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ABSTRACT 

Epothilones are natural products with anticancer activity that are biosynthesized by polyketide 

synthase (PKS)-nonribosomal peptide synthetase (NRPS) enzymes EpoA-F. A cyclization 

domain of EpoB (Cy) assembles the thiazole functionality from an acetyl group and L-cysteine 

via condensation, cyclization and dehydration. The PKS carrier protein of EpoA contributes the 

acetyl moiety, guided by a docking domain, whereas an NRPS EpoB carrier protein contributes 

L-cysteine. To visualize the structure of a cyclization domain with an accompanying docking 

domain, we have solved a 2.03 Å resolution structure of this bidomain EpoB unit, comprising 

residues M1-Q497 (62 kDa) of the 160 kDa EpoB protein. We find that the N-terminal docking 

domain is connected to the V-shaped Cy domain by a twenty-residue linker, but otherwise makes 

no contacts to Cy. Molecular dynamic simulations and additional crystal structures reveal a high 

degree of flexiblity for this docking domain, emphasizing the modular nature of the components 

of PKS-NRSP hybrid systems. These structures further reveal two 20-Å-long channels that run 

from distant sites on the Cy domain to the active site at the core of the enzyme, allowing two 

carrier proteins to dock with Cy and deliver their substrates simultaneously. Through 

mutagenesis and activity assays, catalytic residues N335 and D449 have been identified. 

Surprisingly these residues do not map to the location of the conserved HHxxxDG motif in the 

structurally homologous NRPS condensation (C) domain. Thus, although both C and Cy 

domains have the same basic fold, their active sites appear distinct. 

 

 

Significance: Here we investigate the structural basis for cyclization activity in hybrid 

polyketide synthase-nonribosomal peptide synthetases. This first structure of a cyclization (Cy) 
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domain reveals an unexpected location for the enzyme active site, providing a fresh perspective 

on past mutational studies. Our structures also depict two twenty-Å-long channels that create 

routes for the two tethered substrates to simultaneously reach the buried active site, affording 

substrate condensation and cyclization. Along with the Cy domain, these structures contain a 

covalently-attached docking domain, providing insight into how protein modules work together 

to achieve uni-directionality in the biosynthesis of natural products.   
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 Introduction 

Epothilones are hybrid polyketide/nonribosomal peptide natural products that are 

indicated for treatment of metastatic or locally advanced breast cancers that are taxane-resistant 

(1, 2). They contain a large macrocycle with a thiazole-containing side chain, which is important 

for stabilizing microtubules and impairing cell division (Fig. 1A) (3–5). Azole heterocycles, such 

as thiazole, are commonly found in many natural products, and in different oxidation states (i.e. 

azolines and azolidines).  They are more resistant to hydrolysis than a peptide bond, and their 

incorporation can increase a compound’s affinity for a target biomolecule (6). Despite their 

importance, there is still much to learn about the structure and mechanism of the enzymes 

involved in their biosynthesis (7, 8). Here we explore the structural basis of activity of the 

catalytic domain that generates the 2-methylthiazoline precursor of epothilone natural products. 

The epothilone biosynthetic gene cluster from Sorangium cellulosum is encoded by 

EpoA-K (Fig. 1A). EpoA, a polyketide synthase (PKS), and EpoB, a nonribosomal peptide 

synthetase (NRPS), are responsible for making the 2-methylthiazole functionality (9–12). 2-

methylthiazole derives from the condensation of an acetyl group with L-cysteine (Fig. 1B). 

Before condensation, the acetyl moiety and L-cysteine are covalently attached to the carrier T 

domains of EpoA (acetyl-S-EpoA-T) and EpoB (cysteinyl-S-EpoB-T), respectively, via 

phosphopantetheine (Ppant) linkers (Fig. 1A, Fig.	 S1). Instead of a traditional condensation or C 

domain, EpoB has a cyclization (Cy) domain that performs both the amide bond forming 

condensation reaction and the cyclization/dehydration to form the five membered ring structure 

of 2-methylthiazoline (11). Two mechanisms have been proposed that differ in whether the 

amide bond forms first or second to the cyclization reaction (13, 14) (Fig. 1B). Subsequent 

oxidation by the flavin-dependent oxidase domain (EpoB-Ox) results in 2-methylthiazole (9, 11, 
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12). PKS-NRPS docking domains (15), referred to as EpoAdd and EpoBdd for the upstream 

donor and the downstream acceptor proteins, respectively, serve to localize the T domains to the 

appropriate intermodule junction, facilitating what has often been referred to as an assembly line 

biosynthetic process. 

