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Abstract: Remote sensing-based approaches to lithological mapping are traditionally pixel-oriented,
with classification performed on either a per-pixel or sub-pixel basis with complete disregard
for contextual information about neighbouring pixels. However, intra-class variability due to
heterogeneous surface cover (i.e., vegetation and soil) or regional variations in mineralogy and
chemical composition can result in the generation of unrealistic, generalised lithological maps that
exhibit the “salt-and-pepper” artefact of spurious pixel classifications, as well as poorly defined
contacts. In this study, an object-based image analysis (OBIA) approach to lithological mapping
is evaluated with respect to its ability to overcome these issues by instead classifying groups of
contiguous pixels (i.e., objects). Due to significant vegetation cover in the study area, the OBIA
approach incorporates airborne multispectral and LiDAR data to indirectly map lithologies by
exploiting associations with both topography and vegetation type. The resulting lithological maps
were assessed both in terms of their thematic accuracy and ability to accurately delineate lithological
contacts. The OBIA approach is found to be capable of generating maps with an overall accuracy of
73.5% through integrating spectral and topographic input variables. When compared to equivalent
per-pixel classifications, the OBIA approach achieved thematic accuracy increases of up to 13.1%,
whilst also reducing the “salt-and-pepper” artefact to produce more realistic maps. Furthermore,
the OBIA approach was also generally capable of mapping lithological contacts more accurately.
The importance of optimising the segmentation stage of the OBIA approach is also highlighted.
Overall, this study clearly demonstrates the potential of OBIA for lithological mapping applications,
particularly in significantly vegetated and heterogeneous terrain.
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1. Introduction

The use of remotely sensed spectral imagery provides a means of easing both the financial and
logistical burden of traditional field-based lithological mapping. This is particularly the case when
image classification algorithms are utilised since they provide the capability to automatically identify
and map lithologies rapidly over vast areas, whilst also reducing the subjectivity associated with visual
interpretation of the imagery [1].

An extensive range of classification algorithms has been used in conjunction with multi- and
hyperspectral imagery for lithological mapping. These can be categorised in a variety of different
ways—for instance, according to whether an algorithm requires training data (i.e., supervised vs.
unsupervised), its underlying statistical assumptions (i.e., parametric vs. non-parametric), or on the
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basis of how it classifies image elements (e.g., per-pixel, and sub-pixel) [2]. To date, image classifiers
employed for lithological mapping purposes have been almost exclusively pixel-based, performing
classification on a per-pixel or sub-pixel basis with complete disregard for any contextual information
about neighbouring pixels [3].

Per-pixel classification algorithms operate by independently assigning each image pixel to
a single lithological class by identifying the closest match between a pixel spectrum and the reference
spectra for a set of known lithologies [4]. Popular algorithms employed for per-pixel lithological
classification include the Maximum Likelihood classifier [5,6] and artificial neural networks [7,8].
With regards to producing a generalised lithological map, a major limitation of the per-pixel
classification approach is that it assumes each image pixel corresponds to an area on the ground
that contains only a single lithology. In reality, this is arguably rarely the case, with pixels more likely
to correspond to areas containing mixtures of different surface materials, whether that be multiple
lithologies or vegetation-covered outcrops. Varying degrees of mixing between neighbouring pixels can
cause significant intra-class spectral variation, resulting in per-pixel classification outputs that exhibit
“salt-and-pepper” noise (owing to isolated, spurious pixel classifications) and poorly defined contacts [9].

Sub-pixel classification approaches offer a means of overcoming the issues associated with
mixed pixels because they can assign pixels a degree of membership to multiple classes. In general,
such algorithms employ spectral unmixing analysis to deconvolve image pixel spectra to quantify
the relative fractional abundances of the various constituent surface materials [10]. To achieve
this, the spectral signatures of the different surface materials (i.e., endmembers) must first be
identified. However, this usually requires prior knowledge of all endmembers in a scene, with the
meaningfulness of the unmixing results severely limited by the failure to adequately characterise
all endmembers [11,12]. Furthermore, the process of generating a generalised lithological map from
numerous abundance maps is somewhat subjective and often requires subsequent visual interpretation
of lithological contacts [13].

Although the application of remote sensing to lithological mapping is well-established, vegetation
cover still remains one of the main factors limiting its wider utility. This is because as little as 10%–30%
vegetation cover (e.g., green grass, dry grass, and lichen) can be enough to obscure or mask the
spectral signatures of underlying lithologies [14,15]. The challenge posed by vegetation cover is clearly
reflected in the literature, with the vast majority of studies circumventing this issue by focussing on
arid environments that are largely barren [4]. Nevertheless, there have been efforts to try to overcome
this issue, most notably through the employment of sub-pixel classification approaches to spectrally
unmix the vegetation response from that of the underlying lithology [16,17]. Beyond the capabilities
of spectral unmixing (with respect to the combination of the characteristics of the spectral imagery,
vegetation and suite of lithologies), the use of proxy-based approaches can prove effective. One such
indirect approach is to exploit geobotanical relationships [18]. This involves recognising a correlation
between lithologies and vegetation type, and then using the spectral signatures of specific types of
vegetation as proxies for mapping their associated lithological units in the imagery [19]. Similarly,
there is also promise in exploiting information on surface morphology, which can reflect erosional
and weathering differences between lithologies [20,21]. This typically involves using topographic
information [6] or radar-derived surface texture [22] in combination with spectral data to help augment
lithological classifications. However, despite the potential of indirect mapping, geobotanical and
surface morphology characteristics of lithologies are not always strictly exclusive, and can cause
significant intra-class heterogeneity and overlap between different classes. As a result, per-pixel
classification attempts can still exhibit the undesired “salt-and-pepper” artefact and be affected by
problems in accurately delineating lithological contacts as contiguous pixels, irrespective of whether
sophisticated classifiers are employed [23].

