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Abstract

In this article we consider the spatial homogenization of a multi-
phase model for avascular tumour growth and response to chemother-
apeutic treatment. The key contribution of this work is the derivation
of a system of homogenized partial differential equations describing
macroscopic tumour growth, coupled to transport of drug and nutri-
ent, that explicitly incorporates details of the structure and dynamics
of the tumour at the microscale. In order to derive these equations we
employ an asymptotic homogenization of a microscopic description un-
der the assumption of strong interphase drag, periodic microstructure,
and strong separation of scales. The resulting macroscale model com-
prises a Darcy flow coupled to a system of reaction-advection partial
differential equations. The coupled growth, response, and transport
dynamics on the tissue scale are investigated via numerical experi-
ments for simple academic test cases of microstructural information
and tissue geometry, in which we observe drug- and nutrient-regulated
growth and response consistent with the anticipated dynamics of the
macroscale system.

Keywords: Cancer modelling, multiscale homogenization, drug trans-
port, porous media

1 Introduction

As a current major cause of death in western countries, cancer represents one
of the key challenges for healthcare in the 21st century. For many decades
there has been an extensive effort by experimentalists and clinicians to de-
termine the precise nature of tumour growth and evolution, with the purpose
of developing suitable means of treatment. In recent years, there has also
been much interest in this field from the mathematical and computational
modelling communities (Araujo and McElwain (2004)). Traditionally, this
has focussed primarily on the development of mathematical models that de-
scribe growth dynamics (and other associated phenomena) so as to enhance
qualitative understanding of a given mechanism. More recently, however, a
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significant effort has been made toward making quantitative predictions for
how the disease will progress for an individual patient and, moreover, how
successful, or otherwise, a given treatment protocol may be.

Cancer is a disease of mutation (Michor et al. (2004)) characterised by
a rapid proliferation of damaged cells (Folkman and Cotran (1976), Laird
(1964)). The dynamics and effects of this proliferation are dependent on
highly complex physical and biological phenomena across a range of spatial
and temporal scales (see, e.g., Alarcón et al. (2005) for a detailed discus-
sion) such as genotypic and phenotypic heterogeneity (Gallaher and An-
derson (2013)), the tumour micro-environment (Casciari et al. (1992)), the
structure of the surrounding tissue (Rejniak et al. (2013)), etc. As a result,
among the myriad technical challenges in mathematical and computational
modelling of solid tumour growth, the question of how mechanisms occurring
on multiple scales may be coupled in a meaningful and efficient manner has
garnered much recent interest, see Alarcón et al. (2003, 2004, 2005, 2006),
Frieboes et al. (2007), Macklin et al. (2009), Owen et al. (2009, 2011), Per-
fahl et al. (2011), Powathil et al. (2015), Shipley et al. (2010) and references
therein. In particular, understanding this multiscale dependence is crucial
in predicting the effect of a chemotherapeutic agent on a given tumour.

The efficacy of a particular drug is highly dependent on its ability to
reach proliferating cells in sufficient quantity to bring about cell damage
and a reduction in tumour size (Jain (1989)). This transport is most appro-
priately modelled on the length scale associated with the full extent of the
tumour tissue; however, the transport properties of the drug and growth dy-
namics of the tumour are highly dependent on the evolving microstructural
properties of the tumour and its micro-vasculature (Owen et al. (2011), Per-
fahl et al. (2011)). In this work we extend the multiscale analyses of O’Dea
et al. (2014), Shipley and Chapman (2010), and Shipley et al. (2010) by
employing a multiphase model of tumour growth, of the type developed in
Breward et al. (2002) and Byrne et al. (2003), and exploited in the con-
text of vascular tumour growth in Breward et al. (2004) and Hubbard and
Byrne (2013), in which we explicitly incorporate microscale dynamics into
a system of homogenized partial differential equations (PDEs) for tumour
growth, response, and transport.

It is beyond the scope of this article to present a thorough review of the
extensive literature associated with the mathematical and computational
modelling of solid tumour growth and drug transport. As such, we reference
the review papers Araujo and McElwain (2004), Jain (2001), Lowengrub
et al. (2010), Preziosi and Tosin (2009b), Roose et al. (2007), and Tracqui
(2009), and limit our discussion here, predominantly, to multiphase fluid
dynamics models for solid tumour growth of the type considered in this
work. The first two-phase models of tumour growth (Breward et al. (2002),
Byrne et al. (2003)) decompose the tissue into tumoural and extracellu-
lar phases considered as viscous, inertialess fluids. Interphase interactions
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comprise exchange of mass and momentum via reaction processes regulated
by a passive solute and interphase drag, respectively. In subsequent works
additional phases have been added to incorporate tumour vasculature, and
enable differentiation between multiple cell species (Breward et al. (2004),
Hubbard and Byrne (2013)). It has been demonstrated in these works that
simple multiphase models are able to reproduce many of the features that
characterize solid tumour growth, such as the development of a necrotic core
behind a proliferating rim of viable tumour cells. Models of similar struc-
ture have also been employed in the study of tumour capsules (Lubkin and
Jackson (2002)), the effect of external loading on tumour growth (Byrne
and Preziosi (2003)), development of tumour cords and fibrosis (Preziosi
and Tosin (2009a), Tosin and Preziosi (2010)), and cell migration (Byrne
and Owen (2004)). Multiphase models have also been applied in the field of
tissue engineering, where, typically, viscous fluid flows through a fixed solid
phase corresponding to a porous scaffold (see, e.g. Lemon et al. (2006), and
Lemon and King (2007)). These models were extended in O’Dea et al. (2008,
2010) to study tissue growth in a perfusion bioreactor, in which viscous flu-
ids are driven by externally imposed pressure gradients; and Ambrosi and
Preziosi (2009) where a more general framework of viscoelastic behaviour is
introduced to account for cell adhesion effects.

The multiphase models discussed above are applied at a tissue scale and
do not incorporate any microstructural information regarding the tumour or
its vasculature (though via volume averaging one can show that multiphase
models of the type described above are physically meaningful, see Drew
(1971, 1983)). There is a growing literature associated with hybrid mod-
els of tumour growth, in which discrete populations of cells are simulated
with continuous fields of nutrient, and possibly drug and angiogenic growth
factor, see Alarcón et al. (2003, 2004, 2005, 2006), Chaplain et al. (2006),
Frieboes et al. (2007), Macklin et al. (2009), Owen et al. (2009, 2011), Per-
fahl et al. (2011), and Powathil et al. (2015). The hybrid nature of these
models allows the incorporation of effects that occur on multiple spatial and
temporal scales. In the wider field of transport in biological tissues, how-
ever, there is much interest in the application of homogenization techniques
as a means to incorporate effects over multiple scales. These techniques
allow the derivation of effective ordinary or partial differential equations
at the tissue scale, that directly incorporate explicit information regarding
the microscale in a mathematically precise manner. Examples employing
these methods across a range of biological applications include Band and
King (2012), Fozard et al. (2010), O’Dea and King (2011, 2012), Ptash-
nyk and Chavarŕıa-Krauser (2010), Ptashnyk and Roose (2010), and Turner
et al. (2004). However, of particular interest to the current work is Shipley
et al. (2010), in which flow and transport equations in a solid tumour and
its vasculature are homogenized to obtain a macroscale description of drug
transport; and the more recent works of O’Dea et al. (2014) and Penta et al.
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(2014) which consider the homogenization of models for growing tissues.
The analysis in the current work extends the classical homogenization of

flow and transport phenomena along similar lines to the analyses in O’Dea
et al. (2014) and Penta et al. (2014); wherein the growth, flow, and trans-
port dynamics of porous tissues are investigated. Here, however, we ad-
ditionally consider the dynamics of a multiphase mixture and, as a means
of incorporating interstitial growth, we further consider the dynamics of
a free interface on which phase transition may occur. This article is orga-
nized as follows. In section 2 we introduce a generic, multiphase PDE model
governing drug- and nutrient-regulated tumour growth at the microscale, to-
gether with transport of the aforementioned passive solutes. In section 3 we
present the derivation of a corresponding macroscale continuum model via
a multiscale homogenization method. In section 4 we present an illustrative
numerical experiment of the microscale system, for an academic example of
the geometry. In section 5 we describe a specific model of tumour growth
and response, and present a series of numerical experiments for representa-
tive model data on academic examples of geometry, parameterized using the
data obtained in the microscale numerical experiment in section 4. Finally,
in section 6 we make some concluding remarks and highlight ongoing and
future work.