There is much that is unknown about Cy domains; the molecular basis for the 

differentiation of C and Cy domain activity is not established and the key catalytic residues have 

not been identified. Keating et al. predicted that the C and Cy domains would adopt similar 

structures (16), and early sequence alignments identified a DxxxxDxxS Cy domain sequence that 

replaces the C domain HHxxxDG catalytic motif (Fig. S2). Although conservation of the 

DxxxxDxxS sequence within known Cy domains suggests its importance, mutational analyses 

have been inconclusive as to which residues are critical for catalysis (14, 17, 18).  

To provide insight into the cyclization activity of EpoB, we determined the X-ray 

structures of an EpoB construct that contains residues M1-Q497 (~62 kDa) of the full length 

EpoB enzyme from S. cellulosem. This 62 kDa unit, which we will call EpoBcy, was previously 

shown (18) to be an active Cy domain,  capable of interacting in trans with constructs encoding 

the A, Ox, and T-domains of EpoB, and the T domain of EpoA, to synthesize 2-methylthiazole. 

This construct also contains the natural N-terminal docking domain, providing the first glimpse 

of this PKS to NRPS docking domain within a larger protein. These structural results, along with 

accompanying mutagenesis data, provide insight into the molecular basis of cyclization activity 

and have important implications regarding PKS/NRPS interprotein interaction. 
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Results  

Structure of an NRPS Cy and docking domain protein complex 

We determined two structures of EpoBcy in two different space groups. A 2.6-Å 

resolution structure of EpoBcy was solved, with two molecules in the asymmetric unit, in space 

group R32, by multiple isomorphous replacement techniques using data from five different 

heavy atom derivatives (Tables S1 and S2). A 2.03-Å resolution structure was solved in space 

group P21, using R32-EpoBcy as a molecular replacement search model, with one molecule per 

asymmetric unit (Table S2). The overall protein fold of the Cy domain (D76 – Q497) of EpoB is 

“V”-shaped, with the N- and C-terminal segments each comprising approximately one half of the 

“V” (Fig. 2A). The N- and C-terminal segments (D76 – K247 and S248 – Q497, respectively) 

contain aba sandwich folds, resulting in a structure that loosely resembles a pseudodimer. The 

N-terminal segment of the Cy domain consists of a 5-stranded mixed b-sheet in which the last b-

strand is donated from the adjacent C-terminal half of the protein, and the C-terminal segment 

contains a mixed 6-stranded b-sheet positioned almost perpendicular to the N-terminal b-sheet. 

This protein fold is similar to that of both NRPS condensation (16) and epimerization domains 

(19); EpoBcy aligns with the condensation domain of VibH from vibriobactin synthetase (PDB 

accession code 1L5A)(16), with an overall RMSD of 3.9 Å for 392 Ca atoms (Fig. 2B), and the 

epimerase domain of TycA from tyrocidine synthetase (PDB accession code 2XHG)(19), with an 

overall RMSD of 3.6 Å for 400 Ca atoms, as determined by the DALI server (20).  

The N-terminal 55 residues of the EpoB protein make up the docking domain (EpoBdd), 

which recognizes the upstream EpoAdd to position the acetyl-S-EpoA-T domain for catalysis 

(21). EpoBdd adopts an abbaa fold, consisting of an initial a-helix, b-turn, and two final a-

helices (Fig. 2A), and is connected to the Cy domain by a 20-residue linker (L56 – T75). This 
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docking domain structure is similar to the NMR structure of a docking domain at an NRPS-

NRPS junction in the tubulysin system from Angiococcus disciformis, sharing an RMSD of 3.6 

Å for 52 Ca atoms (PDB accession code 2JUG) (Fig.	S3) (15).  

 

Structures and MD simulations reveal conformational flexibility of docking domain  

Three different conformations of the docking domain are observed in our structures, 

consistent with the presence of a flexible rather than rigid linker between the docking and Cy 

domains, and the existence of very little buried surface at the domain-domain interface in any of 

the structures (Fig. 3A and Fig. S4). The R32 crystal form reveals two conformations of the 

docking domain, with each molecule in the asymmetric unit adopting a different conformation. A 

third orientation is visible in the P21-EpoBcy structure (Fig. 3A). To further explore the 

flexibility of the docking domain, a 20 ns molecular dynamics (MD) simulation of the fully 

hydrated protein was run. Very little movement of the Cy domain was observed, whereas the 

docking domain sampled multiple positions, none of which were observed to make substantial 

interactions with the Cy domain (Fig. 3B, Movie S1). Thus, the connection between domains 

appears largely dependent on the covalent linker.  

