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1.	Introduction	23 

Data Envelopment Analysis (DEA) is a relatively recent approach in the assessment 24 

of performance of organizations and their functional units.  DEA is able to evaluate 25 

the Decision Making Units (DMUs) based on multiple inputs and outputs.  Since the 26 

first development of DEA (Banker, Charnes, & Cooper, 1984; Charnes, Cooper, & 27 

Rhodes, 1978), there have been many applications of DEA in a variety of different 28 

contexts (Emrouznejad & De Witte, 2010; Emrouznejad, Parker, & Tavares, 2008). 29 

However in many real world applications, input or output variables are not always 30 

represented by crisp values.  Hence, the traditional DEA models cannot be used for 31 

evaluating such DMUs.  Several attempts have been made to develop fuzzy DEA 32 

models that are powerful tools for comparing the performance of a set of activities or 33 

organizations under uncertainty.  For instance, Sengupta (1992) considered the 34 

objective function to be fuzzy when utilizing a standard DEA and used 35 

Zimmermann’s method (Zimmermann, 1975, 1978) to obtain the results.  León et al. 36 

(2003) transformed the fuzzy DEA into crisp DEA (Hougaard, 2005).  Takeda and 37 

Satoh (2000) used both multicriteria decision analysis and DEA with incomplete 38 

data.  Lertworasirikul et al., (2003a) and Lertworasirikul et al., (2003b) applied a 39 

possibilistic approach (Zarafat Angiz et al., 2006) to treat the constraints of the DEA 40 

as fuzzy events.  Several other fuzzy models (Guo & Tanaka, 2001) have been 41 

proposed to evaluate DMUs with fuzzy data, using the concept of comparison of 42 

fuzzy numbers.  Wen and Li (2009) proposed a hybrid method based on fuzzy 43 

simulation and genetic algorithms.  Recently, Emrouznejad, Tavana, and Hatami-44 

Marbini (2014) provided a taxonomy and review of fuzzy DEA (FDEA) methods 45 

which comprise a tolerance approach, the α-level based approach, the fuzzy ranking 46 

approach, the possibility approach, the fuzzy arithmetic, and the fuzzy random/type-47 

2 fuzzy set. 48 

The α-cut approach (Zerafat Angiz, Emrouznejad, & Mustafa, 2012) for fuzzy DEA 49 

is one of the most frequently used methods.  It first solves a linear program to 50 

determine the upper bound of the weights, then a common set of weights are 51 
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obtained by solving another linear programming problem.  The shortcoming of this 52 

approach is that we lose some information about uncertainty.  Further, since the 53 

nature of a fuzzy linear programming (FLP) model is nonlinear, to keep all 54 

information about uncertainty when solving the model, we need a nonlinear 55 

programming model.  In other words, in order to use a mathematical programming 56 

problem to analyze the solution of an FLP problem, a multi-objective nonlinear 57 

programming has the most consistency with the nature of FLP problem. 58 

Alternative methodologies based on multi-objective programming are seen in 59 

Zerafat Angiz, Emrouznejad, and Mustafa (2010) and Zerafat Angiz et al. (2012) 60 

who introduced a new concept called local α-level which approximates the optimal 61 

solution of an FLP problem by partitioning the interval of fuzzy numbers.  The 62 

optimal solution in this approach is based on the closeness to defuzzified points.  63 

The benefit of this approach is that the multi-objective programming corresponding 64 

to FLP is linear.  In fact, in this approach the authors impose α-cuts together, and 65 

solve a single linear programming problem.  On the other hand, Zerafat Angiz et al. 66 

(2010) presented a model for ranking decision making units based on a non-radial 67 

approach.  Saati et al. (2001) presented a non-radial model that assumed inputs and 68 

outputs are fuzzy.  This paper deals with a primal form of an FLP problem.  Because 69 

of the nature of the model, it is categorized as a pessimistic approach because the 70 

worst situation of the DMU under evaluation is compared with the best situation of 71 

other DMUs. 72 

In this paper an optimistic approach will be presented.  We propose a multi-objective 73 

programming model that can retain the uncertainty in many aspects including 74 

objective functions, coefficients of the decision matrix and the DMUs under 75 

assessment.  The discrete approach (Zerafat Angiz et al., 2012) and the proposed 76 