2 Model Description

In this section, we present an idealised model of microscale tumour growth;
for the sake of generality and clarity of presentation, the model given in
this section, as well as the analysis presented in section 3 and numerical
experiments on the microscale presented in section 4, is intentionally generic.
Detailed biological motivation is therefore kept to a minimum, except where
necessary for rationalising specific model development choices. Given this
generality, our analysis may be applicable to fields of study other than solid
tumour growth (such as phase transition in geophysical flows, see e.g. the
introduction to Morland and Sellers (2001) and references cited therein).
Our biological motivation for the underlying microscale structures that we
consider in section 4, arises from the use of similar structures elsewhere in the
chemotherapeutic drug transport literature, e.g. Rejniak et al. (2013) which
considers drug transport through ovarian tumour tissue. For the numerical
experiments in section 5, we return to a biological setting by considering a
specific model for avascular tumour growth, discussed therein.

We consider a region of tissue containing a tumour as an idealized porous
medium in Rd, d “ 2, 3. The medium is represented as a highly-connected
material with a spatially periodic microstructure consisting of a multicompo-
nent mixture, whose dynamics is regulated by the concentrations of passive
solutes (representing a chemotherapeutic drug and nutrient, respectively),
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and saturated with a viscous Newtonian fluid which we refer to as inter-
stitial fluid. We assume that the material may be characterized by two
distinct lengthscales: `, corresponding to the scale of the periodicity of the
microstructure, and L corresponding to the scale of the tissue; we refer to
these as the microscale and macroscale for the remainder of this article. We
denote by Ω the microscale domain corresponding to periodic microstruc-
ture, and its boundary by BΩ.

We further partition Ω into two subdomains Ω1 and Ω2 corresponding
to the multicomponent mixture (henceforth referred to as the mixture for
brevity) and interstitial fluid respectively, with the interface between Ω1 and
Ω2 denoted by Γ; the unit inward normal to Ω1 on Γ is denoted by n and the
unit tangent(s) to Γ are denoted by τ . Growth is represented by movement
of the interface Γ.

A schematic diagram of the porous material described here is shown in
Figure 1. We denote by ΩL the macroscale domain associated with the
tissue. Finally, we assume that there is a strong separation of the two
lengthscales, i.e. we introduce a small dimensionless parameter 0 ă ε ! 1
defined by

ε “
`

L
. (1)

We remark that macroscale variation within Ω is permitted, though we do
not pursue this in the current work.

Ω1 Ω2BΩ

l

n

Γ

τ

Figure 1: Schematic diagram of a single unit of the periodic microscale problem.
Diagram adapted from O’Dea et al. (2014, Fig. 1).

There is an extensive literature related to the classical homogenization
of flow and transport in porous media in both physical and biological appli-
cations, see, e.g. Keller (1980), Mei and Auriault (1991), Rubinstein (1987),
and Tartar (1980). The analysis we present here represents an extension of
the traditional homogenization of flow and transport phenomena and the
recent attempts to apply these ideas to growing material in O’Dea et al.

5



(2014) and Penta et al. (2014), by explicitly incorporating the dynamics
of the multiphase mixture in Ω1, the free interface Γ, and allowing phase
transition on the singular surface Γ as a means of incorporating interstitial
growth.

2.1 Governing Equations on the Microscale

In this section we define the systems of equations in Ω governing the motion
of the mixture, interstitial fluid, and their interface; as well as the passive
transport of drug and nutrient.

2.1.1 Equations Governing Flow and Transport in Ω1

The structure of the model for the mixture presented in this section follows
closely the structure of the multiphase model of tumour growth employed in
Hubbard and Byrne (2013). We consider Ω1 as a mixture of Nθ interacting
fluid phases. In our biological context, each phase represents a biological
material, e.g. cell species, water, or extra cellular matrix. We denote the
volume fractions, velocities, pressures, densities, kinematic viscosities, and
bulk viscosities of the different phases by θi, u1,i, p1,i, ρ1,i, µ1,i, and λ1,i

respectively, for 1 ď i ď Nθ; where we consider θi, u1,i, and p1,i as spa-
tially and temporally varying dependent variables, and ρ1,i, µ1,i, and λ1,i as
constant model parameters.

Conservation of mass for each of the cell species yields the following PDE
for the volume fraction θi

ρ1,i

ˆ

Bθi
Bt
`∇ ¨ pu1,iθiq

˙

“ Si, for 1 ď i ď Nθ, (2)

where Si represents the net mass transfer from phase j to phase i, defined
as

Si “
Nθ
ÿ

j“1

pρ1,jsij ´ ρ1,isjiq , for 1 ď i ď Nθ, (3)

and sij denotes the volume flux from phase j into phase i. We specify that
mass is conserved across all phases, thus yielding the condition

Nθ
ÿ

i“1

Si “ 0, (4)

and that there are no voids in Ω1, i.e.

Nθ
ÿ

i“1

θi “ 1. (5)
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In the absence of inertia, conservation of momentum may be written as

∇ ¨ pθiσ1,iq ` F i “ 0, for 1 ď i ď Nθ, (6)

where σi,1 and F i denote the stress and momentum sources, respectively,
for each phase. We remark that the assumption that we may neglect iner-
tial terms is not required a priori for the proceeding analysis. Under the
dimensionless scalings set out in section 2.2, we see that inertial terms are
in fact relegated to O

`

ε2
˘

, see O’Dea et al. (2014). However, we present the
derivation in this manner for the sake of concision, and for consistency with
simliar multiphase formulations, Hubbard and Byrne (2013) for instance.

The equation for the composite velocity for the mixture is obtained by
summing (2) over all Nθ phases and applying (5) to yield

Nθ
ÿ

i“1

∇ ¨ pθiu1,iq “

Nθ
ÿ

i“1

1

ρ1,i
Si. (7)

We constitutively specify the stress tensors σ1,i by

σ1,i “ ´p1,iI ` µ1,iDpu1,iq ` λ1,i p∇ ¨ u1,iq I, for 1 ď i ď Nθ, (8)

where D denotes the rate of strain tensor

D pvq “ ∇v ` p∇vqT . (9)

We further specify the momentum sources constitutively as

F i “ p1,iI∇θi `
Nθ
ÿ

j“1,j‰i

dijθiθjpu1,i ´ u1,jq, for 1 ď i ď Nθ, (10)

where dij denotes the drag coefficient associated with the relative motion of
phases i and j. To simplify our microscale formulation, we now consider the
limit in which the interphase viscous drag is large (dij " 1). This assumption
is motivated by works such as O’Dea et al. (2008); further, we refer to Franks
and King (2003), for example, for historic use of such a model in the same
broad context as this work. Under this assumption each phase has the same
velocity u1, pressure p1, and stress σ1. As such, equations (2), (6), (7), and
(8) simplify to

ρ1,i

ˆ

Bθi
Bt
`∇ ¨ pu1θiq

˙

“ Si, for 1 ď i ď Nθ, (11)

∇ ¨ σ1 “ 0, (12)

∇ ¨ u1 “

Nθ
ÿ

i“1

1

ρ1,i
Si, (13)

σ1 “ ´p1I`µ1Dpu1q ` λ1 p∇ ¨ u1q I, (14)
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where we have implicitly assumed that each phase has kinematic viscosity µ1

and bulk viscosity λ1. We remark that this adoption of the large drag limit
enables the multiscale analysis that follows, through its simplification of the
momentum and mass conservation equations (12) and (13) – a corresponding
analysis incorporating distinct phase velocities forms important future work.