Recent advances in classification techniques have led to a paradigm shift in many fields, from
the classical pixel-based approach to instead focussing on image objects [24]. The object-based image
analysis (OBIA) approach—also commonly referred to as geographic object-based image analysis
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(GEOBIA)—involves segmenting an image into homogeneous regions (i.e., objects) by grouping
contiguous pixels that are relatively similar in terms of both their spectral and spatial characteristics [25].
Grouping pixels enables contextual (neighbourhood) information to be incorporated and thus results
in the creation of image objects that represent “meaningful” entities (e.g., buildings, trees, fields,
or perhaps even rock outcrops) in an image [24]. Image objects therefore have additional spectral
(e.g., mean, median, minimum and maximum band values, band variance) and spatial attributes
(e.g., shape, size, association with neighbouring objects) in comparison to individual pixels [26]. One of
the main advantages of OBIA over per-pixel approaches is that using objects negates the impact
of intra-class heterogeneity observed at the pixel-level, therefore eliminating the “salt-and-pepper”
artefact [27]. Consequently, OBIA has been used extensively for a variety of applications, including
forestry [28], habitat mapping [29], land use/land cover mapping [30], landform mapping [31,32] and
change detection [33], with numerous studies reporting that higher classification accuracies can be
achieved through the OBIA approach in comparison to pixel-based approaches [34–36].

Despite seemingly having the potential to eradicate the issues associated with pixel-based
approaches, the application of OBIA to lithological mapping has received minimal attention.
Preliminary studies by Lucieer et al. [37] and van der Werff et al. [38] indicated the ability to distinguish
lithological units in southern Mongolia and Mars, respectively, through segmentation of spectral
satellite imagery. More recently, OBIA has been employed to map volcanic units and landforms on
active volcanoes in Indonesia [39,40], and to delineate geologically-controlled vegetation types in the
Kruger National Park, South Africa [41]. However, the potential benefit of employing OBIA over
pixel-based classification approaches for lithological mapping has yet to be realised.

This study aims to help address this by evaluating the capability of an OBIA approach for
producing detailed lithological maps with accurately defined contacts, for an area of the Troodos
ophiolite, Cyprus. Due to pervasive vegetation cover, an indirect approach to mapping is employed,
based on the novel strategy of segmenting airborne multispectral imagery and airborne Light Detection
And Ranging (LiDAR) data to exploit geobotanical and topographic relationships with the lithologies.
Accordingly, this study provides a robust test for a scenario in which OBIA is anticipated to be most
effective. Moreover, the Troodos study area is well-known, therefore enabling the performance of the
OBIA mapping approach to be readily assessed and directly compared with previous results obtained
using equivalent per-pixel classification approaches. Accordingly, to the best of our knowledge,
this study represents the most compressive assessment of OBIA in the specific context of lithological
mapping to date.

2. Materials and Methods

2.1. Study Area

The Troodos ophiolite forms a dome-like structure in the central region of the eastern
Mediterranean island of Cyprus, and represents an uplifted slice of oceanic crust and lithospheric
mantle that was produced through sea-floor spreading [42]. The stratigraphy of the ophiolite is
inverted with respect to topography, with the mantle sequence (comprising harzburgites, dunites
and a serpentinite diapir) outcropping at the highest elevations, and a largely gabbroic plutonic
complex, sheeted dyke complex, lava sequence and oceanic sediments outcropping at decreasing
elevation along the northern slopes of the Troodos mountain range [43]. The study area is located
on the northern flank of the range in the Larnaca graben and encompasses the contact between the
lava sequence and the overlying sedimentary cover sequences (Figure 1). It covers approximately
16 km2 and contains four main lithological units: the Basal Group (comprising 80%–90% dykes and
10%–20% lavas), Pillow Lavas, late-Cretaceous to early-Miocene chalky marls of the Lefkara Formation
and Alluvium-colluvium. Alluvium-colluvium, as defined on the existing maps, is a generic unit
that corresponds to Quaternary sediments that have been deposited fluvially or through local erosion.
These mostly comprise regoliths derived from Lefkara Formation and Pilliow Lava parent rocks, and to
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a lesser extent, fanglomerates. The primary and secondary constituent minerals for the lithological
units—based on petrological descriptions by Gass [44]—are detailed in Table 1.
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Vegetation is ubiquitous and abundant, covering 30%–90% of the surface and resulting in
a heterogeneous surface mixture of vegetation and rock/soil throughout the study area (Figure 2).
Nonetheless, strong correlations between lithology and topography [46], and lithology and vegetation
have been well documented in the study area [23]. For instance, crops (including olive trees) are
predominantly associated with Alluvium-colluvium, lichen is almost exclusively found growing on
Pillow Lava outcrops, whereas grasses and shrubs (plus trees) are typically observed growing on both
the Lefkara Formation and Basal Group units, respectively. Anthropogenic impact on the landscape is
relatively minor, being largely confined to the abandoned Mathiati mine in the southwest and Agia
Varvara village in the north of the study area.

Table 1. Primary and secondary constituent minerals of the lithological units.

Lithological Unit Constituent Minerals

Alluvium-colluvium Mineralogy reflects that of parent Lefkara Formation, Pillow Lavas and
fanglomerate rocks, with minor variations due to weathering

Lefkara Formation Calcite, aragonite, illite, chlorite, kaolinite, montmorillonite, chalcedony
and quartz

Pillow Lavas
Labradorate, andesine, diopside, magnetite, quartz, opal, calcite,
chlorite, celadonite, goethite, natrolite, olivine, hematite,
montmorillonite and analcime

Basal Group Quartz, albite, diopside, epidote, actinolite, chlorite, calcite, goethite,
magnetite, hypersthene, andesine and labradorite
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Figure 2. Widespread vegetation cover within the study area: (a) soil-adjusted Vegetation Index (SAVI)
map indicating relative fractional vegetation abundance; and (b) field photographs illustrating the
different types of vegetation present.

