the

results are based on a particular neighbourhood (which depends mainly on the

solution representation), as well as the move operators employed.

We emphasise that we are aiming to optimise the performance of the heuris-

tic when averaged over many sequences; this is quite different from heuristics

(for example, ‘Harmonic heuristics’, Richey (1991)) designed to be approxima-

tion algorithms and so optimise the worst performance achieved over all possible

sequences. Also, standard methods for policy creation in stochastic processes

(Markov chains, reinforcement learning, etc) are likely to be able to generate

good policies in some simpler cases (e.g., Gittins (1979)). However, our driv-

ing motivation is to form the basis for evolutionary and other relevant search

methods to aid in the generation of heuristics and heuristic policies for complex

situations (and out of the reach of analytical methods). For example, situa-

tions when sequences are finite (though long) rather than the infinite limit case

usually considered in stochastic processes theory (Gittins et al., 2011), or com-

plex non-Markovian time-varying distributions, etc. Such complex situations

might include practical combinatorial optimisation problems using constructive

heuristics, or queuing networks.

It is important to note we will be creating heuristics for specific (stochastic)

generators of item sequences. That is, each usage of CHAMP-GA will be with

some specific method of generating sequences of items, the fitness of a heuristic
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will be with respect to that generation method, and so the resulting automat-

ically generated heuristic (policy matrix) will be targeting such a generator —

though of course the generator is stochastic and so each time the generator is

used it will give a different sequence of item sizes, and the policy matrix should

work well on all the different sequences.

Our aim is precisely to develop methods that can adapt to specific properties

of the sets of sequences of items and exploit their properties. Emphasising again,

that policies are evolved to learn from and hence work for (sequences produced

by) a generator, and not for only one specific sequence. Heuristics tailored

to specific generators will generally be expected to perform better than ones

aiming to be work on all generators. We believe that such creation of tailored

or specialised heuristics is practically useful because users are likely to have

input problems with particular characteristics and so would like to be able to

develop heuristics that are best able to exploit those characteristics, but would

also like to be able to do so automatically, without the need to hire an expert in

heuristics. This is particularly relevant if the characteristics of their problems

should change over time; in which case, a system should be able to cheaply

re-tune the heuristics without having to go back to a human expert. That is,

a goal is to develop systems for the creation of heuristics that can reliably, and

automatically, adapt to many different situations, without the need for external

interventions by experts.

The structure of the paper is as follows: Section 2 gives a brief review

and pointers into the literature of existing work on firstly bin-packing and also

computer-based methods to help design heuristics. Section 3.1 gives basic def-

initions of the bin-packing problem, the instance generators that we use, and

the existing standard heuristics. Section 3 specifies the policy matrix-based

CHAMP framework we use in order to define the packing heuristics. Section 3.4

describes the GA search method we use to find good policies. The experimental

methodology is explained in Section 4. Section 5 gives the main results on exam-

ples that are large enough to allow policy improvements, but still small enough

that the structure of the resulting policies can be (partially) understood. More-
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over, a fitness landscape analysis on the search space of policies for online bin

packing is provided. Section 6 summarises our results and their implications,

and then discusses future plans.

2. Related Work

We now briefly cover the bin packing problem and relevant issues, followed

by existing methods for automated discovery of heuristics from the scientific

literature.

2.1. Bin packing

One dimensional (offline) bin packing is a well known NP-hard (Garey and Johnson,

1990) combinatorial optimisation problem. Solving this problem requires pack-

ing of a number of pieces with given sizes into a minimal number of fixed capac-

ity bins. This process can also be considered as partitioning (grouping) a set

of integer values into subsets (bins) in such a way that the sum of the integers

within a subset does not exceed the fixed capacity. The complete information,

including the number of pieces and size of each piece, is known to the solution

approaches for the generic one dimensional offline bin packing.

A range of solution approaches from approximation algorithms to meta-

heuristic optimisation methods has been proposed for bin packing. Metaheuris-

tics provide algorithmic guidelines used for heuristic optimisation (Sörensen and Glover,

2013) and are commonly preferred (Coffman Jr et al., 1999), if the exact ap-

proaches fail to produce a solution with reasonable quality within a reasonable

time. The representation issue is one of the aspects in bin packing which has

been addressed by a number of previous studies, considering that it is a cru-

cial component in metaheuristic design. Falkenauer (1996) introduced a group

encoding for representing solutions used within a memetic algorithm hybridis-

ing a genetic algorithm with local search based on the branch and bound re-

duction algorithm of Martello and Toth (1990). Ülker et al. (2008) proposed a

‘grouping genetic algorithm’ framework which utilises a linear linkage encoding

with the goal of overcoming the redundancies in group encoding. More on bin
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packing can be found in Coffman et al. (1997); Csirik and Woeginger (1998).

Coffman Jr. et al. (2013) overviews approximation algorithms for bin packing.

The online bin packing problem is a variant in which the items are encoun-

tered one at a time. In this study, given the size of the piece, we deal with the

problem of immediately deciding into which open bin or whether to open a new

bin to pack that item at each step before the next item arrives (Lee and Lee,

1985; Richey, 1991). Each decision is made with incomplete information, not

knowing what the number of forthcoming pieces and their sizes.

In online one dimensional bin packing, each bin has a capacity C > 1 and

each item size is a scalar in the range [1, C]. More specifically, each item can be

chosen from the range [smin, smax] where smin > 0 and smax ≤ C. The items

arrive sequentially, meaning that the current item has to be assigned to a bin

before the size of the next item is revealed. A new empty bin is always available.

That is, if an item is placed in the empty bin, it is referred to as an open bin

and a new empty bin is created. Moreover, if the remaining space of an open

bin is too small to take in any new item, then the bin is said to be closed.

There are well established heuristics for offline as well as online bin packing

among which are First Fit (FF), Best Fit (BF) andWorst Fit (WF) (Johnson et al.,

1974; Rhee and Talagrand, 1993; Coffman Jr et al., 1999). The FF heuristic

tends to assign items to the first open bin which can afford to take the item.

The BF heuristic looks for the bin with the least remaining space to which the

current item can be assigned. Finally, WF assigns the item to the bin with

the largest remaining space. Harmonic based online bin packing algorithms

(Lee and Lee, 1985; Richey, 1991; Seiden, 2002) provide a worst-case perfor-

mance ratio better than the other heuristics. Assuming that the size of an item

is a value in (0,1], the Harmonic algorithm partitions the interval (0,1] into

non-uniform subintervals and each incoming item is packed into its category de-

pending on its size. Integer valued item sizes can be normalised and converted

into a value in (0,1] for the Harmonic algorithm.
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2.2. Hyper-heuristics for bin packing

Hyper-heuristics are high level search and optimisation methods which ex-

plore the space formed by low level heuristics or heuristic components for solving

complex problems (Burke et al., 2003; Ross, 2005; Özcan et al., 2008; Chakhlevitch and Cowling,

2008; Burke et al., 2013). Burke et al. (2010) classified hyper-heuristics into

two main categories; methodologies to select or generate heuristics. This study

presents an approach of the latter class used for automated design of heuristics.