In addition to considering the motion of the mixture in Ω1, we consider
the transport of two passive solutes, whose concentrations are denoted c
and n. In our biological context, we consider c to correspond to a drug, e.g.
doxorubicin or cisplatin, and n to correspond to a nutrient, e.g. glucose or
oxygen. The equations governing the evolution of the concentration of these
transported species in Ω1 are given by

Bc

Bt
`∇ ¨ pu1cq “ ∇ ¨ pD1,c∇cq ´ γ1,cc´ ξcc (15)

and
Bn

Bt
`∇ ¨ pu1nq “ ∇ ¨ pD1,n∇nq ´ γ1,nn, (16)

where D1,c denotes diffusivity of c through the mixture, γ1,c denotes the
consumption rate of c, and ξc denotes its decay rate. Analogous notation is
employed for parameters related to the transport of n, but are denoted with
an appropriate subscript. In general, the diffusivity D, and rates γ and ξ,
may have functional dependence on θi, c, and n; in the following, however,
we assume for simplicity that the diffusivities and decay rates are constant
model parameters, but the consumption rate may be dependent on θi, c,
and n.

2.1.2 Equations Governing Flow and Transport in Ω2

We model the interstitial fluid in Ω2 as a viscous Newtonian fluid and denote
its velocity, pressure, density, and kinematic viscosity by u2, p2, ρ2, and
µ2, respectively; where we consider u2 and p2 as spatially and temporally
varying dependent variables, and ρ2 and µ2 as constant model parameters.
As such, we assume the motion of the interstitial fluid is governed by the
incompressible Navier-Stokes equations, given by

ρ2

ˆ

Bu2

Bt
` pu2 ¨∇qu2

˙

“ ´∇p2 ` µ2∆u2, (17)

∇ ¨ u2 “ 0. (18)

Here, for reasons of convention, we retain inertial terms in (6). This serves
to highlight their subsequent relegation to O

`

ε2
˘

under the dimensionless
scalings given in section 2.2 (see also section 2.1.1).

Once more, we consider the transport of passive solutes whose concen-
trations are denoted c and n. The equations governing the evolution of the
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concentration of these transported species are given by
Bc

Bt
`∇ ¨ pu2cq “ ∇ ¨ pD2,c∇cq ´ ξcc (19)

and
Bn

Bt
`∇ ¨ pu2nq “ ∇ ¨ pD2,n∇nq , (20)

where D2,c and D2,n denote the diffusivities through the interstitial fluid of
the solutes.

2.1.3 Interface Conditions on Γ

In order to fully couple the systems of equations given in sections 2.1.1
and 2.1.2, we must specify appropriate conditions for stress and velocity of
the fluids, mass balance and concentration of the passive solutes, and the
motion of the free boundary. To this end, we first define the ˘ sides of the
free interface Γ. Recalling the definition of the unit normal n oriented into
Ω1; then for a scalar quantity a defined in both Ω1 and Ω2, we define the
quantities a˘ by

a˘ :“ lim
εÑ0

a px˘ εn, tq @x P Γ.

If we let uΓ denote the velocity of the free interface Γ, then the mass balance
conditions for c and n across Γ are given by

`

a` pu1 ´ uΓq ´D1,a∇a`
˘

¨ n “
`

a´ pu2 ´ uΓq ´D2,a∇a´
˘

¨ n (21)

where a P tc, nu. Futhermore, we impose continuity of concentration of the
solutes across the interface, i.e.

a´ “ a`, (22)

for a P tc, nu. Letting σ2 denote the stress tensor for the interstitial fluid in
Ω2, i.e.

σ2 “ ´p2I ` µ2D pu2q @x P Ω2, (23)

then, following Morland and Sellers (2001), we impose the following stress
condition for a multiphase mixture with phase transition on the singular
surface Γ,

σ1n “ pσ2 ´ ρ2u2 pu2 ´ uΓqqn. (24)

We note that, consistent with our momentum descriptions (6) and (17),
inertial terms are omitted from the left hand side of (24) but retained on the
right hand side; however, as already noted, these are in any case relegated
to Opε2q under the scalings given subsequently. Additionally, we impose
continuity of tangential velocity across Γ, i.e.

u1 ¨ τ “ u2 ¨ τ (25)
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for all tangents τ of Γ. The mass balance condition for the fluid moving
across the interface Γ is given by

ρ1 pu1 ´ uΓq ¨ n “ ρ2 pu2 ´ uΓq ¨ n “ G, (26)

where G is the phase transition rate on Γ, and ρ1 is the volume fraction
averaged density in Ω1, defined by

ρ1 “

Nθ
ÿ

i“1

θiρ1,i. (27)

Finally, assuming that the interface Γ is described by the zero level set of
some function F px, tq, its kinematics are then described by the condition

BF

Bt
` uΓ ¨∇F “ 0. (28)

For the sake of generality, we do not provide specific constitutive assump-
tions on G until we specify the tumour growth model employed in the numer-
ical experiments of section 5. We remark, however, that constitutively speci-
fying G in the interface condition (26) significantly simplifies the description
of the interfacial motion. This form arises naturally from a boundary layer
analysis of the more general multiphase description, in the large-drag/fast-
consumption limit (see King and Franks (2007)), the details of which are
beyond the scope of the current work.

2.1.4 Boundary Conditions on BΩ

In order to complete the system on the microscale it remains only to specify
boundary conditions on BΩ. As we have made the assumption of periodic
microstructure and strong separation of the micro- and macroscale, we nat-
urally impose periodic boundary conditions for all components of the fluid
stresses and velocities.

2.2 Nondimensionalization

We nondimensionalize the independent variables x and t with respect to
the characteristic lengthscale of the periodic microstructure and advection
across the tissue respectively, i.e.

x “ `x˚ and t “
L

U
t˚,

where U denotes the characteristic velocity scale and ˚ denotes the dimen-
sionless variable. This choice of characteristic time is necessary for the pro-
ceeding multiscale analysis, as it ensures that inertial terms are relegated
to O

`

ε2
˘

, as discussed in sections 2.1.1 and 2.1.2, thus allowing the Darcy
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flow assumption of section 3.1. Importantly, this choice of characteristic
timescale ensures that the leading order equations for the flow in Ω1 and Ω2

are steady and the free interface Γ is quasi-stationary, thus relegating the
growth dynamics to higher order in ε and simplifying the analysis.

We remark that the analysis of Op1q growth dynamics or Opεq differences
in material densities (through choice of a timescale t “ t˚{S, say) signifi-
cantly complicates the resulting system of equations. In these cases, the
spatial homogenization techniques considered herein will likely need supple-
menting with a multiple timescale analysis. Such considerations are beyond
the scope of this current work.

We nondimensionalize the dependent variables in Ω1 and Ω2 with

ui “ Uu˚i , pi “
µ2LU

l2
p˚i , and σi “

µ2LU

l2
σ˚i for i “ 1, 2.

We nondimensionalize the phase source terms in Ω1 with

Si “
ρ1,iU

L
S˚i for 1 ď i ď Nθ,

and we further define the Reynolds number for macroscale flow of interstitial
fluid by

Re “
ρ2UL

µ2
.

The dependent variables defined in all of Ω are nondimensionalized with

c “ Cc˚ and n “ Nn˚,

where C and N are characteristic concentrations of the passive solutes, re-
spectively. Finally, we define the following dimensionless parameters

ρ1 “ ρ2ρ
˚
1 , µ1 “ µ2µ

˚
1 , λ1 “ 3µ2λ

˚
1 , Di,c “ UlD˚i,c,

Di,n “ UlD˚i,n, γ1,c “
U
Lγ

˚
c , γ1,n “

U
Lγ

˚
n,

and ξc “
CU
L ξ˚c for i “ 1, 2.

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

(29)

For the remainder of this article we work exclusively with the dimensionless
variables and parameters1 and forgo the notation ˚ for clarity of presenta-
tion. We proceed by setting out the full system of non-dimensional PDEs.