2.2. Remote Sensing Data

Airborne LiDAR data and Airborne Thematic Mapper (ATM) multispectral imagery were acquired
simultaneously over the study area in May 2005 by the UK Natural Environment Research Council
Airborne Research Facility. The airborne LiDAR data were acquired at an average flying altitude
of 2550 m using an ALTM-3033 system operating with a laser pulse repetition rate of 33 kHz and
a half-scan angle of ±19.4◦ either side of the nadir. The airborne LiDAR point data were delivered
as ASCII files containing the x–y–z coordinates of all first and last returns in the WGS84 Universal
Transverse Mercator (UTM) zone 36-North coordinate system. Each data point was classified as
corresponding to either the ground or non-ground features using the triangulated irregular network
densification algorithm [47] implemented in the TerraScan software package (Terrasolid Ltd., Helsinki,
Finland). A 4-m digital terrain model (DTM) was then generated by interpolating all ground points
using a kriging algorithm [46].

The Daedalus 1268 multispectral scanner was used to acquire the ATM imagery; comprising
11 wavebands located in the visible/near-infrared (VNIR; bands 1–8), short-wave infrared (SWIR;
bands 9–10) and thermal infrared (TIR; band 11) regions of the electromagnetic spectrum. The imagery
was delivered as five Level 1b Hierarchical Data Format files with radiometric calibration algorithms
applied and aircraft navigation information appended. Through use of the appropriate tools in
the ENVI software package (Harris Geospatial Solutions, Broomfield, CO, USA), each image strip
was subsequently converted to at-sensor radiance, geo-corrected and corrected for limb-brightening
effects [23]. A seamless 4-m ATM image for the study area was then generated by mosaicking and
co-registering the five geo-corrected images to the LiDAR DTM. The ATM wavebands 1 and 11 were
discarded as they fall outside the wavelength region of interest.

2.3. Lithological Mapping Using OBIA

The OBIA approach to lithological mapping comprises three main steps: (i) input feature selection;
(ii) segmentation; and (iii) classification. These steps are described in detail below.

2.3.1. Input Feature Selection

Vegetation cover in the study area is sufficiently ubiquitous and abundant to severely limit the
direct mapping of lithologies through recognition of their spectral signatures because the pixel spectra
in the ATM imagery are dominated by the spectral characteristics of the overlying vegetation [48].
Successful mapping therefore depends upon establishing a proxy-based approach, which uses
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alternative information to characterise and indirectly map the various lithologies. As mentioned
previously, lithologies in the study area are strongly associated with specific vegetation types,
and different units also exhibit relatively distinct topographic characteristics. Previous studies
have demonstrated the ability to effectively exploit these relationships to map lithology by way of
ATM-derived spectral characteristics of the vegetation itself [23] and LiDAR-derived geomorphometric
variables (e.g., slope, curvature, and surface roughness) [46]. These studies were based on per-pixel
classification using an artificial neural network known as the Kohonen Self-Organizing Map (SOM).
To enable direct comparison with the results of these previous pixel-based studies, the same sets of
input features are used in determining the efficacy of the OBIA approach to lithological mapping.
These sets of input features are summarised in Table 2.

Table 2. Summary of the sets of input features used in the OBIA approach.

Dataset Input Features

Topographic characteristics

Li Slope, absolute profile curvature, absolute plan curvature, residual
roughness, hypsometric integral

Spectral (vegetation) characteristics

ATM 9 ATM bands 2–10

ATM PC First three principal component (PC) bands derived from analysis of
ATM 9 dataset a

ATM MNF First four Minimum Noise Fraction (MNF) bands derived from
transformation of ATM 9 dataset b

Integrated spectral-topographic characteristics

ATM-Li ATM bands 2–10, slope, absolute profile curvature, absolute plan
curvature, residual roughness, hypsometric integral

ATM-Li MNF First five Minimum Noise Fraction (MNF) bands derived from
transformation of ATM-Li dataset c

a Accounting for 97.5% of the total scene variance for the ATM 9 dataset; b Accounting for 98.7% of the
cumulative eigenvalues for the ATM 9 dataset; c Accounting for 98.3% of the cumulative eigenvalues for the
ATM-Li dataset.

2.3.2. Segmentation

A critical step in the OBIA approach is the segmentation of an image into homogeneous objects,
comprising groups of contiguous pixels with similar characteristics. In this study, segmentation
was achieved using the multi-scale segmentation algorithm embedded in the commercial software
eCognition Developer 9.0 (Trimble, Munich, Germany). This algorithm employs a bottom-up approach
that begins with pixel-sized objects and sequentially merges them into larger objects according to
a homogeneity criterion [25]. This criterion is intended to minimise increases in heterogeneity that
may arise following the merging of two adjacent objects. Here, heterogeneity is a quantitative measure
defined in terms of a combination of an object’s colour and shape, where colour refers to the spectral
heterogeneity of an object (i.e., the standard deviation of the values of encompassed pixels), and shape
describes both the smoothness of its border and its compactness (i.e., length of its border relative to
its size) [49]. During segmentation, neighbouring objects are merged provided that the heterogeneity
of the resulting object does not increase beyond a defined threshold, known as the scale parameter.
If the increase in heterogeneity exceeds this threshold, then the objects will not be merged and the
segmentation process is halted. In general, smaller scale parameter values lead to fewer objects being
merged, therefore resulting in the creation of relatively small image objects [50].