Here, we cover some relevant work from the scientific literature.

Ross et al. (2002) investigated a learning classifier system, namely Michi-

gan type XCS as a hyper-heuristic generating a hyper-heuristic for offline bin

packing. The system is trained across a set of instances to automatically

discover the best rule (as a hyper-heuristic) which is capable of identifying

the appropriate packing heuristic to use at each decision point based on pre-

defined state features. The XCS approach utilises a reinforcement learning

scheme rewarding rules performing well at each step during the search process.

Maŕın-Blázquez and Schulenburg (2006) improved this approach by extending

the rewarding mechanism to consider multiple successive steps. In both stud-

ies, a large number of instances was split into training and test cases, where

the fraction of ‘unseen’ test instances used was much smaller than the training

cases.

Pillay (2012) evaluated the performance of variants of an evolutionary al-

gorithm as hyper-heuristics using a variable length representation encoding a

(set of) sequence of low level heuristics for bin packing. The empirical results

show that the best performing hyper-heuristic co-evolves two separate circular

sequences of heuristics, one to choose an item while the other one to choose the

appropriate bin.

The most commonly used generation hyper-heuristic in the scientific litera-

ture is Genetic Programming (GP) (Burke et al., 2009) which evolves computer

programs based on given components. GP has been applied to many different

challenging problems (Poli et al., 2008). Sim and Hart (2013) studied single

node genetic programming to generate individual as well as cooperative heuris-
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tics for bin packing. The authors evaluated the proposed approach on a large

collection of problem instances and report the success of the evolved cooperative

heuristics.

A particularly relevant study is provided in Burke et al. (2006). The genetic

programming approach is used to evolve heuristics to decide which bin to place

a given item. The experimental results showed that GP can produce a heuristic

which delivers a performance close to the first fit heuristic. The authors con-

firmed two issues in their GP approach. Firstly, GP evolved heuristics in tree

form yielding very large structures with similar performance, suffering from a

well known issue, namely the code-bloat (Bernstein et al., 2004). Secondly, the

tree representation yielded redundant solutions. For example, four trees were

evolved with depth of 2 delivering similar performances to the first fit heuristic.

The follow up work in Burke et al. (2007b) obtained new heuristics generated by

genetic programming after a training session and tested those online bin pack-

ing heuristics across a collection of randomly generated instances. The authors

studied the behaviour of the genetic programming approach as the number of

items in the problem instances are varied used in the training against testing

phases. The results illustrated that the performance of evolved heuristics im-

proves with the increasing size of training and test problems as expected. The

new heuristics discovered by GP delivered a competitive performance to the best

fit heuristic. Burke et al. (2007a) extended their study further establishing the

compromise between performance and generality level of a generated heuristic

for online bin packing.

We also note that a distinct theoretical advantage of the ‘policy matrix’

approach is that the search space is then at least finite (the number of different

matrices is finite though large). In contrast, in the GP approach using functions,

the space of functions is infinite – essentially due to the large number of different

functions that can generate the same policy matrix and so the same decisions.

See Parkes et al. (2012) for a study of the relations of functions.
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3. Solution Methodology

3.1. Online Bin Packing Problem Generator

The online bin packing instances produced by a parametrised stochastic

generator are represented by the formalism: UBP(C, smin, smax, N) (adopted

from Özcan and Parkes (2011)) where C is the bin capacity, smin and smax are

minimum and maximum item sizes and N is the total number of items. For

example, UBP(15, 5, 10, 105) is a random instance generator and represents a

class of problem instances. A problem instance is a sequence of 105 integer

values, each representing an item size drawn independently and uniformly at

random from {5, 6, 7, 8, 9, 10}. The probability of drawing exactly the same

instance using a predefined generator of UBP(C, smin, smax, N) is 1/(smax −

smin+1)N , producing an extremely low value of 6−100000 for the example. Note

that there are various available instances in the literature (Scholl et al., 1997;

Falkenauer, 1996), however, these instances are devised for offline bin packing

algorithms and usually consist of a small number of items.

There are two primary ways of utilising random instance generators. A com-

mon usage is to create a generator and then generate around a few dozen in-

stances which then become individual public benchmarks. Consequently, meth-

ods are tested by giving results on those individual benchmark instance. In

our case, the aim is to create heuristics that perform well on average across all

instances (where an instance is a long sequence of item sizes) from a given gen-

erator. (Hence, for example, we believe it would not serve any useful purpose to

place our specific training instance sequences on a website.) An instance gen-

erator generally contains a Pseudo-Random Number Generator (PRNG) which

needs be supplied with a seed in order to create an instance in the sense of a

specific sequence of item sizes.

The choices for UBP represent distributions and not instances of a specific

sequence of items; the actual sequence is variable and depends on the seed given

to the random number generator used within the item generator. That is, within

the instance generator one can use different seed values to generate a different
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sequence of items each time the same UBP is used. Indeed, this is the case

when we test our approach as it will be seen in the coming sections.

3.2. Policy Matrix Representation

In this study, a packing policy corresponding to a packing heuristic for a

given distribution of items (UBP(C, smin, smax, N)) is defined using a matrix,

which will be referred to as a policy matrix. We will use the following notation:

• W represents a policy matrix for a given UBP.

• Wr,s is an integer score at the rth row and sth column of the policy matrix

W , where smin ≤ s ≤ smax.

• Wr,s ∈[wmin,wmax], that is, 1 ≤ wmin ≤ Wr,s ≤ wmax ≤ C.

In W , a score Wr,s gives the priority of assigning the current item size s to a

remaining bin capacity r. Given such a matrix, our approach is to simply scan

the remaining capacity of the existing feasible open bins and select the first one

to which the highest score is assigned in the matrix (Algorithm1). A feasible

open bin is a bin with enough space for the current item size, say r ≥ s and

includes the always-available new empty bin.

It is clear that the policy matrix is a lower triangular matrix as elements

corresponding to s > r do not require a policy (such an assignment is simply not

possible). Therefore, only some elements of the policy matrix which correspond

to relevant cases for which a handling policy is required are considered. We refer

to these elements as active entries while the rest are inactive elements. Inactive

entries represent a pair of item size and remaining capacity which either can

never occur or are irrelevant.

The active entries along each column of the policy matrix represent a policy

with respect to a specific item size and the scores in each column is independent

from that of other columns as the policy for a certain item size can be quite

different than that of other item sizes.

As an example to clarify how a policy matrix functions, consider that we

have a policy matrix for UBP(20, 5, 10, 105) as demonstrated in Figure 1. In
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Algorithm 1: Applying a policy matrix on a bin packing instance

1 In : W : score matrix;

2 for each arriving item size s do

3 maximumScore = 0;

4 for each open bin i in the list with remaining size k do

5 if k > s then

6 if Wk,s > maximumScore then

7 maximumScore = Wk,s;

8 maximumIndex = i;

9 end

10 end

11 end

12 assign the item to the bin maximumIndex;

13 if maximumIndex is the empty bin then

14 open a new empty bin and add to the list;

15 end

16 update the remaining capacity of maximumIndex by subtracting s

from it;

17 if remaining capacity of maximumIndex is none then

18 close the bin maximumIndex;

19 end

20 end
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this matrix, wmin = 1 and wmax = 12, which is the maximum number of

active items in a column. During the packing process, an item with a size of

5 arrives. The column 5 in the figure corresponds to this item and is used for

scoring different options. The column entries represent the scores associated

to bins of various remaining capacities. Assume that, currently, two bins with

remaining sizes of 9 and 10 are open (the empty bin is always considered to

be available). Each one of these bins are associated with scores of 8 and 4

respectively. The score associated to the empty bin is 4. The highest score is

thus 8 which corresponds to a remaining bin size of 9. Hence, the incoming item

is placed into this bin.