 

Structures suggest binding sites for T-domains of EpoA and EpoB 

The EpoB Cy domain has the challenging task of interacting with carrier T domains from 

two separate proteins, each of which supply a different component to make 2-methylthiazoline 

(Fig. 1). Since EpoBdd facilitates interactions with the PKS T-domain of EpoA, the location of 

the docking domain in our structures identifies the approximate binding site for EpoA-T 

(referred to as site 1 in Fig. 4A). Insight into the binding location for the NRSP EpoB-T domain 
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comes from a structure of a NRPS T domain bound to the terminal surfactin A module (22). 

Structural superposition places the EpoB-T binding site on the C-terminal half of the Cy domain 

(Fig. S5) (referred to as site 2 in Fig. 4A). These putative T domain binding sites are non-

overlapping, consistent with the proposal that both T domains bind EpoB at the same time (16). 

Intriguingly, the P21-EpoBcy structure shows an extended L shaped channel that connects 

putative T domain binding site 1 to the active site, and the active site to putative T domain 

binding site 2 (Fig. 4A). The distance between each putative T domain binding site and the active 

site is ~20 Å, the length of an extended Ppant arm. This physical relationship suggests an acetyl 

moiety tethered via a Ppant arm from the EpoA-T domain would sit juxtaposed to a L-cysteinyl 

moiety tethered via a Ppant arm from the EpoB T domain (Fig. 4B).  Similar channels are found 

in both molecules that are present in the asymmetric unit of the R32 structure, however 

movement of surface loops at site 2 (the loops prior to b1 and b10), in addition to protein side 

chain differences near the active site result in channel constrictions (Fig. 4C,D and Figs. S2 and 

S6).  

To investigate the conformational dynamics of residues near the active site that may 

allow for channel widening and clamping, we carried out MD simulations on the R32 structure 

that had the contracted cavity (shown in Fig. 4D). As detailed above, in a 20 ns MD simulation 

the Cy domain does not move substantially, however certain protein residues located on both 

sides of the active site appear to undergo small movements of their backbone and slightly larger 

movements of side chains, with the result being that the cavity opens to resemble the contiguous 

channel observed in the P21 structure (Fig. 4E). These data suggest that small movements of 

residues can alternately contract and widen channels between the two T domain binding sites and 

the active site without the need for large movements of the protein backbone. 
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Structure and mutagenesis reveal unexpected location for Cy Active Site 

The N- and C-terminal halves of the EpoB Cy domain form a stable interface, which in 

turn forms the putative substrate-binding channels that were described above. In addition to 

several hydrophobic residues that may mediate favorable interactions with the hydrophobic 

Ppant arm and acetyl moiety of substrate, the structure reveals a set of previously 

uncharacterized polar residues that may be involved in catalysis, including S80, Y81, D354, 

Q445 and D449 (Fig. 5A,B and Fig.	 S7). We mutated these residues and also N335, which was 

studied previously in the homologous BacA system (Table S3) (14). These six residues were 

mutated individually and assayed for activity using LC/MS-MS detection, monitoring formation 

of 2-methylthiazole-4-carboxlic acid (2MTCA) (Fig. S1). Three active site variants have 

severely compromised rates of product formation: D449A, N335A and Q445A have 2000-, 555- 

and 140-fold decreased activities compared to wild-type EpoBcy (Fig. 5C). The S80A, Y81F and 

D354A variants of EpoBcy display only moderate effects with 3-, 6- and 6-fold decreased 

activities, respectively. Putting these results in context with the structure has allowed us to 

localize the active site to the C-terminal half of the Cy structure, where the channel is lined with 

residues N335, Q445, and D449 (Fig 5A,B). 

Surprisingly, these active site residues occupy a site that is distal to the previously 

identified (16, 17) DxxxxDxxS motif, the latter of which is on the N-terminal half of Cy (Fig. 

