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List of abbreviations 

PG: Phosphate glasses 

PGFs:  Phosphate glass fibres 

PLA:  Polylactic acid 

PCL:  Polycaprolactone 

FRC: Fibre reinforced composites  

UD:  Unidirectional  

RM: Random mat 

Vf:    Volume fraction  

PBS: Phosphate buffered saline 

SBF: Simulated body fluid 

HBSS: Hanks buffered saline solution  
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1 Abstract 

 

An overview of the research conducted utilising phosphate glass fibres (PGFs), their 

manufacturing processes and utilisation potential for biomedical applications are presented 

in this chapter. Phosphate glasses of varying compositions in the form of fibrous structures 

alone and as fibrous reinforcement within composites are discussed. This chapter also 

highlights the methodologies used for the manufacture of these resorbable glass fibres and 

their composites. The advantages of using bioresorbable fibres in terms of their mechanical, 

dissolution, ion release, in vitro and in vivo biocompatibility properties for the replacement, 

augmentation, guidance and growth of both hard and soft tissue repair applications are also 

presented.  

 

Keywords: Phosphate glass Fibres, Composites, bioresorbable, biopolymer, tissue 

engineering.  

2 Introduction 

 

The interest in use of phosphate glasses (PGs) for biomedical applications has been steadily 

increasing due to their unique properties, such as their easily controllable degradation 

profiles coupled with ion release rates, cytocompatibility and mechanical properties 1, 2. The 

chemical compositions of PGs can be made to resemble the mineral content of bone, which 

makes them extremely promising candidates for use as resorbable biomaterials and in 

resorbable implantable devices 3. PGs have mainly been investigated  for applications where 

only a temporary presence of the implant material is required, thus negating secondary 

surgical procedures for their removal and enabling the targeted tissue of repair to fully 

replace the implant in situ. In addition, PGs have been employed in various geometries such 

as in the form of particles 4, fibres 5, 6 and microspheres 7 to enhance their applicability for 

varying biomedical applications. 
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3 Phosphate glass fibres (PGFs) 

 

Moving from the bulk glass to fibrous structures, PGFs possess unique advantageous 

features, such as excellent mechanical properties thus enabling greater reinforcing 

capability of (bio) polymer matrices and have also been explored as cell guides and soft 

tissue repair applications. PGs have been fabricated into continuous fibres via both a melt 

drawing and preform rod manufacturing process and relatively high mechanical properties 

have been achieved (for example, tensile modulus ~ 74 GPa 8 and tensile strength ~1.2 GPa 

9). One of the main areas for exploration of phosphate glass fibres (PGFs) has been the 

manufacture of fully bioresorbable composites as fracture fixation devices 10 and have also 

been heavily investigated for fabrication of scaffolds for tissue engineering and regenerative 

medicine applications 5.    

 

3.1 Manufacture of phosphate glass fibres         

   

PGFs are commonly produced via a melt or pre-form drawing process depending on the 

fragility index of the glass materials. For instance, comparatively less fragile glasses can be 

melt drawn and pulled from a solid pre-from to manufacture continuous fibres, whilst highly 

fragile glasses require rapid quenching of upward drawn fibres processed from a melt 11. 

The ‘drawing point viscosity’ of the phosphate glasses is also very important during fibre 

production (typically assumed to be ~ 100 Pa·s 12), as these types of glasses are very fragile 

and prone to crystallise quickly if appropriate conditions are not met. Therefore, the fibre 

drawing temperature is maintained within a relatively narrow window (which falls below 

the liquidous melt temperature) so that the melt viscosity can enable continuous fibres to 

be drawn whilst maintaining their amorphous nature. 
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Figure 1: SEM images of typical melt drawn PGFs. Adapted with permission from 3.  

 

3.1.1 Melt spinning 

 

Glass fibres are generally produced via melt spinning techniques which involve melting glass 

frits in platinum/rhodium crucibles which encompass bushing tips with small holes for the 

molten glass to flow through gravitationally. Continuous glass fibres are drawn down from 

the holes and wound onto rotating drums (see Figure 2a). Composition selection of glass 

materials is also important in order to provide sufficient P-O-P bonds within the molten 

glass to enable production of continuous fibre. At the same time, stable P-O-P bonds impart 

the required strength to the fibre to withstand the tensile stresses applied during the 

drawing process at high temperatures. Fibre properties and dimensions can be controlled 

via process variables such as, diameter of the bushing exit holes, melt temperature (hence 

viscosity of the glass), mass flow and drawing speed. In addition, heat treatment (also 

known as annealing) of the fibres produced is sometimes necessary to relieve internal 

stresses created within the fibres during the fibre drawing process by reforming P-O-P 

bonds into more stable configurations 13. On the other hand, short fibres can also be 

produced via a melt-blowing technique which is similar to the melt spinning process, except 

an external force is applied to the molten glass to exit holes and the fibres are cut to 

required lengths using mechanical means, or air jets (see Figure 2b). 
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Figure 2: Schematic diagram representing the glass manufacturing processes: a) melt-drawn 

continuous glass fibres and b) melt-blown staple glass fibres. 