The last row in the policy matrix contains the score values of the assignment

to the empty bin for various item sizes. For instance, in the previous example,

if the score associated to a remaining bin capacity of 20 (empty bin) was 10

instead of the current value of 4, then a new bin would be opened and the item

would be placed in the new (empty) bin.

The tie breaking strategy used in this paper is first fit. (Other tie break

policies are possible, but will be explored elsewhere - our main aim here is to

demonstrate the methodology and basic results, rather than find the absolute

best policy). The first bin is the one whichever has been opened recently. Ties

occur when equal scores are associated to bins with different capacities. For

example, assume that an item of size 8 arrives. The column corresponding to

the new item is the column number 8 which is used for scoring. Also assume

that in addition to the empty bin which is always available, bins of remaining

capacity of 8, 9 and 10 are open. The scores associated to each of these bins

are 2 (for the empty bin), 7, 3 and 7, respectively. In this situation the first bin

with the highest score, say, the bin with the remaining capacity of 8 is chosen

for item placement. The bin with a remaining capacity of 10 which has an equal

score, and is a tie, is ignored along with the empty bin.
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r\s  5  6  7  8  9 10  

 5: 11  .  .  .  .  .   

 6: 10  8  .  .  .  .   

 7:  2  3 10  .  .  .   

 8:  8  5  5  7  .  . 

 9:  8 11  1  3  3  . 

10:  4  1  4  7  5  2 

11:  4  9  1  1  8  3 

12:  3  4  6  3  1  1 

13:  7 11  1  3  4  7 

14: 12 10  8  2  7  1 

15:  1  2  4  8  5  2 

16:  .  .  .  .  .  . 

17:  .  .  .  .  .  . 

18:  .  .  .  .  .  . 

19:  .  .  .  .  .  . 

20:  4  9  4  2  2  5 

Figure 1: An example of a policy matrix for UBP(20, 5, 10, 105)

3.3. A Framework for Creating Heuristics via Many Parameters (CHAMP)

A policy matrix represents a heuristic (scoring function). Changing even a

single entry in a policy matrix creates a new heuristic potentially with a different

performance. Assuming that each active entry of a policy matrix is a parameter

of the heuristic, then a search is required to obtain the best setting for many

parameters (in the order of O(C2)).

In this study, we propose a framework for creating heuristics via many pa-

rameters (CHAMP) consisting of two main components operating hand in hand:

an optimiser and a simulator as illustrated in Figure 2. CHAMP separates the

optimiser that will be creating the heuristics and searching for the best one from

the simulator for generality, flexibility and extendibility purposes. The online

bin packing simulator acts as an evaluation function and measures how good a

given policy is on a given problem.

3.4. Evolving Policy Matrices under CHAMP

Policy matrices are evolved using a Genetic Algorithm (GA) as the optimiser

component of the CHAMP framework. Each individual in the GA framework

represents the active entries of the score matrix and therefore each gene carries

an allele value in [wmin, wmax]. The population of these individuals undergoes

the usual cyclic evolutionary process of selection, recombination, mutation and
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Figure 2: CHAMP framework for the online bin packing problem.

evaluation. Each individual (policy) is evaluated by applying it to the bin

packing problem instance as shown in Algorithm 1 using the following fitness

function:

Average bin fullness, Faf : Considering that bin t has a fullness equal

to ft, t ∈ {1, . . . , B} then Faf is the value of the occupied space, averaged

over the number of used bins. Faf = 1/B
∑

t ft, where B is an integer

value indicating the number of bins that are used.

At each step, a uniform crossover operator is applied to two parents chosen

using the tournament selection method with a tour-size of 2. The traditional

mutation operator perturbs two newly generated candidate solutions (offspring)

by changing each allele value at a given locus to another value with a probability

of 1/L, where L is the number of active entries in a policy matrix. Then

the elitist steady state genetic algorithm replaces two worst individuals of the

population with the best two of parents and offspring. This evolutionary process

continues for a fixed number of iterations.

The settings for the GA optimiser is given in Table 1.

The GA and the fitness evaluator communicate through the matrices; the GA

saves an individual into a matrix and invokes the online bin packing program.

The packing algorithm uses the matrix as a policy and evaluates its quality

using an instance produced by the instance generator UBP(C,smin,smax,10
5).

The fitness of an individual (policy/heuristic) is computed and then saved into
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Table 1: Standard GA parameter settings used during training

Parameter Value

No. of iterations 200

Pop. size ⌈C/2⌉

Selection Tournament

Tour size 2

Crossover Uniform

Crossover Probability 1.0

Mutation Random perturbation

Mutation Rate 1/L

No. of trials 1

another file for GA to read from. The initial population is randomly gener-

ated unless it is mentioned otherwise and the training process continues until

a maximum number of iterations is exceeded. A hyper-heuristic operates at a

domain-independent level and does not access problem specific information (e.g.

see Ross (2005)), thus, the framework we use, as shown in Figure 2, follows the

same structure.

In this paper, in contrast to the previous work (Özcan and Parkes, 2011),

several instance generators for the one dimensional online bin packing problem

have been considered for experiments and N is kept the same during training

and testing phases. Three sets of experiments have been performed which in-

cludes the original policy matrix evolution scheme and two other variations;

one where the encoding is changed to binary and the other where seeding the

initial population with first fit heuristic is considered. In Section 5 the results

of applying the variants of the framework to problems is reported.

4. Experimental Methodology

All our experiments consist of training and test phases. The following sub-

section provides an overview of how the experiments are set up, measures that

are used to evaluate the performance of the algorithms tested and characteristics

of the dataset used in the experiments. Section 4.2 illustrates the motivation
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behind the unconventional training session with a stochastic algorithm.

4.1. Experimental Design

In the training phase, the Genetic Algorithm evolves policies for solving the

instances produced from a particular UBP generator. A training session consists

of a single trial/run. As soon as training is finished, the best policy matrix for

the given UBP generator is stored. In the test phase, the bin packer is executed

for 101 trials each with a different fixed seed using that best policy matrix. At

each trial, a different instance (sequence of item sizes) is produced by the same

UBP generator from the training phase. We provide the average bin fullness

over 101 trials, achieved by a given algorithm as a measure of its performance

on the given UBP generator. Moreover, we have employed a Wilcoxon signed-

rank test as a statistical test for pair-wise performance comparison of two given

algorithms (A and B) based on the fitness values (bin fullness) obtained across

101 trials. The following notation is used. A ≻ / ≺ B (A � / � B) denotes

a (slightly) better/worse performance of the left hand side algorithm and that

this performance difference is (not) statistically significant within a 99% con-

fidence interval based on the Wilcoxon signed-ranked test. In general, a large

number of items, fixed as N = 105, is produced by the chosen instance gen-

erator. However, there are two ‘peculiarities’, specifically, during each round

of training we (generally) use a single long item sequence, and with the seeds

to the (PRNG in the) instance generator being fixed. We clarify these, and

their motivations, later in this section as otherwise they might be found rather

confusing and counter-intuitive.