1Unless there is an explicit description of the dimensionality of the variable or param-
eter, and appropriate units are specified.
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2.2.1 Flow and Transport in Ω1

We first consider the dimensionless system of equations that describes the
mixture in Ω1 subject to the assumption of strong interphase drag. This is
given by

ε
Bθi
Bt
`∇ ¨ pu1θiq “ εSi, for 1 ď i ď Nθ, (30)

∇ ¨ u1 “

Nθ
ÿ

i“1

εSi, (31)

Nθ
ÿ

i“1

θi “ 1, (32)

∇ ¨ σ1 “ 0, (33)

σ1 “ ´p1I ` εµ1D pu1q ´ ελ1 p∇ ¨ u1q I. (34)

The dimensionless form of the transport equations in Ω1 are given by

ε
Bc

Bt
`∇ ¨ pu1cq “ ∇ ¨ pD1,c∇cq ´ ε pγ1,c ` ξcq c (35)

and

ε
Bn

Bt
`∇ ¨ pu1nq “ ∇ ¨ pD1,n∇nq ´ εγ1,nn. (36)

2.2.2 Flow and Transport in Ω2

The dimensionless equations that describe the motion of the interstitial fluid
are given by

ε2Re

ˆ

ε
Bu2

Bt
` pu2 ¨∇qu2

˙

“ ´∇p2 ` ε∆u2, (37)

∇ ¨ u2 “ 0. (38)

Note also that the dimensionless form of the constitutive assumption on the
fluid stress in Ω2 becomes

σ2 “ ´p2I ` εD pu2q . (39)

The dimensionless form of the equations governing transport of the passive
solutes in Ω2 are given by

ε
Bc

Bt
`∇ ¨ pu2cq “ ∇ ¨ pD2,c∇cq ´ εξcc (40)

and

ε
Bn

Bt
`∇ ¨ pu2nq “ ∇ ¨ pD2,n∇nq . (41)
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2.2.3 Interface Conditions on Γ

The dimensionless interface conditions for solute transport, and tangential
velocity are of identical form to (21)-(22), and (25) under the appropriate
redefinitions specified in (29). The stress and mass balance conditions (24)
and (26) are given by

σ1n “
`

σ2 ´ ε
2u2 pu2 ´ uΓq

˘

n, (42)

and
ρ1 pu1 ´ uΓq ¨ n “ pu2 ´ uΓq ¨ n “ εG. (43)

Finally, the non-dimensional version of the kinematic condition (28) is given
by

ε
BF

Bt
` uΓ ¨∇F “ 0. (44)

3 Multiscale Analysis

We now analyse the dimensionless system of equations given in sections
2.2.1–2.2.3 with the aim of deriving a description of the behaviour at the
tissue scale which explicitly incorporates the structure and dynamics of the
microscale in a manner analogous to that presented in Burridge and Keller
(1981), O’Dea et al. (2014), Penta et al. (2014), and Shipley and Chapman
(2010). We define X to be the dimensionless macroscale spatial variable.
By (1), this is related to the microscale variable x via εX “ x. Under
the assumption of strong separation of scales, we may expand all dependent
variables Ψ in multiple-scales form via an expansion of the form

Ψpx,X, t; εq “
8
ÿ

i“0

εiΨpiqpx,X, tq. (45)

Under this coordinate transformation ∇ becomes

∇ “ ∇x ` ε∇X , (46)

where ∇x and ∇X represent differentation with respect to the microscale
and macroscale spatial variables respectively. We proceed by substituting
multiple scale expansions of the form (45) for each of the dependent variables
into the nondimensional system of equations set out in sections 2.2.1–2.2.3
to obtain a system of PDEs at increasing orders of ε. We then analyse the
systems obtained at each order in ε, with the aim of obtaining a description
of the growth and transport dynamics at the macroscale.

3.1 Microscale Behaviour

In this section we derive systems of equations for flow and transport in Ω to
Op1q and Opεq, and introduce a Darcy flow assumption on the leading order
velocities and first order pressures.
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3.1.1 Equations at Op1q

At leading order in ε, the equations for the flow in Ω1 are given by

∇x ¨ u
p0q
1 “ 0, (47)

∇xθ
p0q
i “ 0, for 1 ď i ď Nθ, (48)

∇xp
p0q
1 “ 0, (49)

Nθ
ÿ

i“1

θ
p0q
i “ 1. (50)

From (48) and (49) we see that p
p0q
1 and θ

p0q
i are locally constant in Ω1, i.e.

they exhibit no dependence on the microscale variable x and may be written
as

θ
p0q
i “ θ̄i pX, tq and p

p0q
1 “ p̄1pX, tq,

where we use the notation Ďp¨q to denote microscale independence. If we
define the linear transport operator Lki,a by

Lki,a :“ Di,a∆x ´ u
pkq
i ¨∇x, (51)

for i P t1, 2u, a P tc, nu, and k P N0, the transport equations in Ω1 reduce to

L0
1,cc

p0q “ 0, (52)

L0
1,nn

p0q “ 0. (53)

The equations for the flow in Ω2 reduce to

∇xp2 “ 0, (54)

∇x ¨ u
p0q
2 “ 0. (55)

From (54) we see that p
p0q
2 is locally constant in Ω2, i.e.

p
p0q
2 “ p̄2pX, tq.

Using the definition (51), the transport equations in Ω2 are given by

L0
2,cc

p0q “ 0, (56)

L0
2,nn

p0q “ 0. (57)

The stress condition on Γ is given by

σ
p0q
1 n “ σ

p0q
2 n, (58)

14



and if we substitute the constitutive assumptions for stresses given by (39)
and (34) into (58) we see that

p̄1 “ p̄2 @x P Γ,

and, therefore, the leading order pressure p̄pX, tq is constant across all of Ω.
Continuity of tangential velocity is given by

u
p0q
1 ¨ τ “ u

p0q
2 ¨ τ . (59)

The kinematic condition reduces to

u
p0q
Γ ¨∇xF

p0q “ 0, (60)

which, given that F defines a proper boundary Γ via its zero level set, implies

that u
p0q
Γ ¨ n “ 0, i.e. at leading order in ε the free interface is stationary.

This observation further implies that the conservation of fluid mass across
Γ given by (43) becomes

u
p0q
1 ¨ n “ u

p0q
2 ¨ n “ 0, (61)

i.e. at leading order there is no mass flux across Γ. The interface conditions
for the transportable species are given by

´

D2,a∇xa
p0q
¯´

¨ n “
´

D1,a∇xa
p0q
¯`

¨ n and
´

ap0q
¯´

“

´

ap0q
¯`

, (62)

for a P tc, nu. A straightforward argument, cf. O’Dea et al. (2014) and
the references therein, shows that under these conditions, given the periodic
boundary conditions on Ω, that cp0q and np0q are locally constant in Ω, i.e.

cp0q “ c̄pX, tq and np0q “ n̄pX, tq.

Remark 3.1 We will subsequently show in section 3.2 that despite phase
transition on Γ and mass source terms in Ω1 not occurring until Opεq under
the scaling given in section 2.2, their effects are evident in the leading order
macroscale equations for both flow and transport.
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3.1.2 Equations at Opεq

At first order in ε, the equations for the flow and transport in Ω1 are given
by

Bθ̄i
Bt
`∇x ¨

´

θ
p1q
i u

p0q
1

¯

`

´

u
p0q
1 ¨∇X

¯

θ̄i ` θ̄i

Nθ
ÿ

j“1

S
p0q
j “ S

p0q
i , 1 ď i ď Nθ,

(63)

∇x ¨ u
p1q
1 `∇X ¨ u

p0q
1 “

Nθ
ÿ

i“1

S
p0q
i , (64)

´

´

∇xp
p1q
1 `∇X p̄

¯

` µ1∆xu
p0q
1 “ 0, (65)

Nθ
ÿ

i“1

θ
p1q
i “ 0, (66)

L1
1,cc

p1q “
Bc̄

Bt
`

´

u
p0q
1 ¨∇X

¯

c̄`

˜

γ1,c ` ξc `
Nθ
ÿ

i“1

Si

¸

c̄, (67)

L1
1,nn

p1q “
Bn̄

Bt
`

´

u
p0q
1 ¨∇X

¯

n̄`

˜

γ1,n `

Nθ
ÿ

i“1

Si

¸

n̄, (68)

in which we have made appropriate substitutions employing (31). The equa-
tions for the flow and transport in Ω2 are given by

´

´

∇xp
p1q
2 `∇X p̄

¯

`∆xu
p0q
2 “ 0, (69)