Appropriate image segmentation parameters for each input dataset were determined through
a heuristic approach, as is commonly implemented as standard practice [27,50]. This iterative
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“trial-and-error” approach involved visually evaluating the segmentation results obtained using
numerous combinations of parameter weightings for several fixed scale values. Selection of the
initial parameter values was guided by past experience and expert physiographical knowledge of the
study area, with a view to generating a detailed lithological map with accurately defined lithological
contacts. Small scale parameter values were favoured in order to preserve spatial detail and to avoid
under-segmentation, whereby heterogeneous image objects are created which are more likely to
encompass multiple lithological units (Figure 3). The colour parameter was given a high relative
weighting since spectral information (i.e., both ATM-derived spectral and topographic) is a much
more defining attribute than shape in discriminating lithologies. With respect to the individual
shape constituents, the relative weighting of smoothness was set considerably higher than that of
compactness to place greater emphasis on the delineation of contacts between lithologies. For each
dataset, the optimum segmentation parameter values were determined as those which produced
image objects that most closely correspond to homogeneous physiographical features of geological
relevance (e.g., hummocks, and crop fields). The parameter values used for image segmentation are
shown in Table 3.
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created using ATM MNF bands 1, 2, and 3, respectively (see Table 2).
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Table 3. Parameter values used to perform image segmentation for each input dataset (please refer to
Table 2 for a description of the datasets).

Dataset Scale Colour Shape Smoothness Compactness

Li 1 0.9 0.1 0.99 0.01
ATM 9 1 0.9 0.1 0.99 0.01

ATM PC 1 0.9 0.1 0.99 0.01
ATM MNF 1 0.9 0.1 0.999 0.001

ATM-Li 1 0.99 0.01 0.999 0.001
ATM-Li MNF 1 0.99 0.01 0.99 0.01

2.3.3. Classification

Following segmentation, image objects were assigned to one of the four lithologies using the
supervised Standard Nearest Neighbour classification algorithm. This algorithm is non-parametric
and assigns image objects to the class of their closest matching training sample in object feature space,
with respect to a distance metric [51]. The object feature space can be defined in terms of the attributes
such as the mean input band values of objects, the band standard deviations of objects and difference
in mean band values between neighbouring objects [50]. In this study, the object means and standard
deviations of the variables in each input datasets (detailed in Table 2) were selected as the object
features on which to perform classification. A number of training sample objects representing each
of the four lithological units were carefully identified in the segmented images, based on utilising
extensive first-hand field knowledge of the study area in conjunction with very-high resolution (0.7 m)
QuickBird satellite imagery. The existing lithological maps, shown in Figure 1c, were used to provide
only a general geological overview given their coarseness and inconsistencies. The selected training
sample objects were first used in conjunction with the eCognition Feature Space Optimisation tool
to ensure that the object features associated with each of the six input datasets provided maximum
discrimination between the four lithological units. The object features for each dataset were then
subsequently used in conjunction with the training sample objects to perform lithological classification.

2.4. Lithological Mapping Accuracy Assessment

The usefulness of a lithological map is not only dependant on it displaying the correct lithologies
outcropping at given locations, but also on how well it represents contacts (i.e., boundaries) between
different units. Therefore, the accuracy of maps generated through the OBIA approach was assessed
comprehensively in terms of both the thematic accuracy and the spatial accuracy of mapped
lithological contacts.

2.4.1. Thematic Accuracy

A pixel-based thematic accuracy assessment was employed to readily enable a comparison
between the OBIA and the equivalent SOM per-pixel classification approaches. To facilitate this, it is
first necessary to convert the OBIA-based classification outputs to raster format. The accuracy of these
maps was then assessed by computing the overall (OA), producer’s (PA) and user’s (UA) accuracies
and the Kappa coefficient (K) from a confusion matrix using a sample of validation pixels [52].
Upper and lower limits for the OA were also calculated for the 95% confidence interval based on the
normal approximation [53]. The validation sample consisted of 12,946 pixels of known lithological
identity (≥2451 pixels representing each lithology), which were randomly selected from regions
of interest (ROIs) in accordance with statistical sampling theory defining the minimum total and
individual class sample sizes [54,55]. The ROIs representing each of the four units were again defined
based on extensive field knowledge, QuickBird satellite imagery and, to a lesser extent, the existing
lithological maps.
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The thematic accuracies of the OBIA approach were compared to those achieved for equivalent
per-pixel classifications by testing for statistically significant differences. Since the same set of
validation samples was used to determine the accuracies in both cases, the statistical significance
of their differences was computed using the McNemar test [56]. This pair-wise test is based on the
Chi-squared (χ2) distribution, and involves cross-tabulation of the number of validation pixels correctly
and incorrectly classified using the two different approaches:

χ2 =
( f12 − f21)

2

f12 + f21
, (1)

where f 12 is the number of validation pixels correctly classified by the OBIA approach but incorrectly
by the per-pixel approach, and f 21 is the number of validation pixels correctly classified by the per-pixel
approach but incorrectly by the OBIA approach. The statistical significance of the difference is then
determined based on tabulated χ2 values and expressed as a p-value (p).

2.4.2. Lithological Contact Accuracy

The spatial accuracy of contacts delineated in maps produced by two approaches was assessed in
terms of their correspondence to the validation mapping of reference contacts. This was achieved by
implementing a methodology based on that of Salati et al. [9], which is outlined in Figure 4.
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around reference contact; (b) equivalent contact in generated lithological map is identified; (c) distances
between reference contact and pixels forming delineated contact are computed; (d) fuzzy membership
function defined; and (e) fuzzy membership of contact pixels are computed.