3.1.2 Pre-form drawing 

 

Glass fibre drawing using the pre-form technique involves two steps: in the first step, a glass 

pre-form in the form of a rod is produced. This rod can be produced via a glass extrusion 

process  or can be produced via melting the glass and pouring into a pre-form shaped mould 

14.  In the second step, this glass pre-form is then heated in a furnace above its Tg 

maintaining the viscosity around  4.5-5 Pascal second (Pa s) and allowed to form a gob  at 

the end of the pre-form which falls away from the tip due to gravity. The fibrous strand 

developed is then wound around and collected on a rotating drum. The fibre properties 

produced via this technique can also be altered by changing the drawing parameters such as 

the pre-form heating zone length, heat supplied and the pre-form feed and fibre drawing 

rates. Recently, Ahmed et al. 15 investigated the manufacturing process of two different 

metal ion (Ti2+ and Fe3+) doped phosphate core/clad glass fibres, a process previously limited 

to manufacturing optical glass fibres only. The manufacturing process of core/clad glass 

fibres included the following steps: a) preparation of glass billets with varying compositions 

(but similar thermal transition and viscosity profiles) via casting in a graphite mould, b) co-
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extrusion of the stacked glass billets by placing the cladding glass underneath the core glass 

to produce the core/clad pre-form (see Figure 3a), and c) the core/clad fibres (Figures 3b) 

were then drawn from the core/clad pre-form utilising a fibre drawing tower. 

 

  

 

 

Figure 3: a) Cross-sections of an extruded core/clad preform (the values indicate the cut 

distance of the preform into discs) and b) an extruded core/clad preform and resultant fibres 

15. 

 

3.2 Properties of phosphate glass fibres 

 

Producing fibres from phosphate glass compositions initially proved to be quite challenging, 

as various parameters such as the melt temperature, melt viscosity, O/P ratio and drawing 

speed for manufacture of continuous fibres from varying formulations were ascertained 

mainly through trial and error experimentation. Properties of glass fibres such as, thermal, 

mechanical, and dissolution properties differ significantly from those of the bulk glass. This 

variation in properties depends on several factors such as fibre manufacturing methodology, 

drawing parameters (temperature, speed, viscosity) and fibre diameter. In addition, the 

properties of PGFs also depend on the bonds present within the molten glass which provide 

the required strength to withstand the applied stresses during the fibre drawing process. 

The type of chain forming bonds and the cross-linked networks within the glass structure 

can be controlled by varying the compositions produced in order to tailor the fibre 

properties required 3.  
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The main glass forming oxide for phosphate glasses is phosphorus pentoxide (P2O5) which 

consists of tetrahedral phosphate anions (PO4
-3). The addition of alkaline and alkaline earth 

metal ions results in depolymerisation of the phosphate network via creation of a non-

bridging oxygen (O-M+) by breaking the bridging oxygen (P-O bonds). Moreover, the field 

strength created via the formation of strong O-M+ bonds due to addition of modifying ions 

within the glass structure improves their chemical durability 16. Some metal oxides have high 

resistance to hydration; for example, addition of Al2O3, Fe2O3 and TiO2 within PG systems 

have been shown to significantly decrease the dissolution rates of these glasses 17. Trivalent 

ions such as iron (Fe3+) and (Ti3+) have been found to have a greater influence on the 

solubility of phosphate glasses than divalent or monovalent ions, which has been suggested 

to be due to the strengthening of the phosphate network via their cross-linking effect. 

 

Phosphate glass fibres with various compositions, including binary, ternary and quaternary 

formulations have been investigated for their biocompatibility and degradation profiles5, 18. 

Ahmed et al. 1, 5 reported that the degradation rates of phosphate glass fibres (within 

ternary systems P2O5–CaO–Na2O) increased significantly compared to bulk glass of the same 

composition. Moreover, the degradation rates for glass fibres increased with decreasing 

fibre diameter, which was due to the vast increase in surface area compared to the bulk 

glass. Furthermore, varying the additions of mono, di or trivalent cations (such as Na2O, 

CaO, MgO or Fe2O3 etc) within the glass structure enables further control over their 

degradation rates in aqueous media. For example, addition of Fe2O3 content (from 1 to 5 

mole%) within the iron phosphate glass system (P2O5–CaO–Na2O–Fe2O3) revealed a 

significant reduction in the glass dissolution rates (dissolution rate ~0.00045 and ~0.00004   

mg.cm-2.hr-1 for the addition of 1 and 5 mol% Fe2O3 in the  glass system, respectively 5. 

 

Mechanical properties of glass fibres depend not only on the bonds present within the glass 

but also their molecular organisation which is related to their chemical composition 19, 20. 

The chemical bonds in bulk phosphate glass generally exist as an isotropic structure, 

however during fibre production the glass network transforms into anisotropic structure 

and the PO4 tetrahedra align in the direction of the pull 21, 22.  The diameter of glass fibres is 

also known to strongly influence the mechanical properties of glass fibres 23. For example, 

Lin et al. 24 reported that tensile strength and modulus properties of calcium-iron phosphate 
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glass fibres increased from 587 MPa to 1045 MPa and 43 GPa to 64 GPa, respectively, as the 

iron content increased from 3.6 to 16.9 mol%. More recently, Sharmin et al. 9 reported that 

addition of 5 and 10 mol% boron within phosphate glass fibre structures resulted in a 

significant increase in tensile strength with values of 1050 MPa and 1200 MPa reported, 

respectively, whilst the control glass fibres without boron exhibited tensile strengths around 

530 MPa. They also suggested that incorporation of boron had a significant effect on 

improving the fibre drawing properties (for example, easing fibre formation) which was 

attributed to the extension of the phosphate chains via boron addition. By simple 

modification of the glass chemical composition a range of mechanical properties can be 

achieved (see Table 1). 