∇x ¨ u
p1q
2 `∇X ¨ u

p0q
2 “ 0, (70)

L1
2,cc

p1q “
Bc̄

Bt
`

´

u
p0q
1 ¨∇X

¯

c̄` ξcc̄, (71)

L1
2,nn

p1q “
Bn̄

Bt
`

´

u
p0q
1 ¨∇X

¯

n̄. (72)

The stress condition on Γ reduces to

σ
p1q
1 n “ σ

p1q
2 n. (73)

If we substitute the constitutive assumption for σ2 given by (39) and σ1

given by (34) into (73) we obtain the condition

´p
p1q
1 n` µ1Dx

´

u
p0q
1

¯

n “ ´p
p1q
2 n`Dx

´

u
p0q
2

¯

n, (74)

where Dx denotes the rate of strain tensor for differentiation with respect
to the microscale variable x. Finally, the interface conditions for the fluid
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are given by

u
p1q
1 ¨ τ “ u

p1q
2 ¨ τ , (75)

BF p0q

Bt
` u

p1q
Γ ¨∇xF

p0q “ 0, (76)

ρ1

´

u
p1q
1 ´ u

p1q
Γ

¯

¨ n “
´

u
p1q
2 ´ u

p1q
Γ

¯

¨ n “ Gp0q, (77)

and the interface conditions for the passive solutes are given by
ˆ

´

D1,a∇xa
p1q
¯`

´

´

D2,a∇xa
p1q
¯´

˙

¨ n “

pD2,a ´D1,aq∇X ā ¨ n`

ˆ

1

ρ1
´ 1

˙

Gp0qā, (78)

´

ap1q
¯`

“

´

ap1q
¯´

, (79)

for a P tc, nu.

3.1.3 Ansatz for up0q and pp1q

The system of equations given in section 3.1.1 is not sufficient to specify the
flow in either Ω1 or Ω2. As such, we proceed by assuming suitable forms for

u
p0q
1 , u

p0q
2 , p1, and p2 and substituting them into the appropriate equations

at Op1q and Opεq to obtain a pair of coupled, steady Stokes problems that
may be solved in order to obtain a description of the flow in Ω, see Davit
et al. (2013), O’Dea et al. (2014), Rubinstein and Torquato (1989), and
Shipley et al. (2010).

In light of the linearity of (47), (55), (65), and (69), an appropriate
form for the leading order microscale flow may be obtained by making the

following assumptions on u
p0q
i and p

p1q
i

u
p0q
i “ ´Ki∇X p̄ @x P Ωi,

p
p1q
i “ ´ai ¨∇X p̄` p̄

p1q
i @x P Ωi,

+

(80)

for i “ 1, 2, where p̄
p1q
i “ p̄

p1q
i pX, tq is the mean value of the first order

pressure in Ωi. The permeability tensor Ki and vector ai exhibit both mi-
croscale and macroscale dependence, but are independent of time to leading

order. This ansatz lets us quantify the microscale dependence on u
p0q
i and

p
p1q
i via a steady problem on the periodic microstructure for Ki and ai.

Substituting (80) into either (47) and (65) or (55) and (69), for flow in Ω1

or Ω2 respectively, and exploiting linearity we obtain the following steady
Stokes problem for Ki and ai

´∇xai ` µi∆xK
T
i “ ´I @x P Ωi,

∇x ¨K
T
i “ 0 @x P Ωi,

*

(81)
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for i “ 1, 2. In order to obtain suitable conditions to couple the Stokes
problems on Γ, we substitute (80) into the appropriate interface conditions
at Op1q and Opεq. We first substitute into the Opεq stress condition given
by (74) to obtain

´a1 b n` µ1Dx

´

KT
1

¯

n “ ´a2 b n`Dx

´

KT
2

¯

n. (82)

We next substitute into the Op1q conditions on the normal velocities given
by (61) to obtain

KT
1n “ 0 and KT

2n “ 0. (83)

Finally, we substitute into the Op1q condition on the tangential velocities
given by (59), yielding

KT
1 τ “K

T
2 τ . (84)

Remark 3.2 We note that had we not specified stress and velocity condi-
tions on Γ in our underlying microscale problem, (82)–(84) would be the
natural choice of interface conditions for a pair of coupled tensor Stokes
problems with no exchange of fluid mass between Ω1 and Ω2.

The system of PDEs defined by (81)–(84) together with periodic bound-
ary conditions on BΩ is not sufficient to uniquely specify the microscale
variables a1 and a2. As such, we specify the additional constraint,

ż

Ω1

pa1qi dx`

ż

Ω2

pa2qi dx “ 0, for 1 ď i ď d, (85)

in order to guarantee the uniqueness of a1 and a2. We emphasise that the
microscale flow problem described here is steady because, under the choice
of dimensionless scaling set out in section 2.2, the dynamics of the microscale
system are relegated to Opεq.

3.2 Macroscale Behaviour

In order to obtain the macroscale flow and transport equations we take
spatial averages of the leading order microscale flow and transport equations.
To this end, we define the following integral averages

xgy1 “
1

|Ω|

ż

Ω1

g dx, xgy2 “
1

|Ω|

ż

Ω2

g dx, and xgyΓ “
1

|Ω|

ż

Γ
g dS,

(86)
and the porosity of the material, φ, by

φ “
|Ω1|

|Ω|
. (87)
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3.2.1 Macroscale Flow

The leading order macroscale flow description is obtained by averaging the
microscale equations for the velocity in (80) to obtain

A

u
p0q
i

E

i
“ ´xKiyi ¨∇X p̄, for i “ 1, 2. (88)

Averaging (64) and (70) over Ω1 and Ω2, respectively, and applying the
divergence theorem yields

1

|Ω|

ż

Γ
u
p1q
1 ¨ n dS `∇X ¨

A

u
p0q
1

E

1
“

Nθ
ÿ

i“1

A

S
p0q
i

E

1
, (89)

´
1

|Ω|

ż

Γ
u
p1q
2 ¨ n dS `∇X ¨

A

u
p0q
2

E

2
“ 0. (90)

If we define the combined (average) velocity in Ω at leading order by

u “
A

u
p0q
1

E

1
`

A

u
p0q
2

E

2
, (91)

then combining (88)–(91) with (77) we are able to obtain the macroscale
flow problem in mixed form

u` rxK1y1 ` xK2y2s∇X p̄ “ 0,

∇X ¨ u “

´

1
ρ1
´ 1

¯

@

Gp0q
D

Γ
`
řNθ
i“1

A

S
p0q
i

E

1
.

+

(92)

3.2.2 Macroscale Evolution of the Mixture

The macroscale equation governing the volume fractions of the components
of the mixture is obtained by averaging (63), substituting (88), and applying
the divergence theorem

Bθ̄i
Bt
´ xK1y1 ∇X p̄ ¨∇X θ̄i “

A

S
p0q
i

E

1
´ θ̄i

˜

Nθ
ÿ

j“1

A

S
p0q
j

E

1

¸

, for 1 ď i ď Nθ.

(93)

3.2.3 Macroscale Transport of Passive Solutes

The macroscale equations governing the transport of drug and nutrient are
obtained by averaging the Fredholm alternative solvability conditions for the
Opεq transport equations (see O’Dea et al. (2014), Shipley and Chapman
(2010), and Shipley et al. (2010)) to obtain:

Bc̄

Bt
` pu ¨∇Xq c̄ “ ´Rcc̄, (94)

Bn̄

Bt
` pu ¨∇Xq n̄ “ ´Rnn̄, (95)
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where Rc and Rn denote the terms

Rc “ φγ1,c ` ξc `

ˆ

1

ρ1
´ 1

˙

A

Gp0q
E

Γ
`

Nθ
ÿ

i“1

A

S
p0q
i

E

1
, (96)

Rn “ φγ1,n `

ˆ

1

ρ1
´ 1

˙

A

Gp0q
E

Γ
`

Nθ
ÿ

i“1

A

S
p0q
i

E

1
. (97)

In this section we have derived a macroscale model for flow and trans-
port across ΩL that incorporates information regarding the structure of the
microscale. The microscale model consists of a pair of coupled steady ten-
sor Stokes problems for permeability tensors on the subdomains Ω1 and Ω2.
These permeability tensors are then employed to parameterize a macroscale
model comprising a Darcy system for flow and advection-reaction PDEs for
the mixture component volume fractions, and concentrations of the pas-
sive solutes. Through the choice of dimensionless scaling, inertial terms
and dynamics on the microscale are relegated to higher order, thus yielding
quasi-stationary linear flow problems to leading order. Phase transition on
the singular surface Γ and the mass sources for the mixture components
nevertheless induce a flow at the macroscale to leading order and, moreover,
affect the macroscale evolution of the leading order mixture volume fractions
and the concentrations of the passive solutes. In biological applications, we
observe that density differences between phases may be small and are typ-
ically neglected in the tissue growth literature. However, in the proceeding
sections we retain non-infinitesimal density differences between phases for
the sake of generality (that may be observed in physically motivated, as
opposed biologically motivated, models); so as to highlight the full resultant
dynamics of the proposed macroscale model.