This methodology employs fuzzy set theory to determine the spatial association between the
delineated and reference contacts. In fuzzy set theory, elements are assigned a degree of membership to
a set, with values ranging from 0 (i.e., not a member of the set) to 1 (i.e., a full member) on a continuous
scale [57]. Here, membership represents the level of agreement between pixels constituting a contact in
a derived lithological map and the reference contact. The contacts used as reference were mapped on
a very-high resolution (70 cm) QuickBird image and further verified on the ground using a hand-held
GPS. In total, more than 3 km of contacts were mapped for all feasible combinations of lithologies.
To account for positional errors associated with the mapping scale and co-registration between the
two source datasets, a confidence region was defined on both sides of the reference contacts. In keeping
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with Salati et al. [9], this buffer distance (W) was calculated as the sum of the inherent map error (Emap)
and co-registration error (Ereg):

W = Emap + Ereg (2)

where Emap is determined using the United States Geological Survey’s map accuracy standard of
0.05 cm times the map scale [58], and Ereg is the root-mean-square (RMS) co-registration error between
the QuickBird imagery and the airborne data. For reference mapping at 1:5000-scale and a RMS
co-registration error of 3.3 m, the confidence region extends to a distance (W) of 5.8 m from each
reference contact.

Once confidence regions around the reference contacts have been established (Figure 4a),
corresponding contacts in the generated maps were extracted and the distance between each constituent
pixel and the reference contact were calculated (Figure 4b,c). These distances were then converted to
fuzzy membership values on the basis that contact pixels located closer to the reference contact have
a high degree of membership:

µ (x) =


1, x < min (x)
0, x > max (x)

1 −
(

x−min(x)
max(x)−min(x)

)
, min (x) ≤ x ≤ max (x)

(3)

where µ(x) is the membership value, x is the distance between a contact pixel and reference contact,
and min(x) and max(x) are the minimum and maximum distances, respectively. The value of max(x)
was set to 152 m to encompass all analysed contact pixels, whereas min(x) was set to equal to the
confidence region (5.8 m) since all contact pixels within this region are assumed to coincide with the
reference contact (i.e., they have a membership value of 1).

3. Results and Discussion

3.1. Lithological Discrimination Using the OBIA Approach

The capability of the OBIA approach in discriminating between the lithologies is described in
Figures 5–7, as well as in the confusion matrices (Tables S1–S6 in the Supplementary Materials). For all
six input datasets, the OA is in excess of 63%, with an average and maximum OA of 69.4% and 73.5%,
respectively. Associated K values lie in the range 0.51–0.65, indicating a moderate to substantial level
of agreement between the classified maps and the validation data [59].

Remote Sens. 2016, 8, 843 10 of 20 

 

where Emap is determined using the United States Geological Survey’s map accuracy standard of 0.05 
cm times the map scale [58], and Ereg is the root-mean-square (RMS) co-registration error between the 
QuickBird imagery and the airborne data. For reference mapping at 1:5000-scale and a RMS co-
registration error of 3.3 m, the confidence region extends to a distance (W) of 5.8 m from each 
reference contact. 

Once confidence regions around the reference contacts have been established (Figure 4a), 
corresponding contacts in the generated maps were extracted and the distance between each 
constituent pixel and the reference contact were calculated (Figure 4b,c). These distances were then 
converted to fuzzy membership values on the basis that contact pixels located closer to the reference 
contact have a high degree of membership:  

۔ە =	ሻݔሺߤ
ۓ 1, x < min(x)0, x > max(x)

1 െ ൬ x െ min(x)
maxሺxሻ െmin(x)൰ , 																min(x) ≤ x ≤ max(x)

 (3)

where µ(x) is the membership value, x is the distance between a contact pixel and reference contact, 
and min(x) and max(x) are the minimum and maximum distances, respectively. The value of max(x) 
was set to 152 m to encompass all analysed contact pixels, whereas min(x) was set to equal to the 
confidence region (5.8 m) since all contact pixels within this region are assumed to coincide with the 
reference contact (i.e., they have a membership value of 1). 

3. Results and Discussion 

3.1. Lithological Discrimination Using the OBIA Approach 

The capability of the OBIA approach in discriminating between the lithologies is described in 
Figures 5–7, as well as in the confusion matrices (Tables S1–S6 in the Supplementary Materials). For 
all six input datasets, the OA is in excess of 63%, with an average and maximum OA of 69.4% and 
73.5%, respectively. Associated K values lie in the range 0.51–0.65, indicating a moderate to 
substantial level of agreement between the classified maps and the validation data [59]. 

 

Figure 5. Overall accuracies (OA) of lithological maps generated by applying the OBIA approach to 
the six input datasets (see Table 2 for description). Error bars represent 95% confidence intervals. 