 

Table 1: Mechanical properties of phosphate glass fibres 

 

Glass composition 

(mol%) 

Fibre 

diameter 

(µm) 

Tensile 

strength 

(MPa) 

Tensile 

modulus 

(GPa) 

References 

63.7P2O5-32.7CaO-3.6Fe2O3 ~20 587 43 Lin et al. 24 

56.9P2O5-26.2CaO-16.9Fe2O3 ~20 1045 64 Lin et al. 24 

50P2O5-50CaO 20-25 474 44 Ahmed et al. 25 

50P2O5-40CaO-5Na2O-5Fe2O3 20-25 456 51.5 Ahmed et al. 6 

45P2O5-16CaO-15Na2O-24MgO-0B2O3 ~20 530 53.4 Sharmin et al. 9 

45P2O5-16CaO-10Na2O-24MgO-5B2O3 ~20 1050 59.6 Sharmin et al. 9 

45P2O5-16CaO-5Na2O-24MgO-10B2O3 ~20 1200 60 Sharmin et al. 9 

45P2O5-16CaO-11Na2O-24MgO-4Fe2O3 ~26 569 57 Liu et al. 26 

40P2O5-16CaO-16Na2O-24MgO-4Fe2O3 ~15 370 62 Felfel et al. 27 

40P2O5-16CaO-20Na2O-24MgO ~15 484 44 Cozien-Cazuc 

et al. 28 
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3.3   Biomedical applications of phosphate glass fibres 

 

As mentioned above, phosphate glasses in the form of fibrous structures containing various 

modifiers such as iron, zinc, copper, and/or titanium have been explored for a range of 

biomedical applications. The iron ions released from iron-phosphate glass could potentially 

participate in redox reactions for certain types of proteins (such as, cytochrome, myoglobin, 

etc) and could also promote cell attachment and differentiation. For example, Ahmed et al. 5 

investigated the use of iron-phosphate glass fibres as potential cell delivery vehicles for 

transplantation purposes and used them to orientate muscle precursor cells along the axis 

of the fibres to form myotubes (see Figure 4). The chemical durability of these glass fibres 

achieved played a vital role in improving the biocompatibility, and showed that 

incorporating modifier ions such as iron oxide, the dissolution rates of the glass fibres could 

be reduced by orders of magnitude.  It has been also suggested that iron-phosphate glass 

fibres containing 4-5 mol% Fe2O3 were favourable for cell attachment and differentiation 5. 

In addition, iron doped PGFs with diameters ranging between 20-25 µm were suggested to 

be of suitable size for attachment of human osteoblast and fibroblast cells compared to the 

10-15 µm fibres due to their higher surface curvature 29. Fibres with various diameters differ 

in their surface curvature; usually fibres with larger diameter possess higher surface 

curvature which could positively influence cell attachment and spreading. 

 

Figure 4: a) Attached muscle precursor cells (MPCs) on iron-phosphate glass fibres and b) 

MSCs differentiation on PG fibres: Desmin (seen in green) is a cytoplasmic marker of all 

skeletal muscle cells. Myogenin (seen as Red) is a nuclear marker of differentiation. The Blue 
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is DAPI(4,6-diamidino-2-phenylindole (which stains all nuclei)). Adapted with permission 

from 5. 

 

Zn ions are well known to stimulate protein synthesis in osteoblast cells and also to increase 

ATPase and ALP activity 30. Zinc doped PGFs in the form of 3D-scaffolds were investigated by 

Shah et al. 31 for the construction of muscle organoid units.  Skeletal muscle cells were 

found at the interstices of the phosphate fibres and revealed increased cell numbers on the 

fibre constructs. Ti doped phosphate glass fibres and their role in neuronal polarisation and 

axonal growth direction have also been investigated by Vitale-Brovarone et al. 32 who 

suggested that the aligned configuration of the fibres provided the directional cue for 

growing Dorsal Root Ganglia (DRG) neurons along the fibre axis (see Figure 5a). Active 

proliferation of neonatal olfactory bulb ensheathing cells (NOBEC) extending along the PGF 

surfaces were observed as shown in Figure 5b. 

 

 

Figure 5: Confocal microscope images of a) DRG neurons on glass fibres presenting long 

neuritis extended along the fibre axis direction and b) NOBEC cells showing active 

proliferation on Phosphate glass fibres. Adapted with permission from 32. 

 

Release of copper ions from PGFs was investigated by Abou Neel et al. 33 for their potential 

antibacterial properties against Staphylococci. It has been suggested that incorporation of 

10 mol% CuO released sufficient Cu2+ ions as the glass degraded to prevent bacterial 

colonisation and reduce the number of viable bacteria in the local environment. Copper ions 

have also been reported to have other advantages such as, stimulation of angiogenesis and 

also proliferation of human endothelial cells. As such, Cu-doped glasses could also 

potentially be used for wound healing applications 34. 



 
 

12 
 

4 Phosphate glass fibre-reinforced composites: 

 

The principal limitation for widespread use of bioresorbable polymers for biomedical 

applications are usually due to their mechanical properties, although the mechanical 

characteristics for some bioresorbable polymers are known to be sufficient for non-load 

bearing applications such as the cranial (skull) bones and maxillofacial fractures. Fractures at 

load bearing sites (e.g. femur and tibia) require sufficiently robust fixation devices to avoid 

implant failure until the fractured bone has healed. Therefore, reinforcement of these 

polymers has been considered to produce composite implants with enhanced mechanical 

properties to match cortical bone. In order to produce fully bioresorbable implants, the 

reinforcement phase should also be made from biocompatible and bioresorbable materials. 