4 Numerical Experiments on the Microscale

In this section we present a numerical experiment demonstrating the numer-
ical approximation of the solution to the microscale system given in section
3.1.3 for a representative, academic example of the geometry. This example
is chosen to highlight suitable means of computing microscale information
that will then be employed to parameterize representative numerical experi-
ments of the macroscale system in section 5, and provide details of appropri-
ate numerical methods for discretizing the microscale system. It is, however,
beyond the scope of this article to present full details of the discretization
of the system of PDEs that define the microscale model and, as such, we
refer to our companion article Collis et al. (2016) which fully describes the
discretizations employed here. All numerical experiments were carried out
with the AptoFEM finite element package (Antonietti et al. (2015)).
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In this current work we consider only academic examples of microscale
geometry, as the main contribution of this article is the multiple scales analy-
sis of the generic multiphase model presented in section 3, and its subsequent
application to a model of tumour growth and response in section 5. More-
over, it is not appropriate to consider a proper treatment of the techniques
associated with image recognition and segmentation that are necessary to
reliably incorporate physiological microscale data in this current work. For
relevant examples of microscale geometry from the field of tissue engineering
we refer the reader to Morris et al. (2014) and Visser et al. (2015).

For computational simplicity, we would, ideally, consider only two-
dimensional calculations. However, in order to obtain meaningful aver-
age permeabilities for both subdomains, we are required to consider a
three-dimensional problem. As such, we consider a three-dimensional mi-
croscale problem, but restrict the resulting data employed to parameterize
the macroscale problem to two spatial dimensions, in order to consider a
two-dimensional macroscale problem in section 5.

We now define the microscale geometry Ω “ p0, 1q3. We further define
three subsets of Ω, A1 “ p0.4, 0.6qˆp0.4, 0.6qˆp0, 1q, A2 “ p0.4, 0.6qˆp0, 1qˆ
p0.4, 0.6q, and A3 “ p0, 1q ˆ p0.4, 0.6q ˆ p0.4, 0.6q; and subsequently define
Ω2 “

Ť3
i“1 Ai and Ω1 “ ΩzsΩ2. From this definition of the geometry we may

compute the porosity φ “ 0.896. A diagram of the microscale geometry is
shown in Figure 2. We now introduce notation for a permeability tensor K

z

y
x

Ω1

Ω2

0.4
0.6

0.4

0.6

0.40.6

Figure 2: Geometry of a single unit of the periodic microscale problem.

and vector a defined on Ω as

K “

"

K1 @x P Ω1,
K2 @x P Ω2,

a “

"

a1 @x P Ω1,
a2 @x P Ω2.

,

/

/

/

/

.

/

/

/

/

-

(98)
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The system of tensor Stokes problems is solved by decomposing the tensor
problem into three standard Stokes problems for the components Kij and ai
for 1 ď i, j ď d. We then approximate the solution to these problems using
a discontinuous Galerkin (dG) finite element (FE) method following Toselli
(2002), with an additional penalization term to impose the no penetration
condition (83). The domain Ω is discretized into a uniform-hexahedral mesh
containing 30ˆ 30ˆ 30 elements, and the dG FE approximation was com-
puted employing polynomials of degree p2, 2, 2, 1q for the components of K
and a, respectively.

Figures 3 and 4 show representative numerical approximations for K33

on the geometry shown in Figure 2. As K is a permeability and appears
only in our macroscale model as an averaged quantity, it is difficult to in-
terpret Figures 3 and 4 in a physically meaningful way with respect to both
the micro- and macroscale; we therefore include these figures here only to
provide the reader with an indication of the variation in K33 across the mi-
croscale domain, and refer to our companion article Collis et al. (2016) for
more detail. Here, it suffices to note that due to the symmetry of Ω, Ω1, and
Ω2, the computation of K13, K23, K33, and a3 is sufficient to fully specify
K and a throughout Ω, from which we may calculate the spatially averaged
permeabilities as

xK1y1 “

¨

˝

2.69ˆ 10-2 2.21ˆ 10-9 ´2.21ˆ 10-9

´2.21ˆ 10-9 2.69ˆ 10-2 2.21ˆ 10-9

2.21ˆ 10-9 ´2.21ˆ 10-9 2.69ˆ 10-2

˛

‚ (99)

and

xK2y2 “

¨

˝

4.97ˆ 10-5 3.75ˆ 10-14 ´3.75ˆ 10-14

´3.75ˆ 10-14 4.97ˆ 10-5 3.75ˆ 10-14

3.75ˆ 10-14 ´3.75ˆ 10-14 4.97ˆ 10-5

˛

‚. (100)

We note that the off-diagonal entries of xK1y1 and xK2y2 are, effectively,
zero: under the choice of geometry shown in figure 2, we would expect xK1y1
and xK2y2 to be isotropic, to within the discretization error in the dG FE
method, and the results (99) and (100) are consistent with this.

5 Numerical Experiments on the Macroscale

In this section we depart from the rather generic multiphase setting of sec-
tions 2, 3, and 4 by utilising a specific model of tumour growth and response
that is consistent with the analysis presented in the preceeding sections. We
subsequently demonstrate the solution of the macroscale system defined in
sections 3.2.1 – 3.2.3 for this model, employing representative parameter
values, boundary and initial data, and geometry as well as microscale data
obtained from the numerical experiments detailed in section 4.
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Figure 3: A representative example of the numerical approximation of the perme-
ability tensor. The plot on the left shows ten iso-surfaces in each of Ω1 and Ω2.
The plots in the center and on the right show slices of the approximation at z “ 0.5
and 0.7, respectively, and the interface Γ is shown in white.

0.00182

0.00136

0.00091

0.00045

0.00000
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y

Figure 4: A representative example of the numerical approximation of the perme-
ability tensor in Ω2 at z “ 0.5, shown on an alternative scale to highlight variation
in Ω2 not visible in Figure 3.

5.1 Model of Tumour Growth and Response

We now proceed by specifying the model of tumour growth employed in
the numerical experiments. For simplicity, we closely follow that presented
in Hubbard and Byrne (2013), with additional terms corresponding to cell
response to chemotherapy and removal of a vascular phase that was of rel-
evance to that study. As such, we consider three phases in the mixture,
namely normal cells, tumour cells, and extra-cellular material (ECM), de-
noted by i “ 1, 2, 3, respectively. We specify the sources, Si, in the mi-
croscale model to be of the form

S1 “ ρ1,3km,1θ1θ3

ˆ

n

nP ` n

˙

loooooooooooooomoooooooooooooon

cell birth

´ ρ1,1kd,1θ1

ˆ

n1 ` n

n2 ` n

˙

loooooooooooomoooooooooooon

nutrient-regulated
cell death

´ ρ1,1kc,1θ1

ˆ

c

cP ` c

˙

looooooooooomooooooooooon

drug-regulated
cell death

,

(101)

S2 “ ρ1,3km,2θ2θ3

ˆ

n

nP ` n

˙

´ ρ1,2kd,2θ2

ˆ

n1 ` n

n2 ` n

˙

´ ρ1,2kc,2θ2

ˆ

c

cP ` c

˙

,

(102)
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S3 “ pρ1,1kd,1θ1 ` ρ1,2kd,2θ2q