During the evolutionary process for training, say, in the main cycle of the

GA, when evaluating an individual (a policy matrix) the matrix is given (as

input) to the bin packer program — the bin packer is actually the method that

provides the fitness function, as it evaluates the quality of the policy matrix by

using it to perform packing of a large number of items. The bin packing program

hence needs to generate a sequence of items according to the selected range of

item sizes, and their probabilities. Naturally, it does this using a pseudo-random
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number generator (PRNG) and so needs a ‘seed’ value to initialise the PRNG.

Hence, for any given UBP, or ‘generator instance’, the actual sequence if item

sizes, or ‘sequence instance’, needs the capacity, and min/max item sizes, along

with a ‘seed’ for the PRNG. Naturally, we use different seeds for the training

and the testing — even though they are working on the same generator, the

training and testing will be on different sequences of items. However, different

schemes for the selection of the seeds, and so specific item sequences, can also

have an effect on the training.

A specific seeding scheme has been employed; we keep a list of seed values

stored in a file. When the training starts, in the first generation of the GA, the

first seed value is read from the file and is fed to the bin packing program as the

same seed value for each element of the population. This is repeated for a fixed

number (m) generations (m = 10 in our experiments). Subsequently, the next

number in the list is chosen as the seed value for the upcoming m generations

within the GA. This routine continues until the end of the list is reached at

which point the seed selection procedure starts over from the beginning of the

list. The ‘peculiarity’ of always using the same seed for each training instance,

within the population at each generation, is actually the same as the ‘Common

Random Numbers’ used as a standard technique to reduce variance in simula-

tion and sampling studies. If each element of the population were evaluated

using a different seed, that is with a different sequence of item sizes, then the

variance between these would swamp the differences between the different policy

matrices. We also did explore changing the seed between each generation - so

that the training instance(s) would change, more frequently, however, then the

search performance became a lot worse. This is worthy of further exploration

but we presume it is leading to artificial local minima. Changing the training

seed after a small number of generations seemed to form a good compromise

(we plan to study this in more detail elsewhere). This scheme also bears some

similarity to the well-known method of ‘stochastic gradient descent’ (SGD). e.g.

see Bottou (2012), that is now commonly used in training of artificial neural

nets. SGD works by using an improvement method (gradient descent or hill-
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climbing) but using a small sample of all the potential data, and then regularly

changing the sample. The ‘small’ sample allows it to work quickly, and the

regular change of sample gives a stochastic nature to the search that allows the

escape from local minima. In our case the sample is represented by the seed

that is used, at each generation of the GA, for the evaluation of the elements

of the population, and the regular change of the seed (presumably) allows the

population to escape local minima, and so avoid premature convergence to a

significantly sub-optimal solution.

In this study, we have used a range of online bin packing instance generators

as provided in Table 2. We have performed four sets of experiments. In

the first set of experiments, we used a Genetic Algorithm to generate policy

matrices for online bin packing with a random initial population and compared

the performance of evolved policies and well-known ‘human designed’ heuristics.

In the second set of experiments, we investigated the influence of seeding the

initial population with the first fit policy during training phase on the overall

approach. In the third set of experiments, we looked into the performance of

binary valued policy matrices. Finally, we performed landscape analysis on the

online bin packing problems. To the best of our knowledge, this is one of the

first studies which performs a fitness landscape analysis on the search space of

policies for online bin packing.

Table 2: Problem instance generators of the one dimensional online bin-packing problem which

are included in the experiments.

UBP(6, 2, 3, 105) UBP(15, 5, 10, 105)

UBP(20, 5, 10, 105) UBP(30, 4, 20, 105)

UBP(30, 4, 25, 105) UBP(40, 10, 20, 105)

UBP(60, 15, 25, 105) UBP(75, 10, 50, 105)

UBP(80, 10, 50, 105) UBP(150, 20, 100, 105)
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4.2. Single Trial Training and Horizon Effect

The reason for ever performing a single trial in training (as in Özcan and Parkes

(2011)) is from considerations of what we might call a ‘horizon effect’. This arises

because towards the end (or beginning) of a long sequence of items, the ideal

policy might well change from what is the best in the middle of the sequence.

Hence, the best policy for a short sequence is likely to be different from that

for a long sequence. However, we often want to learn the best policy for an

arbitrarily long sequence from a given distribution, and so train on the largest

sequence (of fixed length) that is practical in the time allowed. Suppose that

we take a concrete example, and have a fixed computational budget for the

training phase, with only enough time to pack 105 items. In this case, we need

to decide whether the training trial should be a single trial with 105 items, or

R trials of 105/R items each. However, because of the horizon effect, the choice

of many short runs is likely to learn a policy that is different from that of a

single run. One might think of the many short runs as consisting of a long run

but interrupted with ‘restarts’ in which all bins are closed at regular intervals;

however, such restarts are artificial (in the context of trying to learn policies

for long runs) and so will distort the learning process. Accordingly, although it

does seem counter-intuitive, there is good reason for learning from a single long

training sequence as opposed to learning from many (but shorter) ones. Note

that a single training run of 105 items does use the matrix 105 times and so is

far from a ‘single usage’.

To illustrate the influence of using small (finite) and large (infinite) number

of items while testing a policy, we have manually generated a “good” policy

which enforces that a bin will never become closed unless is perfectly filled for

UBP(9, 1, 9, N), as shown in Figure 3. This policy was expected to asymptoti-

cally converge to an average bin fullness of 100% (Faf=1.0) as N grows towards

infinity (a large value).

Figure 4(a) clearly shows the horizon effect when the policy is tested on 101

instances produced by UBP(9, 1, 9, N) for various N values. As N goes to 107,

the expected outcome has indeed been observed and the “good” policy almost
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Figure 3: A “good” policy matrix for UBP(9, 1, 9, N)

always generates a perfect solution (Faf=1.0) for any given instance produced by

UBP(9, 1, 9, N). Another conclusion we can derive is that the best polices could

be totally different for very short sequences. Also, Özcan and Parkes (2011)

reported that the performance difference between the worst and best policies

obtained from multiple runs on a given instance generator is small; the effect

of the choice of the seed to create the single training run does not significantly

affect the overall results.