approach follow two different views.  In the discrete approach, the goal is achieving 77 

defuzzified points whereas the goal of fuzzy numbers in the proposed approach is 78 

the most possible values. One advantage of the proposed approach is that it retains 79 

information about uncertainty as much as possible, while the discrete approach 80 

approximates the solution, but it still loses some information about uncertainty.  The 81 
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benefit of applying the discrete approach is that a linear programming problem is 82 

used. 83 

The rest of this paper is organized as follows.  A brief description of standard DEA 84 

and fuzzy DEA is given in Section 2.  A specific multi-objective model is discussed 85 

in Section 3 and we propose an alternative fuzzy DEA model under uncertainty.  86 

This is followed by a numerical illustration in Section 4.  In Section 5 empirical data 87 

is analyzed to illustrate the proposed approach. Section 6 presents the discussion of 88 

the paper and conclusion is drawn in Section 7. 89 

2.	DEA	and	Fuzzy	DEA	90 

DEA is a nonparametric technique for measuring the relative efficiency of a set of 91 

DMUs with multiple inputs and multiple outputs.  Today, DEA has been adopted in 92 

many disciplines as a powerful tool for assessing efficiency and productivity.  93 

Hence, many other applications of DEA have been reported, for example hospital 94 

efficiency (Tiemann, Schreyögg, & Busse, 2012), banking (Paradi & Zhu, 2013), 95 

manufacturing efficiency (Jain, Triantis, & Liu, 2011), and productivity of 96 

Organization for Economic Co-operation and Development (OECD) countries 97 

(Emrouznejad, 2003; Lábaj, Luptáčik, & Nežinský, 2014; Prieto & Zofío, 2007).  98 

Many more applications can be found in the scientific literature (Emrouznejad et al., 99 

2008; Liu, Lu, Lu, & Lin, 2013) which indicates that most of these studies have 100 

ignored the uncertainty in input and output values.  This uncertainty could have an 101 

effect on the border defined by the standard DEA; hence the CCR-DEA (Charnes et 102 

al., 1978)  model may not obtain the true efficiency of DMUs.  Theoretically, the 103 

standard CCR-DEA model has its production frontier spanned by the linear 104 

combination of the observed DMUs. 105 

The production frontier under uncertainty is different.  The idea proposed in this 106 

research is to allow some flexibility in defining the frontiers with uncertain DMUs, 107 

using a fuzzy concept.  108 
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2.1	Preliminaries	109 

Definition 1 (Lai & Hwang, 1992). The α-level set (α-cut) of a fuzzy set A%is a crisp 110 

subset of X and is denoted by 111 

{ }| &AA x x Xα = µ ≥ α ∈%  112 

Definition 2. A triangular fuzzy number x% is defined as follows  113 

for
( )

for

l
l m

m l

x u
m u

u m

x - x x x x
x - xµ x =
x - x x x x
x - x

⎧
≤ ≤⎪⎪

⎨
⎪ ≤ ≤
⎪⎩

%  

 

(1) 

mx , lx  and ux  are the mean value, the lower bound and the upper bound of the 114 

interval of fuzzy number (Zimmermann, 1978).  The interval of fuzzy number 115 

[ , ]l ux x  is the region where the value of x fluctuates.  Symbolically, x% is denoted by116 

( )m l ux ,x ,x .  Notice that there are special concepts and terminology in the Fuzzy Sets 117 

Theory, when fuzzy numbers with possibilistic data are being used.  In this case, xm, 118 

xl and xu are called the most possible value, the most pessimistic and the most 119 

optimistic values of the imprecise parameter x represented by a triangular fuzzy 120 

number.  For more details, see Torabi and Hassini (2008) and Pishvaee and Torabi 121 

(2010). 122 

2.2	Fuzzy	DEA		123 

The DEA technique evaluates the relative efficiency of a set of homogenous DMUs 124 

by using a ratio of the weighted sum of outputs to the weighted sum of inputs.  It 125 

generalizes the usual efficiency measurement from a single-input, single-output ratio 126 

to a multiple-input, multiple-output ratio. 127 

Let inputs ( 1,2,..., )ijx i = m  and outputs ( =1,2,..., )rjy r s  be given for jDMU  128 

( =1,2,..., )j n . 129 

The linear programming statement for the CCR model is formulated as follows: 130 
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Model 1:  CCR-DEA model 131 

1

1

1

max

s.t.

