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Abstract—This paper presents an approach to prediction
based on a new interval type-2 intuitionistic fuzzy logic system
(IT2IFLS) of Takagi-Sugeno-Kang (TSK) fuzzy inference. The
gradient descent algorithm (GDA) is used to adapt the parame-
ters of the IT2IFLS. The empirical comparison is made on the
designed system using two synthetic datasets. Analysis of our
results reveal that the presence of additional degrees of freedom
in terms of non-membership functions and hesitation indexes in
IT2IFLS tend to reduce the root mean square error (RMSE) of
the system compared to a type-1 fuzzy logic approach and some
interval type-2 fuzzy systems.

I. INTRODUCTION

FUZZY set (FS) theory was introduced by Zadeh [1] as
a generalisation of the classical notion of a set and a

proposition to accommodate fuzziness (degree of truth) as
expressed in natural or human language [2], [3]. The attraction
of FS lie in the resulting model’s capacity to represent non-
linear input/output relationships using qualitative IF· · ·THEN
rules [3]. Despite the extensive use of type-1 FS (T1FS) and
its connotation of uncertainty, previous works have established
that T1 fuzzy logic models uncertainty to a certain degree in
many applications and may not handle or minimise the effects
of uncertainties inherent in some real world applications [4].
To address this problem, Zadeh [5] proposed an extension of
his previous T1FS theory to include type-2 fuzzy set (T2FS)
theory capable of handling uncertainties that T1 struggles with
because membership grades of T2FS are themselves fuzzy.

Atanassov [6] extended the concept of Zadeh’s fuzzy sets
to intuitionistic fuzzy sets (IFSs), which deal with uncertainty
by considering both the degrees of membership and non-
membership of an element x to a fuzzy set A with some
degree of hesitancy. According to Olej and Hajek [7], the
representation of attributes by means of membership and non-
membership functions provides a better way to express uncer-
tainty. Castillo et al [8] lend credence to this when they opined
that the presence of non-membership or hesitation index gives
more possibility to represent imperfect knowledge and to
adequately describe many real world problems. Atanassov and
Gargov [9] extended the concept of IFS to interval valued
intuitionistic fuzzy sets (IVIFS) which are characterised by
membership and non-membership functions and defined in the
interval [0,1]. The resulting T2 fuzzy logic systems (FLSs)

whose degrees of membership are intervals are capable of
providing better performance in some applications than the
T1FLSs [10], [11].

To the knowledge of the authors, there is currently no work
in the literature where interval type-2 intuitionistic fuzzy set
(IT2IFS) is applied in a fuzzy logic inference system. Our
motivation is to apply IT2IFS to model uncertainty in data.
In this study, an IT2IFLS based on TSK fuzzy inference
system (FIS) is presented and the learning algorithms for the
adaptation of its parameters are derived.

The rest of the paper is structured as follows: In section II,
IFS, T2IFS and IT2IFS are defined. In section III, IT2IFLS is
designed and parameter update rules are derived. We present
our results in Section IV, and conclude in section V.

II. TYPE-1 AND TYPE-2 INTUITIONISTIC FUZZY SET

A. Intuitionistic Fuzzy Set (IFS)

Definition 1. [6] Given a non-empty set X , an intuitionistic
fuzzy set A∗ in X is an object having the form: A∗ =
{(x, µA∗(x), νA∗(x)) : x ∈ X)}, where the function µA∗(x)
: X → [0, 1] defines the degree of membership and νA∗(x) :
X → [0, 1] defines the degree of non-membership of element
x ∈ X and for every element x ∈ X , 0 ≤ µA∗(x)+νA∗(x) ≤
1.

When νA∗(x) = 1 − µA∗(x) for every x ∈ X , then the
set A is a fuzzy set. Moreover, Atanassov also specified an
hesitation degree, π, defined as 1 minus the sum of the degree
of membership and non-membership of an element to a set.
That is, πA∗(x) = 1− (µA∗(x) + νA∗(x)). This is called the
hesitancy factor or intuitionistic fuzzy index of x in A∗.