In order to reinforce further why we have chosen to perform a single long

training run (large number of items), rather than short multiple runs, we have

trained our system executing the bin packer program using 2 × 103, 102 and 1

randomly generated instance(s), each containing 50, 103 and 105 items, respec-

tively and tested the best policy generated by GA, FF and BF on 101 instances

of UBP(9, 1, 9, N) for various N . The setting for each short multiple runs en-

sures that the total number of items used during training is maintained, that

is 105. Figure 4(b) illustrates the performance of each heuristic in terms of

average (1-Faf ) for each generator UBP(9, 1, 9, N). The plot shows that policy

matrices trained and tested on the same number of items result with better or

similar average bin fullness when compared to BF/FF. Moreover, BF/FF beats

the evolved best policy for N = 50. However, an evolved policy regardless of

the setting for training beats BF/FF as N goes to ‘infinity’ (effectively 106 or

more). The policy matrix trained by a single run with 105 items yields the best

result as N grows towards infinity. The performance of that evolved policy at

N = 105 is close to its N = 106 or N = 107 value, which suggests that the
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Figure 4: (a) The performance of a “good” policy matrix on UBP(9, 1, 9, N) for different

values of N (number of items). (b) The average performance of BF, FF, and the best policies

obtained after training with 50, 103 and 105 items while the bin packer program is executed

for 2 × 103, 102 and 1 time(s), respectively, on UBP(9, 1, 9, N) for various N . The best

policy obtained with a particular configuration by GA is denoted as ‘PN(no. of items,no. of

repetitions)’. The x-axis uses a log-scale.

training with a single long run is viable.

5. Results

The analyses of the results obtained from four sets of computational exper-

iments are provided in this section.

5.1. Analysis of Genetic Algorithms for Policy Matrix Generation

This study utilises a non-traditional experimental methodology as explained

in Section 4, which is different than the experimental methodology used in

Özcan and Parkes (2011). The previous work ignored the horizon effect and

applied the best evolved policy found in 50 trials with N = 500 items during

the training phase. Moreover, the experiments in Özcan and Parkes (2011) were

performed on three instance generators. In this study, an extensive analysis of

the GA methodology is performed by applying it to a wider range of bin packing

instance generators (Table 2). The GA framework operating based on the pro-

posed experimental methodology is referred to as GAOriginal throughout this
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paper. During training, GAOriginal is used to find a high quality policy matrix

for each instance generator (UBP). An example of the best policy matrices of

some selected instance generators achieved in the training phase is demonstrated

in Figure 5. The percentage average bin fullness (over 101 trials) achieved by

each evolved policy matrix for each instance generator during the test phase can

be seen in Table 5.

(a) UBP(20, 5, 10, 105) (b) UBP(30, 4, 20, 105) (c) UBP(75, 10, 50, 105)

Figure 5: The best policy matrices achieved by GAOriginal framework for selected problem

generators

As in Özcan and Parkes (2011), FF, BF and WF heuristics are also applied

to the set of problem instances generated by various UBPs. This serves as

a baseline for comparison purposes. In this study, for completeness, we have

additionally tested the Harmonic algorithm (Lee and Lee, 1985) on the same

instance generators. The results show that FF, BF and WF outperform Har-

monic (see Table 5) on all instance generators and this performance difference

is statistically significant in all cases based on the Wilcoxon signed-rank test.

This is understandable as the Harmonic algorithm is designed for the worst case

over all sequences, rather than the average case.

FF, BF and WF heuristics can also be represented as policy matrices. Fig-

ure 6 shows a policy matrix of each heuristic for the instance generator UBP(20, 5, 10, 105).

It is easy to note that the policy matrices corresponding to FF, BF and WF
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heuristics are smooth matrices. The score values change monotonically across

the rows and/or columns in BF and WF matrices whereas the structure of the

FF policy matrix is a flat one. Contrary to the smooth structure of simple policy

matrices (FF, BF and WF), the structure of the better performing policy ma-

trix discovered by GAOriginal is “irregular” or even “non-aligned spiky” (rough).

Nevertheless, GAOriginal outperforms FF, BF and WF on all instance classes

(all the UBPs). This observation applies to all policy matrices obtained from

GA for each problem generator and gives evidence for two main conclusions:

1. There is a need for search-based discovery of the structures within suc-

cessful policy matrices, since although the rules are easy to derive from

a given policy matrix, correlations between item sizes and remaining bin

space needs to be detected and this would be hard to create by hand in

general.

2. It is unlikely for a ‘nice’ arithmetic function of remaining capacity and

item size to represent those structures.

This representational issue might well explain why previous work by Burke et al.

(2006) was only able to equal the performance of standard heuristics

whereas we significantly outperform them.

(a) FF (b) BF (c) WF (d) GAOriginal

Figure 6: Smooth FF, BF and WF policy matrices for solving UBP(20, 5, 10, 105) when

compared to the spiky structure of the (much better performing) policy matrix achieved

by GAOriginal for the same UBP.
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However, we have only demonstrated that some of the best matrices can

be ‘spiky’ (‘rough’). We are not claiming here to have shown that all well-

performing matrices need to be ‘spiky’; but only that it should not be assumed

policies will necessarily have a nice clean structure. It might well be that ‘nicer’

matrices do also exist and maybe also have a good performance.

In this study, our focus is to automatically generate good policies using GA

without requiring any human expertise. However, ‘human intuition’ still can be

used before or after the training process and whether or not any such approach

would yield better performing policies is not trivial. Hence, initially, we tested

a simple idea of setting entries of ‘perfect fit’ cases to the maximum priority

(score) after training, so if there is a bin with a remaining size equal to the

size of the incoming item, the item is placed into that bin. As an example

case study, we applied the idea with UBP(20,5,10,105). The best policy matrix

evolved by GA as reported in Özcan and Parkes (2011) for this generator is

converted into a modified policy matrix with ‘human intuition’ as illustrated in

Figure 7. This approach did not alter the performance of the original policy

matrix at all and produced the same bin fullness. A similar phenomenon is

observed for UBP(6,2,3,105), as well.

Additionally, we have considered the case of adding human insight before

training. In the following section, we start the search process using policy

matrices which are ‘smooth’ and ‘nice’ to see the structures of resultant good

policy matrices generated by CHAMP-GA.

Regarding the irregular structure of the automatically-discovered matrices,

they are not totally devoid of any visible patterns. For example, consider the

good matrix Figure 7(left). Note that a matrix entry of ’1’ is less than the value

of ’2’ for a new bin and so such entries correspond to decisions that will never be

taken (as a new bin is always available). The upper off-diagonal corresponds to

entries that lead to a full bin and so is generally preferred. Below this the next

4 off-diagonals correspond to entries that would lead to placing an item into a

bin that can never subsequently be used – for example from (size,remaining-

space) between (5,6), (5,9), (10,11) and (10,14). In this band the automated
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r\s 5 6 7 8 9 10 5 6 7 8 9 10

5: 3 . . . . . 6 . . . . .

6: 1 5 . . . . 1 6 . . . .

7: 1 1 4 . . . 1 1 6 . . .

8: 1 1 1 2 . . 1 1 1 6 . .

9: 1 1 1 1 3 . 1 1 1 1 6 .

10: 1 1 1 1 2 2 1 1 1 1 2 6

11: 2 3 1 1 3 2 2 3 1 1 3 2

12: 4 4 2 1 1 1 4 4 2 1 1 1

13: 1 2 4 2 1 1 1 2 4 2 1 1

14: 2 4 2 2 1 1 2 4 2 2 1 1

15: 1 5 3 2 2 1 1 5 3 2 2 1

... ...