1

0

0

s

r rp
r=

m

i ip
i=
s m

r rj i ij
r= i=1

r i

u y

v x =

u y - v x j

u , v r,i

≤ ∀

≥ ∀

∑

∑

∑ ∑

 132 

where iv  and ru  are the weight variables for i th and r th input and output, 133 

respectively.    134 

At the turn of the present century, reducing complex real-world systems into precise 135 

mathematical models was the main trend in science and engineering.  Unfortunately, 136 

real-world situations cannot usually be modelled with exact data.  Thus precise 137 

mathematical models are not enough to tackle all practical problems.  In practice 138 

there are many problems in which, all (or some) input–output levels are fuzzy 139 

numbers.  It is difficult to evaluate DMUs in an accurate manner to measure the 140 

efficiency.  Fuzzy DEA is a powerful tool for evaluating the performance of a set of 141 

organizations or activities under an uncertain environment.  142 

Suppose that the inputs and outputs of DMUs are fuzzy, and they are denoted by143 

( 1,2,..., )ijx i = m%  and ( =1,2,..., )rjy r s% respectively. Then, the CCR model with 144 

fuzzy coefficients for assessing pDMU is formulated as follows: 145 

Model 2: Fuzzy CCR-DEA, multiplier model 146 
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1

1
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s m
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u y
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 147 

Saati, Memariani, and Jahanshahloo (2002) proposed a fuzzy DEA by considering 148 

the α-cut of objective function and the α-cut of constraints; hence the following 149 

model is obtained. 150 

Model 3: Fuzzy CCR-DEA, using α-cut approach  

1

1

1

1

max ( (1 ) , (1 ) )

. . ( (1 ) , (1 ) ) ( (1 ) , (1 ) )

( (1 ) , (1 ) )

( (1 ) , (1 ) ) 0

,

s
m l m u

r rp rp rp rp
r
m

m l m u l u
i ip ip ip ip i

i
s

m l m u
r rj rj rj rj

r
m

m l m u
i ij ij ij ij

i

r

u y y y y

s t v x x x x l l

u y y y y

v x x x x j

u v

α α α α

α α α α α α α α

α α α α

α α α α

=

=

=

=

+ − + −

+ − + − = + − + − ∀

+ − + −

− + − + − ≤ ∀

∑

∑

∑

∑
0 , .i r i≥ ∀

 151 

If we substitute ( , , )m l u
ij ij ij ijx x x x=% , ( , , )m l u

ij ij ij ijy y y y=% and 1 (1,1 ,1 )l u=% , Model (3) is 152 

written as follows. 153 

  154 
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Model 4: Fuzzy CCR-DEA, using α-cut approach, interval programming 155 

1
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=

=
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≥ ∀
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 156 

As it is shown in Saati et al. (2002) we have (1 ) 1ll Lα α+ − ≤ ≤ .  One main 157 

drawback in Model 4 is that the optimum efficiency level occurs when the outputs of 158 

the evaluated DMU and the inputs of other DMUs are set to their upper bounds, 159 

while the inputs of the evaluated DMU and the outputs of other DMUs are set to 160 

their lower bounds.  As a result the evaluated DMU will have the largest possible 161 

efficiency value; hence Model 4 may not obtain the true efficiency score. 162 

In the next section we propose an alternative fuzzy DEA to tackle this problem.  In 163 

the suggested method the evaluated DMU will have the efficiency value between the 164 

smallest and the largest possible values.  165 

3.	Multi-objective	programming		166 

Since we must solve a particular multi-objective model, a short discussion related to 167 

this kind of problem is presented. 168 

Consider the following multi-objective problem 169 

1 2max ( ), ( ),..., ( )
s. t . x X

nf x f x f x
∈  170 
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In the above model, functions 1 2( ), ( ),..., ( )nf x f x f x are objective functions and X is 171 

considered as a feasible region.  To solve the above mathematical problem, a two 172 