B. Type-2 Intuitionistic Fuzzy Set (T2IFS)

Here, we provide, for the first time, a new definition for a
T2IFS. A T2IFS Ã∗ in the universe of discourse, X consists
of type-2 membership and non-membership grades of x ∈ X
defined as µÃ∗(x, u) : u ∈ Jµx ⊆ [0, 1] and νÃ∗(x, u) : u ∈
Jνx ⊆ [0, 1] respectively. The primary membership (Jµx ) and
primary non-membership (Jνx ) of element x ∈ Ã∗ are elements
in the domain (x, u) which form supports of T2IFS in the third



dimension for membership and non-membership respectively
and are defined as follows:

Jµx =
{

(x, u) : u ∈
[
µ
Ã∗ (x) , µÃ∗ (x)

]}
Jνx = {(x, u) : u ∈ [νÃ∗ (x) , νÃ∗ (x)]}

Definition 2. A T2IFS denoted by Ã∗ is characterised by
a type-2 membership function µÃ∗(x, u), and a type-2 non-
membership function νÃ∗(x, u), i.e.,

Ã∗ = {(x, u) , µÃ∗ (x, u) , νÃ∗ (x, u) | ∀x ∈ X,
∀u ∈ Jµx ,∀u ∈ Jνx}

in which 0 ≤ µÃ∗ (x, u) ≤ 1 and 0 ≤ νÃ∗ (x, u) ≤ 1
where ∀u ∈ Jµx and ∀u ∈ Jνx conform to the T1 constraint
that 0 ≤ µA∗ (x) + νA∗ (x) ≤ 1. That is, when uncertainties
disappear, a T2 membership and non-membership functions
must reduce to a T1 membership and non-membership func-
tions respectively. Also the amplitudes of both membership
and non-membership functions must lie in the closed interval
of 0 and 1. That is, 0 ≤ µÃ∗ (x, u) ≤ 1 and 0 ≤ νÃ∗ (x, u) ≤
1. Alternatively,∫

x∈X

[∫
u∈Jµx

∫
u∈Jνx

{µÃ∗ (x, u) , νÃ∗ (x, u)}

]
/ (x, u)

where
∫ ∫ ∫

represents union over all admissible values of
x and u for the membership and non-membership over a
continuous universe of discourse, and

∫
is replaced by

∑
for

discrete universe of discourse. When the secondary member-
ship functions µÃ∗(x, u) = 1, and secondary non-membership
functions νÃ∗(x, u) = 1, a T2IFS translates to an IT2IFS (see
Figure 1 and Equation (1)).

Definition 3. [12] An IT2IFS, Ã∗, is characterised by mem-
bership bounding functions and non-membership bounding
functions defined as µ̄Ã∗(x), µ

Ã∗(x) and ν̄Ã∗(x), νÃ∗(x)
respectively for all x ∈ X with constraints: 0 ≤ µÃ∗(x) +
νÃ∗(x) ≤ 1 and 0 ≤ µ

Ã∗(x) + νÃ∗(x) ≤ 1.

For each x ∈ X , there exist a third tuple π(x) called the
IF-index or hesitancy degree which comes as a result of an
expert not being certain of the degree of membership and non-
membership of element x ∈ X .
Two IF-indexes used in this study are the IF-index of center
and IF-index of variance previously used in [13] and defined
in this work as:

πc(x) = max (0, (1− (µÃ∗(x) + νÃ∗(x))))

πvar(x) = max (0, (1− (µÃ∗(x) + νÃ∗(x))))

πvar(x) = max
(

0,
(

1−
(
µ
Ã∗(x) + νÃ∗(x)

)))
such that: 0 ≤ πc(x) ≤ 1 and 0 ≤ πvar(x) ≤ 1.