20: 2 2 2 2 2 2 2 2 2 2 2 2

Figure 7: One of the best evolved matrices for UBP(20,5,10,105) after training on the left and

the modified policy matrix by setting the diagonal entries (where remaining size equals to the

item size) to the highest score on the right.
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search has selected most of the entries to be 1 and so never taken; but note

that it did not take all the entries to be 1, leading to decisions to deliberately

lose some available space. For example, (size=9,capacity=10) has a value of 2,

and then the FF tie-breaking will mean it is preferred to opening a new bin.

In manual experiments we found that this is essential – if such cases are not

allowed then the performance is severely worse. Hence, there is some regularity

in that this ‘losing-space band’ must be sparsely used, but cannot be removed

entirely. Presumably, an important role of the automated search is to discover

how best to make such decisions.

5.2. Genetic Algorithms for Policy Matrix Generation Using a Different Initial

Population

We have repeated the previous set of experiments with a different population

initialisation scheme, specifically by using a FF policy matrix. This modified

GA framework will be referred to as GAFFinit which utilises the human in-

sight before training by starting the search from a human designed heuristic.

After applying the training and test sessions as described before, the achieved

results show that GAFFinit performs worse than the original GA framework

(GAOriginal). The results can be seen in Table 5. Also best policy matrices of

some instance classes, achieved during the evolution are shown in Figure 8. A

Wilcoxon signed-rank test with a confidence level of 99% is conducted using two

GA frameworks. Table 3 shows that GAOriginal performs significantly better

than GAFFinit over all the instance generators except the instances generated

by UBP(30, 4, 25, 105) and UBP(75, 10, 50, 105).

Looking at the figures one can immediately conclude that the under-performance

of GAFFinit might be due to the fact that FF initialisation scheme generates

bias and leads the entire population to some local optima were the population

is converged. This explains why the majority of active entries in policy matrices

of Figure 8 have the score value 1 (coloured black). Looking at the FF policy

matrix in Figure 6, it is easy to notice that all the active entries have their

values set to 1. It seems that the cycle of evolution has not been able to emerge
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Table 3: Performance comparison between GAOriginal and GAFFinit over 101 trials based

on the Wilcoxon signed-ranked test.

Original vs FFinit

UBP(6, 2, 3, 105) −

UBP(15, 5, 10, 105) �

UBP(20, 5, 10, 105) ≻

UBP(30, 4, 20, 105) ≻

UBP(30, 4, 25, 105) ≺

UBP(40, 10, 20, 105) ≻

UBP(60, 15, 25, 105) ≻

UBP(75, 10, 50, 105) ≺

UBP(80, 10, 50, 105) ≻

UBP(150, 20, 100, 105) ≻

from this local optima.

High quality policy matrices discovered by GAFFinit for different problem

distributions are less ‘spiky’ than the ones discovered by GAOriginal . However,

GAOriginal performs better than GAFFinit. Hence, this set of experiments

indicate that there might be a trade-off between the ‘smoothness’/‘roughness’

of the matrix structure and the performance.

5.3. Evolving Binary Policy Matrices

In our next set of experiments, we have devised another variant of the orig-

inal GA framework (GAOriginal). This variant is particularly considered to

investigate the effect of the value on the parameter, wmax, that is, the upper

bound of the scores that an active matrix entry can take. In the previous study

(Özcan and Parkes, 2011) wmax is set to be the largest number of active entries

in each column. We obviously need no more than n different score values to dis-

tinguish between n entries. However, we might not need such high a resolution.

Also, a high value for wmax corresponds to a larger and potentially redundant

landscape. Therefore, reducing wmax to smaller values may speed up the learn-
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(a) UBP(20, 5, 10, 105) (b) UBP(30, 4, 20, 105) (c) UBP(75, 10, 50, 105)

Figure 8: The best policy matrices achieved by GAFFinit for selected problem generators

ing process and allow further analysis of the proposed approach. To this effect,

wmax is set to its minimum value (wmax = 2) resulting in a binary policy matrix

where the active entries take either 1 or 2. That is why we will refer to this

variant as GABinary . All other parameter settings for GABinary is identical to

GAOriginal (Table 1). Similar to previous experiments, the result achieved by

this framework is presented in Table 5 and the best policy matrices for some

instance generators, achieved during the evolution are shown in Figure 9.

(a) UBP(20, 5, 10, 105) (b) UBP(30, 4, 20, 105) (c) UBP(75, 10, 50, 105)

Figure 9: The best policy matrices achieved by GABinary framework for selected problem

generators
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It is interesting to observe that by reducing wmax (i.e. setting wmax = 2)

slightly better results are achieved compared to the original framework (GAOriginal).

This confirms the existence of redundancies in the matrix landscape and its de-

pendency on the value that we choose for wmax. Thus, a lower resolution for

the range of the values that policy matrix active entries can take can actually

be reduced without loss of quality. This is confirmed by employing a Wilcoxon

signed-ranked test within a confidence interval of 99% and comparing the av-

erage performance of the two GA frameworks (Table 4). Similarly, the average

performance comparison also confirms that GABinary performs significantly bet-

ter than GAFFinit on the instances from all generators except those generated

from UBP(75, 10, 50, 105).

Table 4: Performance comparison between GAOriginal, GABinary and GAFFinit over 101

trials based on the Wilcoxon signed-ranked test.

Original vs Binary vs FFinit

UBP(6, 2, 3, 105) − −

UBP(15, 5, 10, 105) � −

UBP(20, 5, 10, 105) ≺ ≻

UBP(30, 4, 20, 105) ≺ ≻

UBP(30, 4, 25, 105) ≺ ≻

UBP(40, 10, 20, 105) ≻ ≻

UBP(60, 15, 25, 105) ≻ ≻

UBP(75, 10, 50, 105) ≺ ≺

UBP(80, 10, 50, 105) ≻ ≻

UBP(150, 20, 100, 105) ≻ ≻

Although the representation is slightly changed and binary values are used

for the parameters of the heuristics generated, binary values are dispersed all

around within the best policy matrices found by GABinary. The ’spiky’ struc-

ture of the policy matrices still remains as it can be seen in Figure 9. However,

note that we do not exclude here that some policies may still have some ‘nice’

structure and deliver good, though maybe reduced, performance at the same
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time.

Table 5: Performance comparison of heuristics (BF: best fit, FF: first fit, WF: worst fit,

Harmonic (Lee and Lee, 1985)) and various policy matrix generating GA frameworks based

on the percentage bin fullness averaged over 101 trials (instances generated by different UBPs).

A bold entry indicates the best result and approach for the corresponding instance generator.