ˆ

n1 ` n

n2 ` n

˙

`pρ1,1kc,1θ1 ` ρ1,2kc,2θ2q

ˆ

c

cP ` c

˙

´

ρ1,3 pkm,1θ1 ` km,2θ2q θ3

ˆ

n

nP ` n

˙

. (103)

For the sake of brevity, we refer the reader to Hubbard and Byrne (2013)
for a full description of the terms associated with cell birth and nutrient-
regulated cell death, and associated parameters. For the tumour response
to chemotherapy, we assume the death rate is a monotonically increasing
and saturating function of c increasing from zero to a maximal rate kc,i as
c Ñ 8, for i “ 1, 2. Furthermore, we specify that the consumption rate of
drug, γ1,c, and nutrient, γ1,n, are given by

γ1,c “ γ̃1,cpθ1 ` θ2q, (104)

γ1,n “ kγ,1θ1 ` kγ,2θ2
looooooomooooooon

baseline
consumption

`
`

kmγ,1θ1 ` k
m
γ,2θ2

˘

θ3

ˆ

n

nP ` n

˙

looooooooooooooooooomooooooooooooooooooon

cell birth
consumption

. (105)

Once more, we refer to Hubbard and Byrne (2013) for a complete description
of the terms and associated model parameters. In the following numerical
experiments, we consider two sub-cases: first (in section 5.2.1) we specify
the constitutive assumption on the phase transition on the singular surface,
Γ, as

G “ 0. (106)

Under this assumption, macroscale flow is driven entirely though differences
in density between each phase in the mixture. Then (in section 5.2.2) we
consider an alternative constitutive assumption on G, that will allow us
to recover some of the qualitative features observed in multiphase models
of tumour growth elsewhere in the literature. Once more we remark that
density differences between phases in the mixture are retained here for gen-
erality and in order to emphasise the full emergent dynamics of the proposed
macroscopic model. We further recall the strong drag assumption between
the phases given in section 2.1.1.

Finally, we specify appropriate boundary and initial conditions for the
macroscale problem on ΩL. We assume that the computational domain is
surrounded by a region of healthy tissue in which drug and nutrient are uni-
formly distributed. We further assume that the interstitial pressure outside
of the computational domain is known. Under these assumptions, appropri-
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ate boundary conditions are given by

p̄ “ pB @X P BΩL, (107)

θ̄1 “ Θ @X P Λ- p´ xK1y1 ∇X p̄q , (108)

θ̄2 “ 0 @X P Λ- p´ xK1y1 ∇X p̄q , (109)

θ̄3 “ 1´Θ @X P Λ- p´ xK1y1 ∇X p̄q , (110)

c̄ “ cBptq @X P Λ- puq , (111)

n̄ “ 1 @X P Λ- puq , (112)

where Λ-pbq denotes the inflow boundary with respect to a vector field b,
Θ denotes the volume fraction of healthy cells in the tissue surrounding the
tumour, pB denotes the known pressure in the host tissue, and cBptq is a time-
varying drug concentration corresponding to multiple rounds of treatment.
Values of Θ, pB and cB are specified in section 5.2.

5.2 Numerical Experiments

We approximate the solution of the flow problem (92) at each point in time
using the lowest order, mixed Raviart-Thomas (RT) dG FE method for
pu, p̄q (see Raviart and Thomas (1977), and Brezzi and Fortin (1991)). The
solutions to the transport equations (93), (94), (95) are approximated on
Th using a dG FE method as described in Houston and Süli (2001), with
polynomial degree 0. The timestepping is performed using an explicit Euler
method, linearized about the solution at the previous time point. The initial
conditions for the volume fractions for the components of the mixture are
given by

θ̄1pX, 0q “ Θ´ θ̄2pX, 0q,

θ̄2pX, 0q “ Θ
`

exp
`

-bXTX
˘

´ exp
`

-ba2
˘˘

,
θ̄3pX, 0q “ 1´Θ,

,

.

-

(113)

for X P
 

pX1, X2q : X2
1 `X

2
2 ď a2

(

, and

θ̄1pX, 0q “ Θ,
θ̄2pX, 0q “ 0,
θ̄3pX, 0q “ 1´Θ,

,

.

-

, (114)

otherwise, where a “ 0.45, b “ 20, and Θ “ 0.75. The initial condition for
drug and nutrient concentrations are given by

c̄pX, 0q “ 0 and n̄pX, 0q “ 1, (115)

the boundary data for c̄ is given by

cBptq “ 2
`

exp
`

-2pt´ 4q2
˘

` exp
`

-2pt´ 8q2
˘˘

, (116)

and the boundary condition for the pressure is specified separately in sec-
tions 5.2.1 and 5.2.2. Finally, we employ the results obtained from the
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microscale numerical experiments detailed in section 4, restricted to two
spatial dimensions, as

xK1y1 “

ˆ

2.69ˆ 10-2 0.0
0.0 2.69ˆ 10-2

˙

(117)

and

xK2y2 “

ˆ

4.97ˆ 10-5 0.0
0.0 4.97ˆ 10-5

˙

, (118)

where the off-diagonal components in (99) and (100) are sufficiently small
that they may be treated as zero.

5.2.1 No Interfacial Phase Transition

In this section we consider the case of no interfacial phase transition, i.e. we
specify that

G “ 0. (119)

We define the macroscale geometry ΩL “ p0, 1q
2. ΩL is then discretized into

a shape-regular conforming triangulation, Th, shown in Figure 5.

Figure 5: The triangulation, Th, employed in the macroscale flow and transport
computations.

Further, we specify the boundary condition for the pressure as

pB “ ´2X1. (120)

Figures 6 and 7 show the volume fractions of each of the components of the
mixture and the concentration of the passive solutes, respectively, at a range
of times for the parameter values given in Table 1. In Figures 6(a) and 6(b)
we observe an initial growth of the tumour, resulting in a reduction in the
volume fractions of healthy tissue and ECM. In Figures 6(c)–6(e), we then
observe a reduction in the tumour as a result of drug-induced cell death.
The presence of drug also results in the death of healthy tissue, though at
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Parameter Value Description

km,1 1.0 Healthy cell birth rate
km,2 2.0 Tumour cell birth rate
kd,1 0.5 Healthy cell death rate, n regulated
kd,2 0.5 Tumour cell death rate, n regulated
kc,1 0.25 Healthy cell death rate, c regulated
kc,2 1.5 Tumour cell death rate, c regulated
kγ,1 0.01 Nutrient consumption rate (healthy cell baseline)
kγ,2 0.01 Nutrient consumption rate (tumour cell baseline)
kmγ,1 0.1 Nutrient consumption rate (healthy cell birth)

kmγ,2 kγ,1 ˆ km,2 Nutrient consumption rate (tumour cell birth)

γ̃1,c 0.075 Drug consumption rate
ξc 0.05 Drug decay rate
nP 0.25 Cell birth rate dependence on nutrient
n1, n2 0.2, 0.1 Cell death rate dependence on nutrient
cP 0.25 Cell death rate dependence on drug
φ 0.896 Porosity
ρ1,1 1 Density of healthy cells
ρ1,2 1 Density of tumour cells
ρ1,3 2 Density of ECM

Table 1: Parameter values employed in the numerical experiment with G ” 0

a lower rate than that of tumour. This cell death results in an increased
volume fraction of ECM. We further remark that the net flow from left to
right is induced by (120).

In Figures 7(a), 7(c), 7(e), and 7(g) we observe the transport of drug
across ΩL. Comparing these to Figure 6, we see that the regions of high
drug concentration correspond to regions with decreasing volume fractions of
tumour. In Figures 7(b), 7(d), 7(f), and 7(h) we observe the replenishment
of the nutrient across the domain as a result of the induced flow. Two
features we highlight here are the increased consumption of nutrient by the
tumour compared to the healthy tissue as a result of greater rate of mitosis,
as evident from Figures 7(b) and 7(d), and the regions of high nutrient
concentration apparent in 7(f) and 7(h) as a result of reduced consumption
resulting from the lower volume fraction of tumour and local compression
in the underlying velocity field caused by drug-induced cell death.