As defined above, an IT2IFS Ã∗ is characterised by interval
type-2 membership function, µÃ∗(x, u) and interval type-2
non-membership function, νÃ∗(x, u) for all x ∈ X expressed

as:

Ã∗ =

∫
xεX

∫
uεJµx

∫
uεJνx

1/ (x, u)

=

∫
xεX

[∫
uεJµx

∫
uεJνx

1/ (u)

]/
x

(1)

where x is the primary variable, and u is the secondary vari-
able. The uncertainty about an IT2IFS is completely described
by the footprints of uncertainty (FOUs) that are bounded by
two T1 membership functions - an upper membership function
(UMF) given as µ̄Ã∗(x) and lower membership function
(LMF) expressed as µ

Ã∗(x) and two T1 non-membership
functions which are - the upper non-membership function
(UNMF), ν̄Ã∗(x) and the lower non-membership function
(LNMF), νÃ∗(x) as illustrated in Figure 1. The uncertainty
about the IT2IFS is conveyed by the combination of both
membership and non-membership functions into membership
and non-membership FOUs (see Figure (1)) and defined as
follows:

FOUµ

(
Ã∗
)

=
⋃
∀x∈X

[
µ
Ã∗(x), µ̄Ã∗(x)

]
(2)

FOUν

(
Ã∗
)

=
⋃
∀x∈X

[νÃ∗(x), ν̄Ã∗(x)] (3)

From Equations (2) and (3), the FOU of IT2IFS can be
expressed by the union of all the primary memberships and
primary non-memberships.

FOU
(
Ã∗
)

=
⋃
∀x∈X

[
µ
Ã∗(x), µ̄Ã∗(x), νÃ∗(x), ν̄Ã∗(x)

]
III. INTERVAL TYPE-2 INTUITIONISTIC FUZZY LOGIC

SYSTEM

Similar to a type-2 fuzzy logic system (T2FLS), a T2IFLS
consists of the fuzzifier, rule base, fuzzy inference engine
and output processing module but because of the intuitionism
involved in the fuzzy set, we shall refer to the T2IFLS modules
as intuitionistic fuzzifier, intuitionistic rule base, intuitionistic
fuzzy inference engine and intuitionistic output processor.

A. Fuzzification

The fuzzification process involves the mapping of a
numeric input vector x ∈ X into an IT2IFS Ã∗ in X which
activates the inference engine.
In this study, intuitionistic Gaussian membership and non-
membership functions with uncertain standard deviation are
utilised which are defined as follows.

µik (xi) = exp

(
− (xi − cik)

2

2σ̄2
2,ik

)
∗ (1− πc,ik(xi))

µik (xi) = exp

(
− (xi − cik)

2

2σ2
1,ik

)
∗ (1− πc,ik(xi))



Fig. 1: An IT2 intuitionistic Gaussian membership and non-
membership functions - IT2IFS

νik (xi) = (1− πvar,ik(xi))−

[
exp

(
− (xi − cik)

2

2σ̄2
1,ik

)
∗ (1− πc,ik(xi))]

νik (xi) =
(
1− πvar,ik(xi)

)
−

[
exp

(
− (xi − cik)

2

2σ2
2,ik

)
∗ (1− πc,ik(xi))]

where πc,ik is the IF-index of center and πvar,ik is the IF-index
of variance. The parameters σ̄2,ik, σ1,ik, πc,ik and πvar,ik are
premise parameters that define the degree of membership and
non-membership of each element to the fuzzy set Ã∗. They
jointly define the FOUs of the IT2IFS.

B. Rules

The IF-THEN rule of an IT2IFLS can be expressed as
follows:

Rk : IF x1 is Ã∗1k and x2 is Ã∗2k and · · · and xn is Ã∗nk
THEN yk is f (x1, x2, · · · , xn)

= w1kx1 + w2kx2 + · · ·+ wnkxn + bk (4)

where Ã∗1k,Ã∗2k, · · · ,Ã∗ik,· · · ,Ã∗nk are IT2IFS and yk is
the output of the kth rule formed by linear combination of
the input vector: (x1, x2, · · · , xn). The rule representation of
IT2IFLS is similar to the classical IT2FLS, the only exception
is that both membership and non-membership functions are
involved in the output of the IT2IFLS.