These composite devices could also eliminate potential inflammatory responses associated 

with the use of resorbable polymers alone, which has mainly been ascribed to the acidic 

degradation products from these polymers (such as lactic acid for PLA) 35-37. These acidic 

breakdown products could potentially be buffered via the degradation by-products from the 

reinforcement phase. The pH of the media during glass degradation is important for 

composite stability and degrading glass compositions which cause an acidic pH may not be 

ideal for biomedical applications. However, controlling pH during degradation of PGs is just 

a matter of altering their composition. This was demonstrated by Ahmed et al. 9, who 

showed that PGs could maintain a neutral pH level which would assist in buffering the 

polymer degradation by-products (see Figure 6) Moreover, the amount of polymer matrix 

within the composite would decrease at the expense of the reinforcement leading to less 

polymer remaining to be eliminated.  
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Figure 6: pH values obtained for 40P2O5-25CaO-(35-x)Na2O-xMgO glasses, x varied from 0 to 

30 mol%. pH remained relatively neutral over time 9.   

Composites are generally comprised of a stiff and strong dispersed phase (reinforcement) 

and continuous phase (matrix). Properties of the composites depend on properties of the 

constituents as well as the geometry, size, distribution and volume fraction of the 

reinforcement phase. Furthermore, the bonding strength (adhesion) between the phases 

plays a crucial role in their properties. Increase in reinforcement (fibres/matrix bonding) 

allows for effective load transfer leading to higher strength profiles for the composite 38. 

Biocomposites are composite materials that can be implanted inside the body to replace the 

function of living tissue 39. They may be grouped into fully, partial and non bioresorbable 

composites based on the ability of the constituents to degrade and resorb within the body 

40. The matrix and reinforcement have to be bioresorbable for a fully bioresorbable 

composite (e.g. PCL/PGF, PLA/PGF 25, 41), whilst both can be biostable for non-resorbable 

composites (for e.g. ultra-high molecular weight polyethylene/hydroxyapatite 

(UHMWPE/HA) 42). For partial bioresorbable composites, one of the composite components 

(usually the reinforcement) is biostable (e.g.  PLA/bioglass, PLA/carbon fibre 43-45).  

Fibre reinforced composites (FRC) could potentially provide a wide range of mechanical 

properties to match both cortical and cancellous bone 46, 47. For instance, the anisotropic 

nature of the bone (i.e. the longitudinal mechanical properties of bone are greater than the 

transverse direction) can be achieved by continuous unidirectional fibre reinforced 

composites 46. The orientation of fibres could be aligned or be present in a random format 

(as in chopped strand fibre mats) to influence the mechanical performance of the 

composites produced 48, 49. Properties of fibre reinforced composites are controlled by fibre 

volume fraction, type, length, distribution and strength of fibre/matrix interface 46, 47. 

Various types of fibres have been utilised in the orthopaedic field such as carbon 50, bioglass 

45, 51-56 and phosphate glass fibres 25, 41, 57-63.  

Aspect ratio (length to diameter ratio) of the fillers also has a significant influence on the 

modulus/stiffness of a particulate composite 64, 65. Mechanical properties of composites are 

known to increase as the aspect ratio of the particles increases. Therefore, it is expected 



 
 

14 
 

that the reinforcing efficiency of fibres is significantly greater than particles. The parameters 

which affect the mechanical behaviour of FRCs are summarised in Figure 7 below.  

 

Figure 7: Schematic diagram of parameters which control the mechanical properties of fibre 

reinforced composites. Adapted with permission from 66. 

Bioresorbable fibres such as phosphate glass fibres (PGF) have been investigated to 

manufacture fully bioresorbable composites due to their unique resorption profiles. 

Composite plates based on PLA and PGF have been produced with different fibre content 

and lay-up geometries. Flexural properties for unidirectional composites with fibre volume 

fraction (Vf) ~ 30% and ~ 55% of 115 MPa and 170 MPa for strength and 16 GPa and 15 GPa 

for modulus respectively, have been achieved 57, 58. Furthermore, PLA reinforced with 

random PGF mats (Vf ~14 %) achieved properties of 90 MPa and 5 GPa for bending strength 

and modulus respectively 41.  

 

4.1 Manufacturing PGF composites 

 

4.1.1 Compression moulding  
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Random mat (RM) and unidirectional (UD) composites have been prepared via a laminate 

film stacking process. PLA or PCL films were stacked alternately with RM or UD aligned fibres 

(see Figure 8) in a mould cavity between two metallic plates. The stack was then heated in 

the press for 15 mins above melting temperature of the polymer matrix (210 and 120°C for 

PLA and PCL respectively) and pressed for 15 mins at 38 bar. The plates were transferred to 

a second press for cooling to room temperature at 38 bar for 15mins 25, 67.  

 

Figure 8: Schematic diagram for film stacking process for producing; (a) RM and (b) UD 

composites. 