stage procedure is proposed. 173 

1. Goal of function ( ) i 1,2,...,nif x =  is obtained by the following mathematical 174 

programming: 175 

* max ( )
s. t . x X
i if f x=

∈
 176 

2. In this stage scale  β  is introduced to move functions *

( ) 1i

i

f x
f

≤  towards their 177 

optimality.  For this purpose the following mathematical programming 178 

problem should be solved: 179 

*

max
( )s. t . i

i

f x
f

x X

β

β ≤

∈

 180 

3.1.	A	multi-objective	fuzzy	DEA	model	under	uncertainty	181 

This section proposes an alternative fuzzy DEA model. The main idea of the 182 

suggested method is based on the membership functions of the coefficients.  We 183 

consider the coefficients as triangular fuzzy numbers ( )m l ux ,x ,x . Hence, the 184 

membership functions of the coefficients can be defined as follows. 185 

( ) ,
i j

l
i j i j l m

i j i j i jm l
ij ij

x i j u
i j i j m u

i j i j i jm u
i j i j

x x
x x x

x x
x i j

x x
x x x

x x

⎧ −
≤ <⎪

−⎪
= ∀⎨

−⎪ ≤ ≤⎪ −⎩

%µ  (2) 
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( ) ,
r j

l
r j r j l m

r j r j r jm l
rj rj

y r j u
r j r j m u

rj r j r jm u
r j r j

y y
y y y

y y
y r j

y y
y y y

y y

⎧ −
≤ <⎪

−⎪
= ∀⎨

−⎪ ≤ ≤⎪ −⎩

%µ  (3) 

Variables i jx and r jy , in formulas (2) and (3), are representative of values in the 186 

corresponding intervals of fuzzy numbers.   187 

We suggest the following multi-objective nonlinear program that maximizes both 188 

the objective function and the membership functions of the coefficients 189 

simultaneously.  190 

Model 5: A multi-objective nonlinear programming Fuzzy CCR-DEA 191 

{ }

1

1

1 1

max ( ), ( )

max

. . 1

0 ( )

,

,

, 0 ,

µ µ

=

=

= =

∀

=

− ≤ ∀ ≠

≤ ≤ ∀

≤ ≤ ∀

≤ ≤ ∀

≤ ≤ ∀

≥ ∀

∑

∑

∑ ∑

% %ij rjx ij y rj

s

r rp
r

m

i ip
i
s m

r rj i ij
r i
l u
ip ip ip

l u
rp rp rp

l u
ij ij ij

l u
rj rj rj

r i

x y j

u y

s t v x

u y v x j j p

x x x i

y y y r

x x x i j

y y y r j
u v r i

 192 

Variables ,r iu v indicate the coefficients of fuzzy outputs and inputs. Furthermore, 193 

variables ijx and rjy represent the intervals of fuzzy numbers ijx%and rjy%, respectively. 194 

This is a multi-objective nonlinear fuzzy model that we suggest to solve in two 195 

stages as explained in the rest of this paper. Zimmermann’s approach (Lai & Hwang, 196 

1992) for solving FLP with fuzzy resources used a similar approach to solve the 197 

multi-objective linear programming model corresponding to FLP.  Notice that the 198 
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focus in this paper is to solve an FLP (Model 2) using a non-linear multi-objective 199 

programming model (Model 5), not a Fuzzy multi-objective programming model 200 

(FMOP). We refer readers interested in FMOP to Torabi and Hassini (2008). 201 

Let us ignore the objective functions corresponding to membership functions in 202 

Model 5, that is, { }max ( ), ( )
ij rjx ij y rjx y% %µ µ . According to Zerafat Angiz et al. (2010), 203 

the optimal solution of the modified model will be as follows: 204 

* *

* *

= ≠ =

= ≠ =

u l
ij ij ip ip

l u
rj rj rp rp

x x j p x x

y y j p y y  
205 

This is because each DMU with inputs greater than and outputs less than inputs and 206 

outputs pDMU  respectively, will not be better than pDMU . So the optimal value of 207 

Model (5) is equals to efficiency of pDMU .  208 

Ignoring the last objective function in Model (5), the optimal solution will be as 209 

follows: 210 

* *

* *

= ≠ =

= ≠ =

m m
ij ij ip ip

m m
rj rj rp rp

x x j p x x

y y j p y y  211 

Interaction between two opposed objective functions specify the optimal solution.   212 

Lemma1: Let’s consider the optimistic point of view that is the best condition for 213 