C. Inference

There are generally two main types of fuzzy inferencing
namely: Mamdani and TSK which differ in their representation
and output evaluation. In this work, we assume a TSK fuzzy
inferencing where the output of each IF-THEN rule is a linear
function. There are basically three models for generating the
output of a type-2 TSK inference system namely [14]:
• Model I: The antecedent parts are type-2 fuzzy set while

the consequent parts are type 1 fuzzy sets denoted by
A2-C1.

• Model II: The antecedent parts are type-2 fuzzy sets with
crisp numbers as consequents denoted by A2-C0.

• Model III: Both the antecedent and consequent parts are
T1 fuzzy sets represented as A1-C1.

In this study, model II is adopted to investigate the reasoning
behind IT2IFLS with learning ability similar to adaptive-
neural network-based fuzzy inference system (ANFIS) [15]
and T2-ANFIS [16] approaches. In our study, the antecedent
parts are IT2IFS while the consequent parts are crisp values.
An IT2IFLS structure with two inputs, three membership
functions and nine rules is as shown in Figure 2. According

Fig. 2: An IT2IFLS Structure - adapted from [17]

to [18], the output of IFIS-TSK can be computed using two
approaches: (i) by the composition of membership output,
yµ and non-membership output functions yν (ii) by direct
defuzzification. In this study, the former approach is adopted
and the output of IT2IFLS is defined as follows:

y =
(1− β)

∑M
k=1

(
fµk + fµk

)
yµk∑M

k=1 f
µ
k +

∑M
k=1 f

µ
k

+
β
∑M
k=1

(
fνk + fνk

)
yνk∑M

k=1 f
ν
k +

∑M
k=1 f

ν
k

(5)
where fµ

k
, f

µ

k , fν
k

and f
ν

k are the lower membership, up-
per membership, lower non-membership and upper non-
membership firing strength respectively. In this study, the
implication operator employed is the “prod” t-norm such that:

fµk (x) = µ
Ã∗

1k
(x1) ∗ µ

Ã∗
2k

(x2) ∗ · · · ∗ µ
Ã∗

nk
(xn)

fµk (x) = µÃ∗
1k

(x1) ∗ µÃ∗
2k

(x2) ∗ · · · ∗ µÃ∗
nk

(xn)

fνk (x) = νÃ∗
1k

(x1) ∗ νÃ∗
2k

(x2) ∗ · · · ∗ νÃ∗
nk

(xn)

fνk (x) = νÃ∗
1k

(x1) ∗ νÃ∗
2k

(x2) ∗ · · · ∗ νÃ∗
nk

(xn)

where ∗ is the “prod” operator, yµk and yνk are the output of the
kth rule corresponding to membership and non-membership
function respectively. In IT2IFLS-TSK, the final output is
a weighted average of each IF-THEN rule’s output and as
such do not require any defuzzification procedure [19]. The
parameter β is a user defined parameter, 0 ≤ β ≤ 1; specify-
ing the contribution of the membership and non-membership
values in the final output. Obviously, if β = 0, the outputs
of the IT2IFLS is determined by the membership function
and if β = 1, then only the non-membership will contribute
to the system’s outputs. This study utilizes gradient descent
algorithm (GDA) for the update of both the antecedent and the
consequent parts of the rules. The cost function for a single
output is defined as:

E =
1

2
(ya − y)

2



where ya is the actual output and y is the network output.
The parameter update rules are as follows:

wik(t+ 1) = wik(t)− γ ∂E

∂wik
(6)

bk(t+ 1) = bk(t)− γ ∂E
∂bk

(7)

cik(t+ 1) = cik(t)− γ ∂E
∂cik

(8)

σ1,ik(t+ 1) = σ1,ik(t)− γ ∂E

∂σ1,ik
(9)

σ2,ik(t+ 1) = σ2,ik(t)− γ ∂E

∂σ2,ik
(10)

πc,ik(t+ 1) = πc,ik(t)− γ δE

∂πc,ik
(11)