 

4.1.2 In situ polymerisation 

 

PCL based composites have also been prepared via an in situ polymerisation process. The 

catalyst, Sn(Oct)2, was mixed with ɛ-caprolactone at the molar ratio of 1/1000 and then 

injected into a dried polytetrafluoroethylene (PTFE) mould (see Figure 9) at room 

temperature. The amount of unidirectional PGF was determined based on the target fibre 

volume fraction of the composites and placed in the mould before injection of reaction 

mixture. Parts of the mould were carefully sealed and then kept at 110oC for 24 hours to 

complete the polymerisation reaction. 45.   
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Figure 9: A schematic diagram for in situ polymerisation process that used in preparation of 

PCL-PGF composites. Adapted with permission from 45. 

4.2 Properties of PGF based composites:  

 

The flexural properties of PGF reinforced composites investigated over recent years have 

been summarised in Figures 10 & 11. Flexural strength and modulus for both RM and UD 

composites increased as the fibre volume fraction (Vf) increased especially for the 40% and 

45% Vf RM and UD composites as expected. The range of values obtained spanned between 

15 to 370 MPa for strength and between 1 and 25 GPa for modulus (well exceeding the 

mechanical properties of human bone, which ranges between 45 to 270 MPa and 5 to 23 

GPa for strength and modulus respectively). When the fibre content increased 35 %, the 

strength and modulus for the composites remained approximately constant or decreased 

slightly due to breaking of fibres and lack of fibre impregnation within the polymer matrix. 

UD composites showed significantly higher flexural properties compared to RM composites 

as expected based on the rule of mixtures and due to high efficiency of aligned fibres to 

transfer stress across the fibre matrix interface in comparison with random chopped fibres. 

Sizing the fibres with coupling agents caused a significant increase in flexural properties for 

RM and UD composites. This was attributed to enhancement of fibre-matrix interface. As 

seen from Figure 11, the flexural properties of UD composites containing more than 15% 

fibre volume fraction surpassed the lower limits of cortical bone mechanical properties. The 

huge variation of flexural properties for composites at constant fibre volume fraction is 

ascribed to differences in mechanical properties of the PGFs used (with varying 

compositions), as highlighted in Table 1.       
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Figure 10: Flexural properties of compression moulded PGF RM composites against fibre 

volume fraction. Symbols in blue and red represents flexural strength and modulus 

respectively and unfilled symbols refer to composites containing treated PGF with coupling 

agents. PCL: polycaprolactone, PLA: poly lactic acid, POE: poly(ortho ester) and T refers to 

treated fibres with coupling agent 41, 61, 68-72.   
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Figure 11: Flexural modulus and strength of PLA and PCL reinforced with UD PGF versus fibre 

volume fraction. Symbols in blue and red represents flexural strength and modulus 

respectively and unfilled symbols refer to composites containing treated PGF with coupling 

agents. PCL: polycaprolactone, PLA: poly lactic acid and T refers to treated fibres with 

coupling agent 58, 61, 71, 73-77.      

 

Ahmed et al. 41 produced PLA-PGF composites containing 14% fibre volume fraction with 

initial flexural properties of 90 MPa for strength and 5 GPa for modulus. The values 

decreased to 40 MPa and 1 GPa respectively after immersion in deionised water at 37°C for 

6 weeks. Further studies by Ahmed et al. 61 investigated degradation and mechanical 

retention for PLA-PGF composites with a range of fibre volume fractions (from 20% to 45 %) 

and fibre orientations. The initial flexural strength and modulus for RM composites 

increased to ~ 120 MPa and ~ 10 GPa with increasing fibre volume fraction to ~ 45 %. 

Flexural properties for UD composites were ~ 130 MPa for strength and ~ 11.5 GPa for 

modulus for 24 % fibre volume fraction composites. These composite mechanical properties 

decreased by ~ 50 and 80 % of their initial strength and modulus after 14 days immersion in 

deionised water at 37°C which was attributed to degradation of the fibre/matrix interface 

and the PGF fibres. The overall mass loss for the composites also increased with increasing 
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fibre volume fraction. Most of the studies investigating particulate and fibre-reinforced 

composites based on PG have reported a rapid loss of mechanical properties when exposed 

to media. 

Annealed and non-annealed binary calcium phosphate (50P2O5- 50CaO) glass fibres have 

also been used to reinforce PCL. The composites contained two different volume fractions 

of non-woven random mat fibres, 6.4 and 17 %, and revealed flexural modulus and strength 

of up to 2.5 GPa and 30 MPa, which were in the range of human cancellous bone. A good 

correlation between degradation and ion release profiles was also observed which also 

revealed a porous structure within the PCL matrix at the end of the degradation period of 5 

weeks as a result of the glass fibres resorbing leaving behind continuous channels  25.  

Borbely et al. 63 explored the degradation and ion release profiles of PCL-PGF composites 

over 7 days at 37oC. The weight of all composites initially increased followed by loss in both 

distilled water and Hanks Buffered Saline Solution (HBSS). The change in weight was the 

result of water uptake and mass loss due to hydrolytic degradation over time. Initially, water 

uptake was the dominant factor over weight loss as a result of the hydrophilic nature of PG. 

However, the weight loss at the end of the study in water was higher than that in HBSS as a 

result of the buffering effect of HBSS. The SEM micrographs of the composites showed a 

distinct precipitation of calcium phosphate on their surfaces and the authors reported that 

these composites could potentially be used as bioactive root fillings. 