Classification based solely on exploiting the topographic characteristics of the lithologies (Li; see 
Table 2) resulted in an OA of 68.9% (K = 0.59; Figure 5). This is comparable (i.e., not statistically 
different at the 95% confidence level; p > 0.05) to the results attainable through indirect spectral 
discrimination by making use of the correlation between lithology and vegetation (ATM MNF: 
OA = 70.1%; ATM 9: OA = 69.5%). Furthermore, integration of the two strategies to 
simultaneously exploit the topographic and geobotanical characteristics is synergistic (p < 0.05), 
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Classification based solely on exploiting the topographic characteristics of the lithologies (Li; see
Table 2) resulted in an OA of 68.9% (K = 0.59; Figure 5). This is comparable (i.e., not statistically different
at the 95% confidence level; p > 0.05) to the results attainable through indirect spectral discrimination
by making use of the correlation between lithology and vegetation (ATM MNF: OA = 70.1%; ATM 9:
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OA = 69.5%). Furthermore, integration of the two strategies to simultaneously exploit the topographic
and geobotanical characteristics is synergistic (p < 0.05), increasing the OA to more than 73% in both
cases (ATM-Li and ATM-Li MNF). From Figure 6, it is apparent that this synergism is primarily due
to enhanced mapping of the Basal Group and Alluvium-colluvium units following the incorporation
of topographic information alongside the spectral imagery. The OBIA-derived maps for each set of
input variables are shown in Figure 7. Visually, all six maps bear a remarkable resemblance to the
existing geological maps (see Figure 1c), by portraying the abundant outcropping of Pillow Lavas
in the southeastern portion of the study area, considerable alluvium-colluvium in the northwest,
and Lefkara Formation cover in the northeast. Moreover, the maps depict the generalised surficial
geology with a significantly higher level of detail, and provide additional information on outcropping
of Alluvium-colluvium in the study area.
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Irrespective of the input dataset, Alluvium-colluvium is generally the most accurately mapped
lithology, with consistently high PA and UA (Figure 6). This is because the Alluvium-colluvium
unit is particularly distinctive in terms of both its topography and the types of vegetation it is
typically associated with [26,34]. Although the Lefkara Formation is mapped with a high PA (>67%),
it is associated with relatively large commission errors (34%–54%) as apparent through the notable
abundance of incorrectly mapped Lefkara Formation in the southeastern portion of the study area
(Figure 7e). The confusion matrices (Tables S1–S6 in the Supplementary Materials) reveal that this
large commission error is primarily due to confusion with the Basal Group, which can be attributed
to similarities in the types of vegetation found growing on both units [23]. The Basal Group itself is
commonly confused with the Pillow Lavas, which is anticipated given that the distinction between
these two units is one largely based on differences in the observed dyke abundance [60]. Nevertheless,



Remote Sens. 2016, 8, 843 12 of 20

the commission errors for the Pillow Lavas are low, particularly for classifications based on the spectral
and integrated spectral-topographic input datasets (19%–32%). The confusion between Basal Group
and Pillow Lavas is exacerbated in close proximity of Mathiati mine for classifications incorporating
topographic information (Figure 7a,e,f), with the pit walls and flanks of the spoil heaps being incorrectly
classified as Basal Group because of their artificial steep slopes. In contrast, the presence of Agia
Varvara village in the north of the study area does not appear to pose any considerable hindrance to
lithological mapping.
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3.2. Comparison of OBIA and Per-Pixel Approaches to Lithological Discrimination

Comparisons between thematic accuracies of equivalent OBIA and per-pixel classifications
for all six input datasets are presented in Table 4. As mentioned above, the per-pixel results
correspond to those obtained through classifications using the SOM artificial neural network as
described by Grebby et al. [23]. In all cases, the OBIA approach outperforms its per-pixel equivalent
(p < 0.0001), with an average difference of 5.7% and 16.6% in OA and K, respectively. This is consistent
with other studies, which similarly report increases of 7%–9% in OA and K in 9%–15% for OBIA
classification of land cover/land use relative to per-pixel classification [27,36]; albeit significantly
less than the differences (48.2% in OA and 58.2% in K) report by Munyati et al. [41] for delineation
of geologically-controlled vegetation types. The greatest difference in mapping performance was
observed for the ATM PC dataset, with the OBIA approach providing considerable increases of 13.1%
in OA and 45.7% in K over its per-pixel counterpart. As the application of principal component
analysis is found to accentuate the intra-class spectral variability [23], this result suggest that the
OBIA approach is more effective than the per-pixel algorithm at discriminating lithologies in this
landscape of heterogeneous surface cover. This is most likely because averaging together the values
of all contiguous pixels within objects will act to reduce the intra-class variability that is observed
when pixels are considered on an individual basis. The smallest difference between the two classifiers
was observed for the ATM-Li MNF input dataset. Although the most accurate per-pixel approach
(achieving an OA of 72.7%), it is nonetheless still outperformed its OBIA counterpart by a small,
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but statistically significant difference (p < 0.0001), of 0.6% in OA. The best performing OBIA approach
(ATM-Li) exceeded the OA of its per-pixel equivalent by 3.3%. Irrespective of the classification
approach, results do appear to reiterate the synergism of integrating multisource data to improve the
distinction between lithologies.

Table 4. Comparison of overall accuracies (OA), Kappa coefficients (K) and statistical significance of
differences (p-value) between the OBIA and per-pixel approaches.

Dataset
OBIA Per-Pixel

p-Value
OA (%) K OA (%) K

Li 68.9 0.59 65.4 0.53 <0.0001
ATM 9 69.5 0.59 60.3 0.48 <0.0001

ATM PC 63.3 0.50 50.2 0.35 <0.0001
ATM MNF 70.1 0.60 65.5 0.54 <0.0001

ATM-Li 73.5 0.65 70.2 0.60 <0.0001
ATM-Li MNF 73.3 0.63 72.7 0.63 <0.0001

Although each OBIA approach outperforms its per-pixel counterpart in terms of OA,
the performance in terms of mapping individual lithologies is somewhat variable between classifiers
and input datasets (Figure 8). For example, despite the ATM-Li OBIA approach resulting in the highest
OA, it produces lower PA and UA for some lithologies (e.g., Lekara Formation) than its per-pixel
equivalent (Figure 8e), as well as other OBIA classifications (e.g., ATM 9; Figure 8b). Such variability
could be an indication that a single scale value is not optimal for segmenting all lithological classes [58].
Nevertheless, when considering each type of classifier on the whole, the overall superiority of the
OBIA approach over that of the per-pixel approach is generally attributable to enhanced discrimination
of the Lefkara Formation and Alluvium-colluvium units (Figure 8). For the Lefkara Formation, this is
evident through increases in the average PA and UA of 7.9% and 6.1%, respectively, when the results
for all six input datasets are considered. Visually, this is particularly apparent through the improved
mapping of outcrops in the northeast of the study area, even when the best overall OBIA (ATM-Li)
and per-pixel (ATM-Li MNF) approaches are compared (Figure 9, bottom zoom extent). Given the
significant degree of intra-class variability and overlap in the spectral and topographic characteristics
of the Lefkara Formation with those of other units [23,46], the observed increases in PA and UA over
the per-pixel approach are again most likely due to the averaging effect leading to a reduction in the
intra-class variability and enhanced separation between classes; again reaffirming the main rational
for utilising OBIA over per-pixel approaches [34,35].