πvar,ik(t+ 1) = πvar,ik(t)− γ δE

∂πvar,ik
(12)

where γ is the learning rate(step size) that must be carefully
chosen as a large value may lead to instability, and small
value on the other hand may lead to a slow learning process.
The learning rate and IF-indexes for this study are fixed.
Their adaptations will be considered in a future work. The
derivatives in Equations (6) and (7) are computed as follows:

∂E

∂wik
=
∂E

∂y

∂y

∂yk

∂yk
∂wik

=
∑
k

∂E

∂y

[
∂y

∂yµk

∂yµk
∂wik

+
∂y

∂yνk

∂yνk
∂wik

]
= (y (t)− ya (t)) ∗[

(1− β)

(
fµk∑M

k=1 f
µ

k
+
∑M
k=1 f

µ

k

+
f
µ

k∑M
k=1 f

µ

k
+
∑M
k=1 f

µ

k

)

+β

(
fvk∑M

k=1 f
v
k +

∑M
k=1 f

v
k

+
fvk∑M

k=1 f
v
k +

∑M
k=1 f

v
k

)]
∗xi

∂E

∂bk
=
∂E

∂y

∂y

∂yk

∂yk
∂bk

=
∑
k

∂E

∂y

[
∂y

∂yµk

∂yµk
∂bk

+
∂y

∂yνk

∂yνk
∂bk

]
= (y (t)− ya (t)) ∗[

(1− β)

(
fµk∑M

k=1 f
µ

k
+
∑M
k=1 f

µ

k

+
f
µ

k∑M
k=1 f

µ

k
+
∑M
k=1 f

µ

k

)

+β

(
fvk∑M

k=1 f
v
k +

∑M
k=1 f

v
k

+
fvk∑M

k=1 f
v
k +

∑M
k=1 f

v
k

)]
∗1

where yk is defined as in Equation (4). The derivatives in
Equations (8) to (12) are computed as follows:

∂E

cik
=
∑
k

∂E

∂y

[
∂y

∂fµ
k

∂fµ
k

∂µ
ik

∂µ
ik

∂cik
+

∂y

∂f
µ

k

∂f
µ

k

∂µik

∂µik
∂cik

+
∂y

∂fν
k

∂fν
k

∂νik

∂νik
∂cik

+
∂y

∂f
ν

k

∂f
ν

k

∂νik

∂νik
∂cik

]

∂E

σ1,ik
=
∑
k

∂E

∂y

[
∂y

∂fµ
k

∂fµ
k

∂µ
ik

∂µ
ik

∂σ1,ik
+

∂y

∂fν
k

∂fν
k

∂νik

∂νik
∂σ2,ik

]

∂E

σ2,ik
=
∑
k

∂E

∂y

[
∂y

∂f
µ

k

∂f
µ

k

∂µik

∂µik
∂σ2,ik

+
∂y

∂f
ν

k

∂f
ν

k

∂νik

∂νik
∂σ1,ik

]
where:

∂y

∂fµk
=

∂y

∂fµk

= (1− β)

[
yµk∑M

k=1 fk +
∑M
k=1 f

µ
k

− yµ∑M
k=1 f

µ
k +

∑M
k=1 f

µ
k

]

yµ =

∑M
k=1

(
fµk + fµk

)
∗ yµk∑M

k=1 f
µ
k +

∑M
k=1 f

µ
k

∂y

∂fvk
=

∂y

∂fvk

= β

[
yνk∑M

k=1 f
v
k +

∑M
k=1 f

v
k

− yν∑M
k=1 f

v
k +

∑M
k=1 f

v
k

]

yν =

∑M
k=1

(
fvk + fvk

)
∗ yνk∑M

k=1 f
v
k +

∑M
k=1 f

v
k

∂µ
k

(xi)

∂cik
= (1− πc,ik)∗(xi − cik)∗exp

(
− (xi − cik)

2

2 ∗ σ2
1,ik

)
/σ2

1,ik

(13)
∂µk (xi)