Mohammadi et al. 78 prepared PCL-PGF random mat composites with 18% fibre volume 

fraction via compression moulding using two formulations of PGF; 50P2O5–40CaO–10Fe2O3 

(Fe10) and 50P2O5–40CaO–5Fe–5SiO2 (Fe5Si5). PCL–Fe5Si5 showed approximately 55% 

decrease in flexural strength and modulus after 28 days of degradation at 37oC, whilst no 

statistically significant change was seen in flexural strength and modulus for PCL-Fe10 

composites at 7 and 28 days. They also investigated the change in storage modulus for PCL–

PGF composites over the temperature range from -90 to 37oC which increased from 3.7 to 

4.5 and 5.5 GPa by incorporation of Fe10 and Fe5Si5 fibres into the PCL matrix. PCL–Fe5Si5 

samples revealed greater weight loss and ion release in comparison to PCL–Fe10 and neat 

PCL. They also reported that the PCL–Fe5Si5 composites initiated the formation of brushite 

precipitates on their surface after 14 and 28 days of conditioning in simulated body fluid 
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(SBF) at 37oC. In contrast, no precipitates were observed on the surfaces of PCL–Fe10 and 

PCL alone till the 28 day interval.  

Rates of degradation and ion release of PLA and PCL composites reinforced with PGF can 

mainly be controlled by the dissolution rates of the glass formulations used. Moreover, a 

good correlation has been observed between mass loss and ion release profiles 25, 79. Felfel 

et al. 80, 81 investigated the effect of chemical formulation of PGF on degradation rate of PLA 

composites. Two glass formulations (50P2O5-40CaO-5Na2O-5Fe2O3 in mol% - denoted as 

P50) and (40P2O5-24MgO-16CaO-16 Na2O-4Fe2O3 in mol% - denoted as P40) were used in 

this study. They found that P50 composites lost 16% of their weight after 9 weeks of 

degradation at 37oC, whilst P40 composites lost approximately 1% during the same period. 

Rates of cations and anions released from the P50 composites were also significantly greater 

than for the P40 composites due to higher chemical durability of the P40 formulation. Lower 

phosphate content and shorter chains, excess of Q1 structure and existence of divalent 

cations, capable of crosslinking phosphate chains, were the main reasons suggested for the 

enhanced chemical durability of the P40 fibres. Scanning electron micrographs (see Figure 

12) of the composites throughout the degradation period revealed that P50 fibres had 

almost fully degraded and left behind porous PLA structure and P40 fibres remained intact.    
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Figure 12: SEM micrographs of a freeze fractured surface for P50 RM, P50 UD and P40 UD 

composite rods (a), (b) and (c) before degradation, (d), (e) and (f) after 2 weeks of 

degradation in PBS at 37°C, (g), (h) and (i) after 4 weeks of degradation in PBS at 37°C, and 

(j), (k) and (l)  after 9 weeks of degradation in PBS at 37°C. P40 fibres remained intact after 9 

weeks of degradation, while P50 fibres had degraded and left behind porous PLA structure. 

Scale bars for all micrographs represent 50 µm. Adapted with permission from 80, 81 . 

4.2.1 The fibre/matrix interface 

 

PGF based composites commonly lose substantial percentage of their initial mechanical 

properties after immersion in aqueous media due to loss of interfacial integrity. Several 

studies have thus investigated improving the bonding between PGF and biodegradable 

polymer matrices such as PCL and PLA using coupling agents 8, 68, 73-76, 82. In the absence of 

coupling agents, the fibre/matrix interface is mainly attributed to mechanical adhesion. 

Treatment of the fibres with coupling agents could potentially introduce chemical bonding 

with the polymer matrix. 

 

(a)

(e) (h) (k)

(j)(g)(d)

(b)

(c) (f) (i) (l)
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Hasan et al. 68, 73, 83 used varying chemical agents to investigate the fibre/matrix interface in 

order to enhance mechanical property retention of the composites. They trialed 3-

phosphonopropionic acid (PPA), glycerol 2-phosphate disodium salt (GP), etidronic acid (EA), 

3-aminopropyltriethoxy silane (APS), sorbitol/sodium ended PLA–oligomers (S/Na–PLA), 

hexamethylene diisocyanate (HDI) and amino phosphonic acid (APA). Covalent bonding was 

detected between phosphate glass and APS, EA and HDI using IR spectroscopy, whilst GP, 

PPA, S/Na-PLA and APA were suggested to be linked via hydrogen bonds. Interfacial shear 

strength (IFSS) values of between 7 to 22 MPa were achieved, after treatment of glasses 

with APS, EA, HDI and S/Na-PLA, whereas other agents showed little increase in IFSS after 

immersion in aqueous media. Initial flexural strength of PLA composites reinforced with RM 

and UD PGF treated with APS exhibited 15% and 30% increase respectively compared with 

composites containing non-treated fibres. However, their strength profiles decreased 

gradually to be similar to the control composites after one week immersion in PBS at 37oC. 

Cytocompatibility of the composites containing treated fibres with different coupling agents 

was examined using primary human osteoblasts over 21 days. All composites exhibited 

comparable cytocompatibility to the tissue culture plastic control. Haque et al. 8, 82 also 

found that the IFSS for PGF treated with Na-PLA and GP increased from 9.5 MPa (for non-

coated fibres) to 14.4 and 17.5 MPa respectively. However, the effects of these sizing agents 

also decreased after 3 days of immersion in PBS at 37oC to level with the IFSS values of the 

non-coated single fibre composites.  