Figure 8 shows the tumour mass and the boundary data for the drug
concentration over the full time of the simulation. In this figure we clearly see
the initial increase and subsequent decrease in tumour mass resulting from
the introduction of the drug. We remark that there is a clear lag between
the peak in the boundary data and the change in the growth dynamics of
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(a) t “ 0.

(b) t “ 4.

(c) t “ 6.

(d) t “ 8.

(e) t “ 10.

Figure 6: Numerical approximation of the normal cell (θ1), tumour cell (θ2), and
ECM (θ3) volume fractions obtained at t “ 0, 4, 6, 8, and 10.
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(a) t “ 4. (b) t “ 4.

(c) t “ 6. (d) t “ 6.

(e) t “ 8. (f) t “ 8.

(g) t “ 10. (h) t “ 10.

Figure 7: Numerical approximation of the drug (c) and nutrient (n) concentrations
obtained at t “ 4, 6, 8, and 10.
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the tumour corresponding to the time taken for the drug to be transported
from the boundary to the region of high tumour volume fraction, cf. Figures
6 and 7.

Figure 8: Plot showing tumour mass and drug boundary data against time. Tu-
mour mass is shown on the left axis and drug concentration boundary data is shown
on the right axis.

We note in passing that, under the assumption of strong interphase drag
and no interfacial phase transition, a velocity field consistent with a growing
tumour (in the context of this model) and that transports drug and nutri-
ent from the boundary across the domain, is not readily available. Indeed,
we have been unable to obtain such a flow in our numerical experiments
(though a more complete parameter survey may reveal a choice for which
this is realised); for this reason, we have imposed a flow across the domain
via suitable boundary conditions on the pressure. This is due to the ad-
vective nature of the transport and sign of the pressure source remaining
constant across ΩL for most appropriate initial configurations of the mix-
ture. However, through suitable specification of G the macroscale model is
capable of producing alternative dynamics that are consistent with the an-
ticipated macroscale behaviour of a tumour growth model, as demonstrated
in section 5.2.2.

5.2.2 Interfacial Phase Transition

We now consider a model incorporating interfacial phase transition. As
such, we are required to specify constitutively the mass transfer function G.
To this end, we suppose that there is some equilibrium volume fraction of
ECM, denoted θE , such that there is phase transition across Γ in order to
maintain this equilibrium. Under this assumption, a natural choice for the
form of G is given by

G “ kG pθ3 ´ θEq , (121)
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which we adopt for this numerical experiment. As noted above, for G ‰ 0
the requirement to impose a flow on the macroscale system is removed – we
therefore specify the boundary condition for the pressure as

pB “ 0 (122)

for illustrative purposes (and since pB “ 0 we are less restricted in the choice
of physically meaningful domains). The boundary data for the drug is still
given by (116).

We further consider an alternative macroscale geometry to that employed
in section 5.2.1, namely ΩL “

 

X : X2
1 `X

2
2 ď 0.52

(

, and discretize this
into a shape-regular conforming triangulation, Th, shown in Figure 9. Note
that there is a discrepency between the triangulation and the true domain,
but we assume that this is small and has no qualitative effect on the results.
Figures 10 and 11 show the volume fraction of each of the components of the

Figure 9: The triangulation, Th, employed in the macroscale flow and transport
computations.

mixture and the concentration of the passive solutes, respectively, at a range
of times for the parameter values given in Table 2. The behaviour exhibited
in these figures is qualitatively similar to that presented in Figures 6 and
9; however, we reemphasise that we are now able to observe transport of
drug and nutrient into the domain without inducing a flow via the pressure
boundary conditions, for reasonable initial configurations of the mixture.

In Figures 10(a)–10(c) (central panels) we observe an initial growth of
the tumour; then in Figures 10(c)–10(e), we start to observe the effect of
the drug on the tumour phase. We remark that, however, in Figures 10(b)
and 10(c), we additionally observe the effect of drug on the healthy tissue.

In Figure 11 we see qualitatively similar behaviour to that described in
section 5.2.1 (see Figure 7). However, we remark that the assumption on
G enhances the compressive nature of the induced flow and hence we see
higher and lower concentrations of drug and nutrient compared with those
observed in section 5.2.1.
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Parameter Value Description

km,1 1.0 Healthy cell birth rate
km,2 3.0 Tumour cell birth rate
kd,1 0.28 Healthy cell death rate, n regulated
kd,2 0.5 Tumour cell death rate, n regulated
kc,1 0.25 Healthy cell death rate, c regulated
kc,2 1.5 Tumour cell death rate, c regulated
kγ,1 0.1 Nutrient consumption rate (healthy cell baseline)
kγ,2 0.1 Nutrient consumption rate (tumour cell baseline)
kmγ,1 0.5 Nutrient consumption rate (healthy cell birth)

kmγ,2 kγ,1 ˆ km,2 Nutrient consumption rate (tumour cell birth)

γ̃1,c 0.075 Drug consumption rate
ξc 0.05 Drug decay rate
nP 0.25 Cell birth rate dependence on nutrient
n1, n2 1.0, 0.4 Cell death rate dependence on nutrient
cP 0.25 Cell death rate dependence on drug
φ 0.896 Porosity
ρ1,1 0.4 Density of healthy cells
ρ1,2 0.4 Density of tumour cells
ρ1,3 0.8 Density of ECM
kG 3.84 Constant in assumption for G
θE 0.25 Equilibrium value for θ3

Table 2: Parameter values employed in the numerical experiment for G ı 0
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(a) Numerical approximation of the volume fractions θ1–θ3 at t “ 0.

(b) t “ 6.

(c) t “ 9.

(d) t “ 12.

(e) t “ 15.

Figure 10: Numerical approximation of the normal cell (θ1), tumour cell (θ2), and
ECM (θ3) volume fractions obtained at t “ 0, 6, 9, 12, and 15.
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(a) t “ 6. (b) t “ 6.

(c) t “ 9. (d) t “ 9.

(e) t “ 12. (f) t “ 12.

(g) t “ 15. (h) t “ 15.

Figure 11: Numerical approximation of the drug (c) and nutrient (n) concentra-
tions obtained at t “ 6, 9, 12, and 15.

6 Conclusions

In this article we have performed a spatial homogenization of a multiphase
model for avascular tumour growth and response to chemotherapy, based on
the model employed in Hubbard and Byrne (2013). The multiple-scales tech-
nique that we exploit has been widely employed in homogenization of flow
and transport in porous media in Keller (1980), Mei and Auriault (1991),
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Rubinstein (1987), and Tartar (1980), and more recently to simple models of
growing tissue in O’Dea et al. (2014) and Penta et al. (2014) – here we seek
to extend these ideas to a more complex description of the underlying tissue
dynamics, incorporating multiple phases as well as microstructural features.
We obtain a tissue-scale description of tumour growth and response, and
transport of drug and nutrient comprising a system of advection-reaction
PDEs that are partially parameterized by the solution to a tensor Stokes
problem on a microscopic periodic unit. As a consequence of the timescale
on which we perform our analysis, growth and transport processes are rele-
gated to Opεq, and the underlying tissue microstructure is therefore quasi-
steady. Nevertheless, they directly influence the macroscale flow, transport
and tumour evolution dynamics.

We demonstrate the dynamics of the macroscale system via numerical
examples employing academic examples of micro- and macroscale geometry.
We refer the interested reader to our companion article Collis et al. (2016)
for full details of the numerical approach.

There are several natural extensions to the work considered in this arti-
cle. The foremost being that we have employed academic examples of mi-
crostructural geometry to illustrate the model behaviour; in order for this
model to be of direct relevance to experimentalists or clinicians it is crucial
that realistic geometries are employed for both the micro- and macroscale
models. With regards to extensions of the analysis presented here, current
ongoing work surrounds the removal of the strong drag assumption (in order
to more comprehensively consider interstitial growth) and the supplemen-
tation of this current work with a multiple timescales analysis in order to
consider Op1q microscale growth in a computationally tractable macroscale
formulation. The former may illuminate appropriate forms for G to yield
greater realism in the observed macroscale model dynamics, within our sim-
plified formulation.
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