Method U
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BF 92.30 99.62 91.55 96.84 98.38 90.23 92.55 96.08 96.39 95.82

FF 92.30 99.55 91.54 96.68 97.93 90.22 92.55 95.91 96.29 95.64

WF 91.70 86.58 90.54 88.61 84.10 88.66 90.80 87.94 89.25 87.73

Harmonic - 74.24 90.04 73.82 74.21 89.10 85.18 71.59 72.96 71.97

GAOriginal 99.99 99.63 98.18 99.41 98.39 96.99 99.68 98.22 98.54 97.88

GAFFinit 99.99 99.61 98.15 99.10 99.25 96.05 98.28 98.43 97.87 96.92

GABinary 99.99 99.61 98.42 99.58 99.55 96.75 96.96 98.45 98.46 97.63

5.3.1. Can roughness be reduced?

In order to observe whether smoothing out the roughness in the matrices

would help, we introduced a roughnessmeasure which is multiplied by the fitness

value. The roughness measure merely describes how spiky the policy matrix is

in terms of the scores associated to active entries. Algorithm 2 is a pseudo code

of the roughness measurement method. The main idea is to count the number

of occasions in which the score values along each row and column varies. The

count is then normalized by the total number of active entries in the matrix,

resulting in the frequency of spikes within the matrix. Including the roughness

measure in fitness calculation yields in an evolutionary process which favours

smoother matrices with a less spiky structure.

Since GABinary is the best performing GA framework so far, it is chosen to

test whether the roughness measure affects the performance of the GA frame-

work. Thus, another round of experiments is performed. In this new round of
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experiments, wmax = 2, the population is initialized randomly and the rough-

ness measure is included in the fitness value. We refer to this framework as

GABinary|Roughness.

Figure 10 illustrates the influence of the roughness metric in the resultant

policy matrices for different termination criteria on UBP(75, 10, 50, 105). GA

using an objective function embedding the roughness metric still obtains high

quality policy matrices which are significantly better than the human designed

heuristics. For 200, 400, 600 and 800 iterations, average percentage bin full-

ness changes from 96.80%, 97.27%, 97.49% and 98.20%, respectively, while the

roughness is 30.53, 24.89, 21.23 and 19.01. On the other hand, BF and FF

achieves 96.08% and 95.91% with a roughness of 28.97 and 21.62, respectively.

Although increasing the maximum number of iterations improves both average

bin fullness and roughness with the suggested objective function, still it cannot

achieve the same average performance of spiky/rough policy matrix which is

98.45% for UBP(75, 10, 50, 105). Hence, some kind of irregularity or roughness

appears to be essential which confirms the observations in Section 5.2; though

further research is needed to see if other measures of roughness may lead to less

irregular matrices.

5.3.2. Fitness landscape analysis

Fitness landscape analysis has been performed on two separate problem

instance generators of UBP(6, 2, 3, 105) and UBP(15, 5, 10, 105). The GABinary

variant is used in this part of our studies, that is, the active entries of the

policy matrix take values of 1 or 2. The experiment consists of evaluating the

fitness value of all possible binary individuals (policies) for UBP(6, 2, 3, 105) and

a randomly sampled subset of all possible individuals for UBP(15, 5, 10, 105).

For UBP(6, 2, 3, 105), the entire fitness landscape is sampled as the landscape

includes reasonably low number of possible individuals. However, in case of

UBP(15, 5, 10, 105) where the total number of individuals in the landscape is

around 227, and so full coverage of the landscape is intractable. This is due to

the fact that some individuals represent low quality matrices and it takes much
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Algorithm 2: The roughness computation

1 In : W ;

2 Out : roughness;

3 //column-wise roughness measurement;

4 for each active entry in column s do

5 for each active entry in row r do

6 if subsequent scores in a column are not equal then

7 n++;

8 end

9 end

10 end

11 //row-wise roughness measurement;

12 for each active entry in row r do

13 for each active entry in column s do

14 if subsequent scores in a column are not equal then

15 n++;

16 end

17 end

18 end

19 roughness = n
2×(# active entries) ;

longer time to evaluate them; poorer solutions tend to open many more bins,

and processing these increases the run-time. Consequently, full coverage of the

entire landscape is avoided by sampling the landscape according to a uniform

random distribution with a probability equal to 10−4. Moreover, redundant

individuals are eliminated. A redundant individual consists of a column in

which the active entries are all equal to 2. The reason it is redundant is the

fact that an individual with exact same entries in all other columns and the

value of 1 for the column under inspection will result with the same fitness

value. The total number of possible individuals after redundancy elimination
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Figure 10: The best policy matrix obtained by GABinary|Roughness on UBP(75, 10, 50, 105).

and prior to random sampling for UBP(15, 5, 10, 105) is 78, 129, 765. After all

the pre-processing, the individuals (policies) are evaluated by the bin packing

program.

The Fitness-Distance Correlation (FDC) as well as Correlation Length (CL)

is then calculated for each UBP. The FDC measure, proposed in Jones and Forrest

(1995), is a measure of search difficulty. Suppose that F = {f1, f2, . . . , fn} is a

set of n individual fitnesses. Furthermore, suppose that D = {d1, d2, . . . , dn} is

the set of the distances of each solution to its closest global maxima. The fitness

distance correlation coefficient is then computed by the following equation.

r =
CFD

σFσD
where CFD =

1

n

n∑

i=1

(fi − f̄)(di − d̄) (1)

In Eq.1, f̄ , d̄, σF and σD are the mean of all fitness values, the average of

distance values and the standard deviations of fitness and distance values re-

spectively. The FDC value has a range of [−1, 1]. Considering a maximisation

problem, a value closer to 1, indicates that the underlying problem is a mislead-

34



Table 6: FDC and CL measures

ID UBP(6, 2, 3, 105) UBP(15, 5, 10, 105)

FDC 0.176 -0.516

CL 0.565 9.369

ing one; the search tends to be led away from the global optimum. FDC values

close to −1 indicate easy and straightforward problems while FDC values close

to 0 the prediction is indeterminate.

The Correlation Length (CL) measures the ruggedness of the fitness land-

scape and is based on autocorrelation. The autocorrelation value, calculated

using Eq.2, is a measure of the correlation between two points separated by i

random steps.

ρs =

∑n−s
i=1 (fi − f̄)(fi+s − f̄)
∑n

i=1 (fi − f̄)
2 (2)

In Eq.2, s is the step size. The CL value of a landscape (ℓ) gives the largest

distance, in terms of the number of steps, for which there still is a correlation

between the starting and the ending point (Eq.3). A high value for ℓ implies a

smooth landscape whereas a low correlation length means a rugged landscape.

ℓ = −
1

ln(|ρ1|)
(3)

The results in Table 6 indicate that UBP(6, 2, 3, 105) is a difficult problem

for the evolutionary algorithm with an FDC of 0.176, while UBP(15, 5, 10, 105)

is an easy problem for the evolutionary algorithm with an FDC of -0.516. This

is potentially because the fitness landscape is rugged for UBP(6, 2, 3, 105), while

it is not for UBP(15, 5, 10, 105) considering the CL values.