Onal et al. 84 also investigated degradation mechanisms of PGF reinforced PCL composites 

fabricated using in situ polymerisation method. PGF fibres were treated with a coupling 

agent (3-aminopropyltriethoxysilane) and the percentage moisture content was observed to 

increase from 0.38 to 2.42 % as the fibre volume fraction within the composites increased 

from 0 to 20 %. The moisture diffusion coefficient also increased by 40% with inclusion of 20 

% fibre content.     

Liu et al. 85 investigated coating PGFs with magnesium (Mg) using physical vapour deposition 

(PVD) in order to enhance adhesion between PGF and PCL and consequently control 

degradation and mechanical retention properties of the composites. Magnesium coating 

yielded roughened fibre surfaces (see Figure 13) which could potentially induce a 

mechanical interlock between the fibres and polymer matrix. Tensile properties of the 
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coated fibres decreased initially after coating with magnesium which was suggested to be 

due to surface damage due to bombardment of Mg particles during the coating process. The 

IFSS of PCL-PGF interface increased from 5.2 to 8.9 MPa as the thickness of magnesium 

coating increased to 4 µm. However, the IFSS then decreased to similar levels as the non-

coated counterparts, when the Mg-coating was 9.5 µm. Mg-coated PCL-PGF random mat 

composites showed significantly lower water uptake, mass loss and rate of ion release 

compared to the non-coated fibre reinforced composites (control group). The tensile 

strength and modulus of these Mg-coated fibre composites were 17 and 47 % higher than 

the control (non-coated fibre) composites. In addition, the coated fibre composites retained 

higher tensile and flexural properties than control composites after 10 days of degradation 

in PBS at 37oC. Both coated and non-coated composites revealed good cytocompatibility 

and no significant difference were observed. Similar findings were obtained for Mg-coated 

unidirectional (UD) composites. Initial tensile properties for UD composites increased more 

than 50% as a result of Mg-coating. They concluded that the Mg-coating inhibited fibre 

degradation and enhanced the fibre/matrix adhesion, which led to the improvement in 

mechanical retention and degradation properties achieved.    

 

Figure 13: SEM of (a) non-coated and (b) coated PGF with magnesium using PVD. Adapted 

with permission from 85.   
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4.3 Biomedical applications of PGF composites  

4.3.1 Bone repair 

 

Han et al. 86 manufactured resorbable PLA-PGF composite plates and demonstrated the 

effects of drilled screw holes on their mechanical and degradation properties (See Figure 

14). Flexural strength and modulus of the UD composites increased gradually from ~200 to 

320 MPa and from 10GPa to 23GPa as the fibre volume fraction increased from 25 to 45%. 

Moreover, use of a larger number of thin UD layers for the same fibre fraction had a positive 

effect on mechanical properties for the composites. For instance, composite containing 8 

UD thin fibre layers revealed 60% higher flexural properties than the composite composed 

of one thick layer of UD fibres. This was attributed to the use of multiple, thinner UD mats 

providing better fibre wet-out, impregnation and dispersion across the composite thickness 

which led to stronger fibre/matrix interface resulting in enhanced stress transfer. Drilling 

screw holes into composite plates revealed a decrease in flexural strength by 6-20% in 

comparison with composite plates without holes. Interestingly, they also found that gamma 

sterilisation had no significant influence on the flexural properties of PLA-PGF composite 

plates with and without screw holes, which was ascribed to stability of the glass fibres 

against gamma radiation and that the fibres were the dominating factor in the properties of 

the composites. Drilling screw holes into laminate composites caused different types of 

damage such as delamination, cracking, debonding, fibre tearing and polymer softening and 

deformation around the screw hole. It was also found that the damage was more 

substantial for UD composites than the RM counterparts. Consequently, use of RM layers at 

the top and bottom of UD composites revealed a significant decrease in screw-hole damage. 

Weight loss profiles for both PLA-PGF UD and RM composites increased initially at day 3 

followed by a gradual decrease which was ascribed to water uptake. Furthermore, 

composites containing 45% fibre volume fraction showed significantly higher mass loss 

compared to other RM and UD composites. Composite plates with screw holes exhibited 

slightly faster degradation compared to plates without holes due to increase in the surface 

area 86.  
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Figure 14: PLA-PGF Composite plates before and after drilling screw holes. Screw holes have 

2 mm diameter and span between holes is 5 mm. Adapted with permission from 86.  

 

A novel method introduced by Felfel et al. 79, 87-90 for reshaping PLA-PGF composite plates 

into rods and screws (i.e. via forging or thermomechanical deformation) was applied during 

their rubbery state (i.e. above Tg of PLA) and below the crystallisation temperature (Tc) in 

order to prevent an increase in matrix crystallinity which could lower the degradation rate 

of the implant 91-93. The forging process window was selected between 70–90°C and this 

technique had numerous advantages; low processing temperatures, low cost, small void 

ratio, appropriate for different designs, shapes and materials, exclusion of aggressive 

thermal degradation and improvement of the matrix mechanical properties. The composite 

plates were forged at ~ 90°C into rods and screws. The forging technique improved the 

mechanical properties which were attributed to both the orientation of polymer chains in 

the matrix and the short chopped random mat fibres rearranging along the principal axis of 

the rods. PLA-PGF rods and screws showed comparable initial mechanical properties to 

cortical bone. Initial flexural, shear and compressive strengths of the rods varied within 

ranges of 100 - 250 MPa, 60 - 90 MPa, 130 - 420 MPa respectively and the flexural modulus 

ranged from 7 to 25 GPa depending on fibre volume fraction and architecture. 
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Figure 15: Images of  a) composite rod, Adapted with permission from 27 and b) composite 

screw prepared via the forging process. Adapted with permission from 88. 