DMU under evaluation and the worst condition for other DMUs.  214 

a. The optimal solution for ( ), ( )µ µ% %ij rpx ij y rpx y are obtained in the second 215 

condition of the membership functions (2) and (3), respectively. 216 

b. The optimal solution for ( ), ( )( )µ µ ʹ ≠% %ip rjx ip y rjx y j p  are obtained in the first 217 

condition of the membership functions (2) and (3), respectively. 218 
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Proof: Suppose that objective function in Model (5) be only (
1

max
=
∑
s

r rp
r
u y ), as 219 

mentioned above, due the nature of the model the optimal solution will be:  220 

min max , ( )

max min , ( )
ip ij

rp rj

x i x i j j p
y r y r j j p

∀ ∀ ≠

∀ ∀ ≠
 (4) 

     221 

When considering the effect of the membership function, the values of 222 

, ( )∀ ≠ijx i j j p and ∀rpy r  will be decreased and the values of ∀ipx i and 223 

, ( )∀ ≠rjy r j j p  will be increased (membership numbers will be zero for the above 224 

mentioned values). So, to obtain the optimal solution of ( ), ( )µ µ% %ij rpx ij y rpx y  the second 225 

condition of the membership functions (2) and (3) are sufficient, respectively. 226 

Similarly to obtain the optimal value for ( ), ( )( )µ µ ʹ ≠% %ip rjx ip y rjx y j p  the first condition 227 

of the membership functions (2) and (3) are sufficient, respectively, i.e. 228 

)5(  ( ) [ , ]µ
−

= ∈ ∀
−%ip

l
ip ip l m

x ip ip ip ipm l
ip ip

x x
x x x x i

x x
 

)6(  ( ) [ , ]µ
−

= ∈ ∀
−%rp

u
rp rp m u

y rp rp rp rpu m
rp rp

y y
y y y y r

y y
 

)7(  ( ) [ , ] , ( )µ
−

= ∈ ∀ ≠
−%ij

u
ij ij m u

x ij ij ij iju m
ij ij

x x
x x x x i j j p

x x
 

)8(  ( ) [ , ] , ( )µ
−

= ∈ ∀ ≠
−%rj

l
rj rj l m

y rj rj rj rjm l
rj rj

y y
y y y y r j j p

y y
 

Let * *, ( )≠ij rjx y j p and * *,ip rpx y  be the optimal solution for , ( )≠ij rjx y j p and ,ip rpx y . It 229 

is clear that there exist two values in the intervals [ , ],[ , ] ( )≠l u l u
ij ij rj rjx x y y j p and 230 

[ , ],[ , ]l u l u
ip ip rp rpx x y y  with the same membership function, say, 231 
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* *
1 1[ , ], [ , ]∈ ∈l m l m
ij ij ij rj rj rjx x x y y y  

* *
2 2[ , ], [ , ]∈ ∈m u m u
ij ij ij rj rj rjx x x y y y  

* *
1 1[ , ], [ , ]∈ ∈l m l m
ip ip ip rp rp rpx x x y y y  

* *
2 2[ , ], [ , ]∈ ∈m u m u

ip ip ip rp rp rpx x x y y y . 

(9) 

In this view, the ijx sare similar to the input values and the rjy s  are similar to the 232 

output values in the DEA models, so by considering constant values for ijx sand rjy s , 233 

Model (5) will be converted to Model (4). According to Lemma 1, the best situation 234 

of the DMU under evaluation is compared with the worst situation of other DMUs, 235 

and this means that the evaluation is based on an optimistic approach. In Zerafat 236 

Angiz et al. (2010), it is proved that the worst situation of the DMU under evaluation 237 

is compared with the best situation of other DMUs, that is, a pessimistic view. A 238 

discrete approach is based on defuzzified points, and two other methodologies 239 

consider the mean value (most possible point) as their goals.  240 

The discrete approach (Zerafat Angiz et al., 2012) and the proposed approach follow 241 

two different views.  In the discrete approach, the goal is achieving defuzzified 242 

points whereas the goal of fuzzy numbers in the proposed approach is the most 243 

possible values. The discrete approach tries to keep information about uncertainty as 244 

much as possible as the new approach does. The discrete approach approximates the 245 

solution, but it still loses some information about uncertainty. The benefit of 246 

applying a discrete approach is that a linear programming model is used.   247 

Assume that inputs and outputs of ADMU and BDMU  are * * * *
1 1 2 2( , , , )( )ip ij rp rjx x y y j pʹ ʹ ʹ ʹ ≠  248 

and * * * *
2 2 1 1( , , )( )ip ij rp rjx x y y j pʹ ʹ ʹ ʹ ≠ , respectively. Obviously ADMU is more efficient than249 