5A,B). The DxxxxDxxS motif aligns well with the catalytic HHxxxDG motif of NRPS C 

domains as predicted (14, 17, 18)(Fig. 2B), but instead of playing a catalytic role, our structures 

suggest that the DxxxxDxxS motif (D201-LINVDLG-S209 in EpoBcy) may be important for 
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maintaining the integrity of the substrate-channels. Importantly, neither Asp is free to interact 

with substrate. Rather, D201 is involved in a salt bridge with R85, which provides structure to 

one side of the channel, and D206 forms a salt bridge with R341 and a hydrogen bond to S209, 

supporting another side of the channel (Fig. 5A,B).  

 
Discussion 

Hybrid PKS/NRPSs are remarkable macromolecular assembly lines with carrier proteins 

delivering substrates from one enzyme module to the next and docking domains providing the 

intermodular communication that allows for the proper directionality (23, 15, 24). Our structures 

provide a visualization of the interactions between an N-terminal docking domain and a 

downstream enzyme within a NRPS module, and we find a bead-on-a-string type arrangement. 

Covalent attachment by a twenty-residue linker is all that is involved; EpoBdd makes no other 

contacts to the Cy domain. Thus, any docking domain could be substituted with no reengineering 

of the Cy domain protein surface required. Although EpoBdd is highly flexible, allowing it to 

search for its partner proteins (23), its attachment point to Cy appears key to its function. When 

EpoBdd localizes the EpoA-T to Cy through interaction with EpoAdd, this T domain will end up 

positioned near to one of two channel openings on Cy (site 1), allowing a substrate linked by a 

Ppant arm to reach down into the core of the Cy domain.  

A second channel from a second T domain binding site (site 2) has been identified that is 

at a right angle from the site 1 channel. The existence of two channels allows for simultaneous 

binding of the two substrate-loaded T domains. By physically isolating the binding sites of the 

upstream and downstream carrier proteins, NRPS systems have developed a directionality that is 

important for defining the generation of a specific natural product. The length of each channel 

(~20 Å) matches the length of an extended Ppant arm (~20 Å), allowing us to predict that the 
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acetyl moiety from EpoA-T and L-cysteinyl moiety from EpoB-T will end up juxtaposed in the 

active site and also proximal to catalytic residues D449 and N335 (Fig. 5B). Notably, the EpoA 

channel appears a bit longer than necessary for an acetyl moiety to be accommodated (Fig. 5A,B), 

perhaps explaining the observation that larger substrates (propionyl-, isobutryl-, and benozyl-

EpoA-T) can be turned over by Cy, albeit more slowly (11).   

In our structures and MD simulations, we observe snapshots of more open and more 

closed states of the channel leading to the active site, and we expect that the binding of EpoA-T 

and EpoB-T domains at their respective binding sites will shift the equilibrium towards the more 

open state, and that T domain departure will shift toward the closed state, thus restricting active 

site access in the absence of substrates. Although conformational changes of protein backbone 

have been observed for C domain proteins that could contribute to channel opening and closing 

(25), here we see little to no movement of the backbone atoms of the three structures that display 

various degrees of channel openness. Also MD simulations show that side chain motion is 

sufficient to open and close the internal protein cavities. Thus for this Cy domain, there appears 

to be no need to invoke domain hinge motions in catalysis. 

These studies have also allowed us to investigate how a Cy domain compares to a C 

domain. Prior to this report, many labs had performed biochemical characterizations of Cy 

domains with the expectation that the C and Cy domains would be very similar, yet they 

obtained inconsistent results from mutagenesis studies using different Cy domains (14, 17, 18). 

Now, with our report of the first Cy domain structure, the results of these biochemical studies are 

coming into focus. We do find that the EpoB Cy domain adopts a similar protein fold as the 

NRPS C domain validating previous predictions (16). Despite adopting a conserved protein fold, 

however, our results suggest that the catalytically important residues for Cy do not map to the 
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location of the highly conserved sequence motifs (HHxxxDG for C domains and DxxxxDxxS for 

Cy domains). Importantly, residues of the DxxxxDxxS sequence motif are not free to interact 

with substrate, instead forming salt bridges and hydrogen bonding networks that stabilize the 

elaborate channels that run through the core of the protein fold. Although substrate binding 

might cause residues of the DxxxxDxxS motif to break their interactions and be available for 

catalysis, we instead propose that D449 is key to catalysis, potentially serving as a catalytic base. 

This proposal is consistent with the 2000-fold effect on 2MTCA production when D449 is 

mutated to alanine.  