An in vivo study conducted for PCL-PGF composites for 26 weeks used a rat calvarium model 

in order to provide information on the biocompatibility of the composite (which was 

designed for craniomaxillofacial reconstruction). No clinical complications were observed 

and all animals recovered well after surgery. A lack of inflammatory response was also 

observed from histological assessment. No bone was detected at the dural face of the 

implants up to the 4-week time point. Mineralised new bone was present at 8 weeks post-

surgery for PCL, PCL-PGF and PCL-bioglass composites. Monolithic PCL did not support new 

bone formation, whilst PCL composite discs (see Figure 16a) showed a gradual increase in 

the amount of mineralised bone from 20 to 35 % over time. At the 26 week time point, PCL-

PGF composites revealed a significantly greater quantity of new bone formation compared 

with PCL alone and PCL reinforced with 45S5 bioglass fibres. Extensive bone growth was 

seen at 26 weeks which was examined using histological examination and micro-CT (see 

Figure 16b&c) 60. 
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Figure 16: (a) PCL-phosphate glass discs  before implantation (8 mm diameter), (b) examples 

of bone associated with the dural face of implants after 26 weeks implantation and (c) 

percentage of bone associated with the dural face of the implants for PCL, PCL-PGF and PCL-

bioglass composites. Adapted with permission from 60.  

4.3.2 Dental applications 

 

PCL-PGF composites have also been investigated as root canal obturation materials and 

showed potential due to their capability of sealing in aqueous environments and releasing 

certain ions at controlled rates based on composition of PGF 94. The amount of ions released 

was found to be inversely proportional to content of iron oxide within the glass 

composition. PCL-PGF composites revealed better adaptation in root canal than the 

conventional gutta-percha (GP) and adhered firmly to the canal wall (see Figure 17a). Strong 

adhesion with dentine was attributed to formation of precipitate along the entire canal wall. 

In contrast, a clear gap was detected between the dentine-GP interface (see Figure 17b) 94.  
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Figure 17: SEM micrographs for material filling-dentin interface; a) good adhesion can be 

seen between PCL-PGF composite and canal wall (magnification 900x) and b) a clear gap is 

present between gutta-percha (GP) and dentine at lower magnification (400x). Adapted with 

permission from 94. 

4.3.3 Soft tissue repair 

 

Nazhat et al. 95 produced spiral collagen scaffolds via incorporation of soluble UD PGF into 

dense collagen gels. They initially prepared sheets (50 µm thickness) of collagen-PGF UD 

composites via an unconfined plastic compression method and then rolled these composites 

sheets to form three-dimensional constructs. The mechanical properties of these scaffolds 

could be tuned by the amount of PGFs incorporated within. Tensile strength and modulus of 

the scaffolds increased to 2.3 and 165 MPa respectively by inclusion of 30wt% of PGF. 

Controlled degradation of PGF could enhance cell ingrowth, perfusion and integration of the 

scaffolds with the surrounding tissue. Joo et al. 96 investigated the spiral collagen-PGF 

scaffolds as a potential candidate for axonal outgrowth following spinal cord injuries. They 

implanted cylindrical scaffolds into transected spinal cord of rats. The collagen-PGF scaffolds 

exhibited better performance compared to collagen alone and no inflammatory responses 

were observed for both groups.  They concluded that these PGF incorporated constructs 

had potential for functional recovery of injured or even totally transected spinal cord in rats.   
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5 Conclusions and Outlook 

 

Different aspects of phosphate glass fibres and their composites, such as manufacturing 

processes, chemical composition and processing technique related properties (for example, 

dissolution, ion release and mechanical properties) for biomedical applications have been 

reviewed.  

Compared to bulk glass, phosphate glass fibres possess many advantageous features, such 

as excellent mechanical properties, higher surface area, can enable greater reinforcing 

capability of polymer matrices and have also been explored as cell guides for soft tissue 

repair applications. 

In addition, altering their chemical compositions and addition of modifier ions within the 

phosphate glass fibre structures, the strength of the chain forming bonds and the cross-

linked networks within the glass structure could be controlled in order to manipulate the 

fibre degradation and mechanical properties required.  

Applications of phosphate glass fibre alone spanning cell delivery vehicles, angiogenesis, 

nerve guides, antibacterial implants and scaffolds for regeneration of soft-hard tissue 

interface have all been investigated.  

Phosphate glass fibre reinforced composite devices in the form of plates, rods, screws and 

scaffolds have shown to have vast potential with a wide range of mechanical properties for 

load bearing bone repair applications and for soft tissue repair applications. The fibre 

volume fraction, type, length, orientation of fibres (aligned or random) and strength of 

fibre/matrix interface had a significant influence on the mechanical performance of the 

composites produced. 

Though, phosphate glass fibres and their composites have been investigated for varying 

biomedical applications due to their biocompatibilty, favourable degradation and 

mechanical properties, there still remain considerable developments to be achieved (for 

example, industrial fibre scale-up) in order to fully exploit these biomaterials for 

commercialisation.  
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