Figure 11(a) and 11(c) provides the fitness value of each sampled individ-

ual in the search landscape for UBP(6, 2, 3, 105) and UBP(15, 5, 10, 105), re-

spectively. The search for the optimum policy for UBP(6, 2, 3, 105) is like a

search for a needle in the hay stack, since there is only a single optimum pol-
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Figure 11: Fitness landscape analysis results for (a), (b) UBP(6, 2, 3, 105) and (c),(d)

UBP(15, 5, 10, 105). Figure 11 (a), (c) provide the plot of each sampled binary encoded pol-

icy (individual) and its fitness, while (b), (d) are the scatter plot of the fitnesses of policies

(individuals) in terms of average bin fullness and their hamming distances to/from the closest

best solution in the sample of matrices for the relevant UBP.
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(b) UBP(15, 5, 10, 105)

Figure 12: The histogram of the hamming distances between individuals and the closest

optimum. The x-axis represents the hamming distance and the y-axis refers to the number of

individuals.

icy in the search space as shown in Figure 11(a), while the search landscape

of UBP(15, 5, 10, 105) contains multiple best solutions as illustrated in Fig-

ure 11(c). Figure 11(b) and 11(d) demonstrate the correlation between fitness

value and the hamming distance between individuals of UBP(6, 2, 3, 105) and

UBP(15, 5, 10, 105) and the closest best solution, respectively. Moreover, Figure

12(a) and 12(b) provides a histogram illustrating the number of individuals with

a specific hamming distance to the closest best solution for UBP(6, 2, 3, 105) and

UBP(15, 5, 10, 105), respectively. The plots reemphasize the fact that the fitness

landscape is rugged for UBP(6, 2, 3, 105) and there are disconnected plateaus,

while the search landscape is smoother for UBP(15, 5, 10, 105). Moreover, there

is not much correlation between the distance to the optimal/best solution and

fitness for UBP(6, 2, 3, 105), while there is a correlation for UBP(15, 5, 10, 105).

6. Conclusion

In this study, we have presented a framework, and clarified the associated

methodology, which can be used for creating heuristics via many parameters

(CHAMP). Under CHAMP, a heuristic corresponding to a policy chooses the

highest value option while making decisions. This framework is used to gen-

erate and search for heuristics to solve some online packing problems with a
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genetic algorithm (CHAMP-GA). The resulting policies are specialised to the

distributions and are much more effective, and have a quite different structure,

than those the existing general-purpose ones. An important lesson might be

that, in complex situations, our intuition about the nature of good heuristics

can be quite sub-optimal, and that search-based generation can give signifi-

cantly better results, as well as (potentially) requiring less intervention by an

expert; hopefully, this may ultimately reduce total cost-of-ownership of such

systems, allowing wider usage. This is not to say that there are no special UBP

instance generators in which a human intuition might provide better solutions,

but that CHAMP can provide a tool that allows policy discovery more gener-

ally, and is capable of getting good or very good solutions, with relatively low

computational effort.

CHAMP-GA discovered ‘spiky’ matrices (policies) for some UBP instance

generators. The genetic programming approach as provided in (Burke et al.,

2006, 2007b) and human designed policies for online bin packing implicitly make

the assumption that ‘cleanly structured nice’ policies are the best solutions.

However, evidence presented by this work shows that this does need not to be

true in general. So, no assumptions on the structure of solutions should be

made, even implicitly, while creating policies whether by genetic programming,

another heuristic optimisation method or hand crafting.

The fitness landscape analysis of CHAMP-GA on some instance generators

has confirmed that the search space of policies are sometimes rugged and some-

times they are not with neutral regions depending on the generator dealt with.

Regardless, it has been observed that if we use a policy defined by a simple ma-

trix of score values, then a standard GA approach can produce policies tuned

to the distribution of the instances under consideration and substantially out-

performing the generic heuristics such as first and best fit.

Obvious avenues for future research are: To study variants of the online bin

packing (for example, the distribution of item sizes is not uniform); improve the

search methods used to discover good matrices; and apply the general approach

to other problem domains.
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2009. Exploring hyper-heuristic methodologies with genetic programming, in:

Kacprzyk, J., Jain, L.C., Mumford, C.L., Jain, L.C. (Eds.), Computational

Intelligence. Springer Berlin Heidelberg. volume 1 of Intelligent Systems Ref-

erence Library, pp. 177–201.

Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J., 2007a. Automatic heuris-

tic generation with genetic programming: evolving a jack-of-all-trades or a

master of one, in: Proceedings of the 9th annual conference on Genetic and

evolutionary computation, ACM, New York, NY, USA. pp. 1559–1565.

Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.R., 2007b. The scalability

of evolved on line bin packing heuristics, in: Srinivasan, D., Wang, L. (Eds.),

2007 IEEE Congress on Evolutionary Computation, IEEE Computational

Intelligence Society. IEEE Press, Singapore. pp. 2530–2537.

Chakhlevitch, K., Cowling, P., 2008. Hyperheuristics: Recent developments,

in: Cotta, C., Sevaux, M., Sörensen, K. (Eds.), Adaptive and Multilevel

Metaheuristics. Springer Berlin / Heidelberg. volume 136 of Studies in Com-

putational Intelligence, pp. 3–29.

Coffman, Jr., E.G., Garey, M.R., Johnson, D.S., 1997. Approximation algo-

rithms for bin packing: a survey. PWS Publishing Co., Boston, MA, USA.

pp. 46–93.

40



Coffman Jr., E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D., 2013. Bin

packing approximation algorithms: Survey and classification, in: Pardalos,

P.M., Du, D.Z., Graham, R.L. (Eds.), Handbook of Combinatorial Optimiza-

tion. Springer New York, pp. 455–531.

Coffman Jr, E.G., Galambos, G., Martello, S., Vigo, D., 1999. Bin packing

approximation algorithms: Combinatorial analysis, in: Du, D.Z., Pardalos,

P. (Eds.), Handbook of Combinatorial Optimization. Kluwer Academic Pub-

lishers. volume 1 of Intelligent Systems Reference Library, pp. 151–207.

Csirik, J., Woeginger, G., 1998. On-line packing and covering problems, in: Fiat,

A., Woeginger, G. (Eds.), Online Algorithms. Springer Berlin / Heidelberg.

volume 1442 of Lecture Notes in Computer Science, pp. 147–177.

Falkenauer, E., 1996. A hybrid grouping genetic algorithm for bin packing.

Journal of Heuristics 2, 5–30.

Garey, M.R., Johnson, D.S., 1990. Computers and Intractability; A Guide to

the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA.

Gittins, J., Glazebrook, K., Weber, R., 2011. Multi-armed Bandit Allocation

Indices. Wiley. 2 edition.

Gittins, J.C., 1979. Bandit processes and dynamic allocation indices. Journal

of the Royal Statistical Society. Series B (Methodological) 41, pp. 148–177.

Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham, R.L., 1974.

Worst-case performance bounds for simple one-dimensional packing algo-

rithms. SIAM Journal on Computing 3, 299–325.

Jones, T., Forrest, S., 1995. Fitness distance correlation as a measure of problem

difficulty for genetic algorithms, in: Proceedings of the Sixth International

Conference on Genetic Algorithms, Morgan Kaufmann. pp. 184–192.

Lee, C.C., Lee, D.T., 1985. A simple on-line bin-packing algorithm. Journal of

the ACM 32, 562–572.

41
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