BDMU . In other words, BDMU is dominated by ADMU . This means only the 250 

second condition of the membership functions (2) and (3) are sufficient to obtain the 251 

optimal solution for ( ), ( )
ij ipx ij y ipx yµ µʹ ʹʹ ʹ% % . Similarly the first condition of the 252 
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membership function (2) and (3) are sufficient to obtain the optimum value for253 

( ), ( )( )
ip ijx ip y ijx y j pµ µʹ ʹʹ ʹ ≠% % .  254 

Hence, to solve Model (5), the methodology presented in section 3 is applied, and 255 

multi-objective programming problem (5) is converted to the following nonlinear 256 

programming problem: 257 

 258 

Model 6: A new Fuzzy CCR-DEA, non-linear programming 259 
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In Model (6), *
pz  is obtained with the best situation (optimistic view point) of the 262 

DMUs as follows: 263 

Model 7: A new Fuzzy CCR-DEA, estimation of Z*p 264 
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1 1

max
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, 0 ,

s
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p r rp
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 265 

Obviously, fluctuating between 0 and 1, the objective functions corresponding to 266 

membership functions do not need to follow the first stage of Section 3.  Z*P 267 

indicates the best situation of the DMU under evaluation comparing to other DMUs. 268 

Notice that Model 7 finds the optimal solution ignoring the membership values. This 269 

is why we consider the largest value of outputs and smallest values of inputs 270 

corresponding to the DMU under evaluation, and the smallest outputs and largest 271 

inputs for the other DMUs. Therefore,   in Model 6, *

1
0 ( ) / 1

s

r rp p
r
u y z

=

≤ ≤∑ , and the 272 

goal will be maximum value that is 1.      273 

The variable h in Model (6) is used to convert the multi-objective problem Model (5) 274 

to a nonlinear programming problem. This variable is within the interval [0,1] . 275 

Adding the concept of α-cut to Model (6), it is sufficient to replace the following 276 

constraints instead of 6-1, 6-2, 6-3 and 6-4. 277 
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ʹ ʹ ʹ ʹ+ − ≤ ≤ ∀ ≠

ʹ ʹ ʹ ʹ+ − ≤ ≤ ∀

ʹ ʹ ʹ ʹ≤ ≤ + − ∀
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This is different from the standard α-cut used in the fuzzy DEA Model (4), because 279 

in each α-level the model still retains uncertainty information interior of the interval 280 

that was generated by α. Next section compares our results with the current fuzzy 281 

DEA model. 282 

4.	An	illustration	with	a	numerical	example	283 

In this section, a numerical example is presented to illustrate the difference between 284 

the results obtained using the proposed approach and the current fuzzy DEA models. 285 

Consider the data in Table 1 that is extracted from Guo and Tanaka (2001) and used 286 

by Lertworasirikul et al. ( 2003a) and Saati et al. (2002).  There are 5 DMUs with 287 

two symmetrical triangular fuzzy inputs and 2 symmetrical triangular fuzzy outputs.  288 

  289 
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Table 1: Data for numerical example 290 

 DMU 

Variable D1 D2 D3 D4 D5 

I1 (4.0, 3.5, 4.5) (2.9, 2.9, 2.9) (4.9, 4.4, 5.4) (4.1, 3.4, 4.8) (6.5, 5.9, 7.1) 

I2 (2.1, 1.9, 2.3) (1.5, 1.4, 1.6) (2.6, 2.2, 3.0) (2.3, 2.2, 2.4) (4.1, 3.6, 4.6) 

O1 (2.6, 2.4, 2.8) (2.2, 2.2, 2.2) (3.2, 2.7, 3.7) (2.9, 2.5, 3..3) (5.1, 4.4, 5.8) 

O2 (4.1, 3.8, 4.4) (3.5, 3.3, 3.7) (5.1, 4.3, 5.9) (5.7, 5.5, 5.9) (7.4, 6.5, 8.3) 