The improved mapping of Alluvium-colluvium through the OBIA approach is largely associated
with consistent decreases in the commission error for the Pillow Lavas. This is most apparent in
the north and northwestern portion of the study area, where an abundance of Pillow Lavas mapped
using the per-pixel approach is correctly reassigned to Alluvium-colluvium through use of the OBIA
approach (Figure 9, top zoom extent). However, relative to the per-pixel approach, most observed
increases in the Basal Group PA for the OBIA approach are offset by similar decreases in the UA when
topographic variables are incorporated (Figure 8a,e,f). Furthermore, in all cases, relative increases
in the UA for the Pillow Lavas are offset by comparable decreases in the PA. These are somewhat
surprising observations given that the Basal Group has distinctive topographic characteristics, whilst
the Pillow Lavas are also distinctive in terms of both their associated vegetation and topography.
This lack of consistent improvement suggests that that there is little or no overall benefit in employing
the OBIA approach over the per-pixel approach to discriminate units with relatively low intra-class
variability. Alternatively, it could again suggest that a single scale value is not optimal for segmenting
all lithological classes. Irrespective of this, it is clear that the OBIA approach employed here is
effective in reducing the “salt-and-pepper” artefact associated with per-pixel classification (Figure 9).
Consequently, the OBIA approach is capable of enabling more veracious and contiguous mapping of
lithological units. This concurs with the findings of Kassouk et al. [39], who demonstrate the ability to



Remote Sens. 2016, 8, 843 14 of 20

use OBIA for delineating homogeneous geological units on Merapi volcano (Indonesia) despite the
hindrance posed by variable overlying tephra cover and pyroclastic density currents.Remote Sens. 2016, 8, 843 14 of 20 

 

 

Figure 8. Comparison of the Producer’s (PA) and User’s (UA) accuracies for equivalent OBIA and per-pixel 
classifications: (a) Li; (b) ATM 9; (c) ATM PC; (d) ATM MNF; (e) ATM-Li; and (f) ATM-Li MNF. 

 

Figure 9. Comparison of the mapping results generated using the best OBIA (ATM-Li) and per-pixel 
(ATM-Li MNF) approaches. 

  

Figure 8. Comparison of the Producer’s (PA) and User’s (UA) accuracies for equivalent OBIA and
per-pixel classifications: (a) Li; (b) ATM 9; (c) ATM PC; (d) ATM MNF; (e) ATM-Li; and (f) ATM-Li MNF.

Remote Sens. 2016, 8, 843 14 of 20 

 

 

Figure 8. Comparison of the Producer’s (PA) and User’s (UA) accuracies for equivalent OBIA and per-pixel 
classifications: (a) Li; (b) ATM 9; (c) ATM PC; (d) ATM MNF; (e) ATM-Li; and (f) ATM-Li MNF. 

 

Figure 9. Comparison of the mapping results generated using the best OBIA (ATM-Li) and per-pixel 
(ATM-Li MNF) approaches. 

  

Figure 9. Comparison of the mapping results generated using the best OBIA (ATM-Li) and per-pixel
(ATM-Li MNF) approaches.



Remote Sens. 2016, 8, 843 15 of 20

3.3. Lithological Contact Mapping Performance

The fuzzy membership scores, which measure the spatial accuracy of lithological contacts
delineated in the lithological maps with respect to reference contacts, are shown in Figure 10, for both
the OBIA and per-pixel approaches. Of the six OBIA classifications, that based on the ATM 9 input
dataset (Figure 10b) was the most accurate at defining contacts, with 41.4% of delineated contact pixels
found to fall with the defined confidence regions (i.e., having a fuzzy membership score of 1). This is
followed closely by classifications based on the ATM PC (Figure 10c) and ATM MNF (Figure 10d)
input datasets, both for which 36.8% of contact pixels fall within the confidence regions. The worst
results were achieved for the ATM-Li dataset (Figure 10e), with only 15.9% of delineated contact pixels
found to fall with the defined confidence regions. In fact, all three OBIA classifications that incorporate
the topographic input variables (Li, 22.3%; and ATM-Li MNF, 25.2%) performed worse at mapping
lithological contacts than those based solely on the spectral variables. This is likely because sharp
topographic transitions marking the contact between lithologies are smoothed somewhat through use
of moving windows in the derivation of the geomorphometric input variables [46].