∂cik
= (1− πc,ik)∗(xi − cik)∗exp

(
− (xi − cik)

2

2 ∗ σ2
2,ik

)
/σ2

2,ik

(14)
∂µ

k
(xi)

∂σ1,ik
= (1− πc,ik)∗(xi − cik)

2∗exp

(
− (xi − cik)

2

2 ∗ σ2
1,ik

)
/σ3

1,ik

(15)

∂µ
k

(xi)

∂σ2,ik
= (1− πc,ik)∗(xi − cik)

2∗exp

(
− (xi − cik)

2

2 ∗ σ2
2,ik

)
/σ3

2,ik (16)

The derivatives:
∂νk (xi)

∂cik
,
∂νk (xi)

∂cik
,
∂νk (xi)

∂σ1,ik
,
∂νk (xi)

∂σ2,ik

are obtained in the same manner as Equations (13) to (16).
With the use of a t-norm prod operator,

∂fk

∂µ
ik

=

M1∏
j=1,j 6=i

µ
jk
,

∂fk
∂µik

=

M1∏
j=1,j 6=i

µjk

∂fvk

∂νik
=

M1∏
j=1,j 6=i

νjk,
∂fvk
∂νik

=
M1∏

j=1,j 6=i

νjk

The parameter β in Equation (5), initially set at 0.5, is learned
to allow for adaptive adjustment of the membership and non-



membership in the final output. The value of β is adjusted as
follows:

β (t+ 1) = β (t)− γ ∂E
∂β

,
∂E

∂β
=
∂E

∂y

∂y

∂β

= (y − ya)

∑M
k=1

(
fvk + fvk

)
∗ yvk∑M

k=1 f
v
k +

∑M
k=1 f

v
k

−

∑M
k=1

(
fµk + fµk

)
∗ yµk∑M

k=1 f
µ
k +

∑M
k=1 f

µ
k


Next, we present our experimental analysis and discussion
of simulation results. The performance criterion used for all
experiments is the root mean square error (RMSE) which is
defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(ya − y)
2 (17)

where ya is the desired output and y is the output of the model,
N is the number of testing data points.

IV. EXPERIMENTS AND RESULTS

A. Mackey Glass Prediction

Mackey-Glass is a well known time series dataset defined
by the following differential delay equation:

dx (t)

dt
=

a ∗ x (t− τ)

1 + x (t− τ)
n − b ∗ x (t)

where a, b and n are constant real numbers, t is the current
time and τ is a non-negative time delay constant. The system
tends to display a deterministic/periodic behaviour at τ ≤ 17
which turns chaotic when τ > 17. For comparison with
other works in the literature such as [14], [20]–[23], where
the target output is chosen as x(t + 6), from input vector
(x(t − 18), x(t − 12), x(t − 6), x(t)) and τ = 17. For each
input in this study, two intuitionistic Gaussian membership
functions with uncertain standard deviation are used. Similar
to [22], the 1000 learning data are generated from time series
(t = 19-1018) with the first 500 data points used for training
and the remaining 500 for testing. The results of applying
different approaches to the prediction of Mackey-Glass are
listed in Table I. As shown in Table I, IT2IFLS outperforms
the modified differential evolution radial basis function neural
network (MDE-RBF NN) and the fuzzy approaches.

For a fair comparison with IT2FLS(TSK) [14], another
experiment is conducted with the same computational settings,
and number of training (1000) and testing (200) datasets as
reported in [14]. The parameters of IT2FLS(TSK) are updated
using GDA and equally used the same parameter β to adjust
the upper and lower values of the membership grades in the
final output. As shown in Table II, after training, IT2IFLS
outperforms IT2FLS(TSK) with the RMSE of 0.0168. We also
implemented a T1 intuitionistic fuzzy logic system (IFLS) for
Mackey-Glass prediction in order to evaluate the performance

of the IT2IFLS over its T1 model. From Tables I and II,
IT2IFLS outperforms IFLS because of the extra degrees of
freedom offered by the FOUs of the IT2IFLSs.