 291 

Using fuzzy CCR Model (4), the efficiency scores are summarized in the Table 2. 292 

Table 2: The efficiencies using Model (4) 293 

 DMU 

Α D1 D2 D3 D4 D5 

0 1.107 1.506 1.276 1.525 1.296 

.5 0.995 1.321 1.035 1.319 1.159 

.75 0.906 1.237 0.936 1.230 1.086 

1 0.852 1.000 0.863 1.000 1.000 

 294 

Considering the above Lemma 1, the optimal solution given in Table 2 is equivalent 295 

to the optimal solution related to the optimistic part of Kao and Liu (2000) approach 296 

in its supper efficiency form. The methods based on the α-cut approach just extend 297 

number of membership values considered in the evaluation. Therefore the major part 298 

of the fuzzy concept is ignored. Differences between the proposed method and the α-299 

cut based approach can be compared with differences between integration and 300 

numerical methods for integrals. The numerical methods do not cover the whole area 301 

under the curve in integration.  302 
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Results from the possibility approach of Lertworasirikul et al. (2003a) are shown in 303 

Table 3. As can be seen, the efficiency values in the above two models are very 304 

similar.  305 

Table 3: The efficiencies using Lertworasirikul et al.  (2003a) model 306 

 DMU 

α D1 D2 D3 D4 D5 

0 1.107 1.238 1.276 1.520 1.3296 

.5 0.963 1.112 1.035 1.258 1.159 

.75 0.904 1.055 0.932 1.131 1.095 

1 0.855 1.000 0.861 1.000 1.000 

Using the proposed Model (6), the results are shown in Table 4. 307 

Table 4: The efficiencies using the proposed model in this paper  308 

 DMU 

α D1 D2 D3 D4 D5 

0 0.899 1.220 0.930 1.220 1.076 

0.5 0.865 1.180 0.871 1.169 1.041 

0.75 0.845 1.110 0.866 1.160 1.037 

1 0.842 1.000 0.860 1.000 1.000 

 309 

Due to the nature of the fuzzy CCR Model (4) the maximum efficiency occurs when 310 

the outputs of the evaluated DMU and the inputs of other DMUs are set to their 311 

upper bounds. It is obvious that the results in Table 2 are always greater than the 312 

results that we obtained in Table 4 since Model 4 always captures the efficiency 313 

under pessimistic circumstances. The results obtained using the proposed model in 314 
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this paper have the efficiency values between the smallest and the largest possible 315 

values, hence they are more close to the true efficiency. 316 

5.	Empirical	study	317 

To illustrate the fuzzy DEA approach, we consider data given in Yeh and Chang 318 

(2009) which was presented for an aircraft selection problem. Five types of aircraft 319 

(B757-200, A-321, B767-200, MD-82, and A310-300) are to be evaluated. Four 320 

inputs and two outputs are introduced in Table 5 as follows: 321 

Table 5: Inputs and outputs for aircrafts evaluation 322 

Data Description 

Input1 (I1)       Maintenance requirements (Subjective assessment) 

Input2 (I2) Pilot adaptability (Subjective assessment) 

Input3 (I3) Maximum range (Kilometer) 

Input4 (I4) Purchasing price (US millions) 

Output1 (O1) Passenger preference (Subjective assessment) 

Output2 (O2) Operational productivity (Seat-kilometer per hour) 

 323 

The first input is the aircraft maintenance capability (I1) which is concerned with the 324 

availability and the level of standardization of spare parts and post-sale services.  325 

The second input, pilot adaptability (I2) is related to the skills of available pilots and 326 

the specific features of the aircraft. Increasing pilot adaptability and maintenance 327 

capability will increase the outputs, so they are considered as inputs. To consider a 328 

datum (data) as an input we should look at the effect of the datum in producing 329 

outputs. The third input maximum range (I3) of an aircraft is determined by the 330 

maximum kilometers that the aircraft can travel at the maximum payload and the 331 

fourth input, purchasing price (I4) is the price to be paid for a new aircraft which 332 

correlates with reliability of the aircraft. 333 
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On the other hand for the outputs, passengers’ preference (O1) reflects the social 334 

responsibility of the airline in order to establish a positive image in public and of the 335 

requirements imposed by various environment protection laws and regulations 336 

whilst operational productivity (O2) is determined by the number of seats available, 337 

the load rate, the travel frequency, and the aircraft travel speed.  338 

 In this research, the eight decision makers stated their opinion about 3 subjective 339 

inputs and outputs. They used a set of five linguistic terms {very low, low, medium, 340 

high, very high} which are associated with the corresponding numbers 1, 2, 3, 4 and 341 