Despite the variability between input datasets, the OBIA approach generally outperforms its
per-pixel counterpart in mapping lithological contacts, by delineating (in five out of the six cases)
between 3.2% and 15.3% more contact pixels that lie within the confidence regions. The greatest
different was observed for the ATM PC input dataset (Figure 10c), with 36.8% and 21.5% of contact
pixels falling within the confidence regions for the OBIA and per-pixel approaches, respectively.
A similar difference in performance between the two approaches is observed when pixels proximal
to the confidence regions are considered, with 58.8% of OBIA-mapped contact pixels having a fuzzy
membership score of 0.95–1.0, compared to 43.1% for the per-pixel approach. The smallest difference
(25.2% vs. 22.0%) was observed for the ATM-Li MNF input dataset (Figure 10f), although extending
the catchment area reveals that the per-pixel approach delineates a slightly higher proportion of
contact pixels with fuzzy membership score of 0.95–1.0 than its OBIA equivalent (47.0% vs. 40.5%).
Nonetheless, on the whole, the results clearly demonstrate that grouping contiguous pixels into objects
is more effective for mapping lithological contacts than classifying on a per-pixel basis. Notably, the
OBIA approach was found to be most advantageous in delineating Pillow Lava–Alluvium-colluvium
contacts, as well as more irregular Pillow Lava–Lefkara Formation contacts.
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Of the six cases, the ATM-Li input dataset is the only case for which the per-pixel approach
was actually found to outperform the OBIA approach in terms of contact mapping (Figure 10e).
Specifically, 23.8% of per-pixel mapped contact pixels were found to coincide with the confidence
regions, compared with only 15.9% for the OBIA approach. For the wider area, this difference increases
with 54.8% and 35.1% of per-pixel and OBIA contact pixels, respectively, assigned fuzzy membership
scores of 0.95–1.0. However, since the OBIA approach outperforms the per-pixel approach in mapping
contacts in the five other cases—including the other integrated spectral-topographic input dataset
(ATM-Li MNF)—this conflicting result could be due to a sub-optimal segmentation outcome. In any
case, this reiterates how critical the segmentation stage is and the influence it can have on the classified
output [28,61,62]. As mentioned above, the segmentation process is still largely dependent on the
“trial-and-error” approach, owing to the absence of a universally accepted method for determining the
optimal segmentation parameters. In addition, this heuristic approach to optimising segmentation
can be time consuming and, as a consequence, some per-pixel approaches may be more efficient than
OBIA. However, in the case of advanced per-pixel classification algorithms (such as the SOM neural
network used here), an equally time consuming “trial-and-error” approach is also commonly required
to optimise the network parameters. Nevertheless, it is worth noting that there are on-going attempts to
devise more quantitative and automated segmentation parameter selection methods [63–65], which are
anticipated to help increase the efficiency and optimisation of this process, and ultimately produce
better results than currently attainable through “trial-and-error” [50].

4. Conclusions

This first-of-its-kind study evaluates the capability of an OBIA approach for indirectly mapping
lithologies in a vegetated landscape using airborne multispectral imagery and airborne LiDAR data.
The devised method consists of three steps: input feature selection, segmentation and classification.
This approach was used in conjunction with different types of input variables (i.e., spectral, topographic,
and integrated spectral-topographic), which were designed to exploit geobotanical associations
and the correlation between lithology and topography. In all six cases, the OBIA approach was
found to significantly outperform its equivalent per-pixel approach (utilising an SOM artificial
neural network classifier) in terms of thematic accuracy. This enhanced ability to differentiate
between lithologies is attributed to the averaging effect within objects, which reduces the intra-class
variability predominantly caused both heterogeneous vegetation cover and natural deviations from the
topographical characteristics of individual lithologies. Moreover, in five of the six of the assessed cases,
the OBIA approach successfully delineated lithological contacts with a greater spatial accuracy than the
per-pixel approach. However, the converse was true for the ATM-Li input dataset, which was attributed
to sub-optimal segmentation. This further highlights the need for an objective, universally-accepted
approach for determining the optimal segmentation parameters, and thus maximising the potential
of the OBIA approach. Nevertheless, the overall results of this study clearly demonstrate that the
OBIA approach offers the potential to produce more realistic and accurate lithological maps than
per-pixel approaches in significantly vegetated and heterogeneous terrain. Despite this, it is also clear
from the result that there is not a single optimal OBIA classification approach to lithological mapping.
For instance, the best input dataset with respect to thematic mapping is actually the worst at accurately
delineating contacts (ATM-Li). Similarly, the dataset providing the highest OA in terms of thematic
accuracy does not necessarily map all individual lithologies with the highest accuracies. This implies
that a trade-off may be required when selecting a model that achieves both satisfactory thematic and
contact mapping results.

Although this study currently presents the most comprehensive assessment of an OBIA approach
to lithological mapping, further studies utilising different types of data (e.g., very-high resolution
satellite, and hyperspectral) and in different geological settings are required to help fully realise
the efficacy of object-based approach. For instance, in this case, the topographic and geobotanical
characteristics are relatively homogeneous within lithological units whilst sufficiently distinct between
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them to permit indirect mapping. However, the efficacy of this type of indirect approach may be limited
over larger areas or in more heterogeneous landscapes, where spatial variation in both vegetation and
earth surface processes (e.g., weathering, erosion, and faulting) could be greater, therefore hindering
adequate characterisation of lithologies using proxy information. However, as indicated here, an OBIA
approach is still likely to be more effective than pixel-based approaches in reducing the impact of this
intra-class variability.

In its current form, the OBIA approach presented here is somewhat time consuming due to manual
optimisation of the segmentation parameters. Nonetheless, by producing detailed reconnaissance
maps with accurately defined contacts, an approach such as this can still ultimately help to reduce the
time and cost of geological mapping programmes, by enabling more efficient, targeted field mapping.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/10/843/s1,
Table S1: Confusion matrix for the OBIA classification of the Li dataset, Table S2: Confusion matrix for the
OBIA classification of the ATM 9 dataset, Table S3: Confusion matrix for the OBIA classification of the ATM PC
dataset, Table S4: Confusion matrix for the OBIA classification of the ATM MNF dataset, Table S5: Confusion
matrix for the OBIA classification of the ATM-Li dataset, Table S6: Confusion matrix for the OBIA classification of
the ATM-Li MNF dataset.
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