TABLE I: Mackey-Glass Time Series Forecasting

Models train/chk RMSE
ANFIS Ensemble with IT2 FLS [24] 400/400 0.04933
ANFIS Ensemble with T1 FLS [24] 400/400 0.12043

Fuzzy-Singular Value Decomposition [22] 500/500 0.012
MDE-RBF NN [21] 500/500 0.013

Genetic Fuzzy Ensemble [23] 500/500 0.0264
Fuzzy Genetic Algorithm [23] 500/500 0.049

Radial Basis Function AFS [20] 500/500 0.0114
IFLS-TSK 500/500 0.0236

IT2IFLS-TSK 500/500 0.0079

TABLE II: Comparison of IT2FLS(TSK) and IT2IFLS on
Mackey-Glass Time Series

Models train/chk RMSE
IT2FLS(TSK) [14] 1000/200 0.0250

IFLS-TSK 1000/200 0.0234
IT2IFLS-TSK 1000/200 0.0168

TABLE III: Non-linear System Identification

Models
Number
of
rules

Number of
parameters RMSE

T2FLS
(Singleton) [25] 5 49 0.034

T2FLS (TSK) [25] 3 36 0.0388
SEIT2FNN [25] 3 36 0.0062

TSCIT2FNN [26] 3 34 0.0084
eT2FIS [27] 14 70 0.053

Type-2 TSK FNS [28] 4 24 0.03239
Feedforward

Type-2 FNN [29] 3 36 0.0281
SIT2FNN [29] 3 36 0.0241

IFLS-TSK 4 32 0.0146
IT2IFLS-TSK 4 36 0.00522

B. System Identification

For further evaluation, IT2IFLS is applied to a non-linear
system identification problem where the dataset is generated
by the following differential equation:

y(t+ 1) =
y(t)

1 + y2(t)
+ u3(t)

The variables u(t) and y(t) are used as inputs while y(t+ 1)
is the desired output. Training samples are generated using
u(t) = sin(2πt/100). We adopt similar computational set
up in [25]–[29] with 500 epochs and 200 samples. Similar
to IT2IFLS, the parameters of T2FLS (Singleton and TSK)



are tuned using GDA. The results in Table III show that the
IT2IFLS outperforms both forms of T2FLSs. Our approach
is also compared with three evolving T2FLSs namely, self
evolving interval type-2 fuzzy neural network (SEIT2FNN)
utilising IT2FS in the antecedents and TSK interval type-1
set in the consequent, TSK-type-based self-evolving compen-
satory IT2FNN (TSCIT2FNN) which utilises IT2FS in the
antecedent and a crisp linear model in the consequent and
evolving type-2 neural fuzzy inference system (eT2FIS) with
antecedent T2FS and Mamdani-type consequent. As shown in
Table III, IT2IFLS exhibits a low level of RMSE over these
evolving T2FLSs. In particular, the performance of IT2IFLS
is compared with Type-2 TSK Fuzzy Neural System (Type-2
TSK FNS) [28], TSCIT2FNN [26] and SIT2FNN [29], which
also utilised the parameter β to adjust the contribution of upper
and lower membership values in their final outputs. The results
show a clear performance improvement of IT2IFLS over Type-
2 TSK FNS, TSCIT2FNN and SIT2FNN. We also constructed
an IFLS in order to compare the performance of the IT2IFLS
with its T1 model on system identification. From Table III,
there is a significant performance improvement of IT2IFLS
over IFLS on system identification.

V. CONCLUSION

In this study, an IT2IFLS-TSK approach to prediction is
presented. The IT2IFLS can accommodate more imprecision
thereby modelling imperfect and imprecise knowledge better
than some IT2FLS. The key point in this design is in the IF-
index which models the level of uncertainty of every element
in each set. In future, we intend to learn the parameters of the
IT2IFLS using Gaussian membership function with uncertain
mean and also to train IT2IFLS using hybrid approach of GD
and Kalman filter and to evaluate these on real world datasets.
We also intend to apply IFS to general T2FLS.
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