5, respectively, as in a 5-point Likert scale.  342 

 Table 6 shows the inputs and outputs of the five aircrafts.  For example, B757-200 343 

type of aircraft has two subjective inputs (I1 and I2) and one subjective output (O1), 344 

with triangular fuzzy numbers.  For other two inputs and one output, the values are 345 

crisps.   346 

Table 6: Data for numerical example 347 

 DMU 

Variable B757-200 A-321 B767-200 MD-82 A310-300 

I1 (2.0, 3.064, 4) (4, 4.229,5) (3, 3.224, 4) (1, 1.929, 3) (3,3.464, 4) 

I2 (2, 2.852, 3) (2,2.000,2) (2, 2.852, 3) (4, 4.113, 5) (2,2.000,2) 

I3 5522 4350 5856 4032 7968 

I4 56 54 69 33 80 

O1 (4, 4.000, 4) (2, 2.852, 3) (4, 4.000, 4) (3, 3.591, 4) (3, 3.342, 4) 

O2 116279 109063 129465 87662 130664 

 348 

Using Model (6), the values of h*, the efficiency scores and rank of each aircraft are 349 

given in Table 7.  The MD-82 aircraft type gives the highest efficiency score of 350 
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1.8520 and is ranked first, whilst B767-200 gives lowest score of 1.0949 and is 351 

ranked last. 352 

  353 
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Table 7: The rank of five types of aircrafts 354 

DMU *h  Eff. scores Rank 

B757-200 0.6348 1.2696 2 

A-321 0.9798 1.1720 3 

B767-200 1.0000 1.0949 5 

MD-82 0.9260 1.8520 1 

A310-300 1.0000 1.1237 4 

6.	Discussion	355 

According to Theorem 2, if the objective functions corresponding to membership 356 

functions in Model (5) are ignored, the optimal solution for inputs and outputs will 357 

beat the endpoints of the interval of fuzzy numbers.  Furthermore, if the last 358 

objective function (
1

max
=
∑
s

r rp
r
u y  ) in Model (5) is eliminated, Lemma 1 adopted the 359 

optimal solution will be in the mean value of fuzzy number.  Figure 1 illustrates the 360 

above mentioned concept for evaluating PDMU .  This figure can also be seen in 361 

Zerafat Angiz et al. (2012).  Since the discrete approach (Zerafat Angiz et al., 2012) 362 

assumes the defuzzified points as its goal, so the interpretation presented in Zerafat 363 

Angiz et al. (2012) is not appropriate for this specific application.  The interior 364 

arrows represent the optimal solution when the last objective function (
1

max
=
∑
s

r rp
r
u y  365 

) is absent in Model (5) and the arrows located under fuzzy numbers construct the 366 

optimal solution Model (5) when only the objective function (
1

max
=
∑
s

r rp
r
u y ) is 367 

present. 368 

  369 



 23 

 370 

 371 

 372 

Figure 1: Concepts of evaluating DMUs 373 

Interaction between the objective functions corresponding to objective functions and 374 

the last objective function (
1

max
=
∑
s

r rp
r
u y ) in Model (5), cause the fuzzy optimal 375 

solution. 376 

7.	Conclusion	377 

In evaluating DMUs under uncertainty several fuzzy DEA models have been 378 

proposed in the literature.  The α-cut approach is one of the most frequently used 379 

models.  However, due to the nature of the α-cut approach the uncertainty in inputs 380 

and outputs is effectively ignored.  This paper has proposed a multi-objective fuzzy 381 

DEA model to retain fuzziness of the model by maximizing the membership 382 

function of inputs and outputs.  In the proposed method, both the objective functions 383 

and the constraints are considered fuzzy.  A numerical example is used to show the 384 

difference between the proposed and the current fuzzy DEA models.  For further 385 

studies, it is suggested that an exploration be done on: a) reducing the size of the 386 

converted (crisp equivalent) problem, b) possible linearization of the nonlinear 387 

model. 388 
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