Inspection of the proposed mechanisms in Fig. 1B shows a number of base-catalyzed 

steps that might be involved in this three step reaction: deprotonation of the amino group of 

cysteine for the peptide bond formation step with the acetyl moiety; deprotonation of the cysteine 

side chain for the cyclization reaction; and deprotonation of the ring NH for the dehydration 

reaction. It is possible that one residue may catalyze all three deprotonations, since the 

protonation state of the base could be reset after each step. Notably, the number of 

deprotonations equals the number of protonations, with the Ppant sulfur accepting one proton 

and the acetyl moiety oxygen accepting two protons as it is first reduced to a hydroxy group and 

then to water (Fig. 1B). Thus from the perspective of stoichiometry, D449 could assist in all 

three reactions, but a structure with substrate bound would help to evaluate the geometric 

prospects of a single residue catalyzing all three different steps.  

We have also confirmed that N335 is catalytically important, having a 555-fold effect on 

2MTCA production. Given that the corresponding asparagine residue in a chimeric engineered 

BacA Cy generated only an uncyclized dipeptide product when this asparagine was mutated to 

alanine (14), we expect that N335 is also involved in cyclization. Because N335 does not have a 
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titratable side chain, we do not believe that it is a catalytic base. Instead, it may serve to position 

the substrates appropriately for cyclization or stabilize intermediates through hydrogen bonding. 

In short, the structures of EpoBcy explain much of the previous biochemical work and also 

reveal D449 as a key residue. 

Since the discovery of NRPS natural products, researchers have been interested in 

manipulating these modular assembly lines for the bioproduction of novel chemical compounds 

(26). For this to be achievable and efficient, we must increase our understanding of how these 

systems function at the molecular level (27). This work presents important structural information 

regarding two NRPS domains: the Cy domain that produces five-membered heterocycles for 

assembly into larger NRPS products and the docking domain that provides specificity between 

two different PKS/NRPS proteins to interact in trans.  
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METHODS 

The EpoBcy protein construct was expressed and purified as described (18), with minor 

modifications detailed in the SI Materials and Methods. EpoBcy site specific mutagenesis was 

performed using standard protocols, and activity assays (18) were adapted for product detection 

by LC/MS-MS (SI Materials and Methods). Purified wild-type EpoBcy was crystallized using 

the vapor diffusion method, and X-ray diffraction experiments, model building and refinement 

are detailed in the SI Materials and Methods. A 20 ns MD simulation was performed in 

GROMACS, and parameters are described in the SI Materials and Methods. 
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Figure Legends 
 

 
 

 
Fig. 1.  Scheme for epothilone biosynthesis, focusing on thiazol(in)e formation by the NRPS 
cyclization domain. (A) Epothilones (right) are large macrocycles with a thiazole-containing side 
chain (red), which are produced by a hybrid PKS/NRPS EpoA-K. EpoA and EpoB are 
responsible for producing the thiazole side chain and have the following domains (9–12): KSy, 
ketosynthase-like domain; AT, acyltransferase domain; ER, enoyl reductase; and T, an acyl 
carrier protein. The NRPS EpoB domains include: A, adenylation domain; Cy, cyclization; Ox, a 
flavin-dependent oxidase domain; and T, a carrier protein domain (28, 29). The Ppant group of 
each T domain is represented as , and residue numberings for the EpoA-T, and EpoBcy 
constructs are indicated. (B) Proposed mechanisms for condensation and cyclodehydration. The 
EpoA-T domain and EpoB-T domains are represented as red and blue spheres, respectively. 
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Fig. 2. Overall structure of EpoBcy. (A) Left: ribbon structure of monomeric EpoBcy, with the 
N-terminal docking domain in cyan, and the N- and C-terminal halves of the Cy domain in 
purple and yellow, respectively. Right: Topology diagram of EpoBcy generated using 
TOPDRAW (30). (B) Structural superposition of the NRPS Cy and C domains. The EpoB Cy 
domain is colored as in A; the C domain from VibH is colored in gray (PDB code 1L5A)(16). 
Helices are represented as cylinders, and the EpoB docking domain is omitted for clarity. Inset is 
a close-up view of the C domain H125-H126-xxx-D130-G131 motif and the respective Cy 
domain D201-xxxx-D206-xx-S209 sequence, depicted as sticks. 
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Fig. 3.  The PKS/NRPS docking domain is flexibly tethered to EpoBcy. (A) Structural alignment 
of the three monomeric forms of EpoBcy observed from the P21 and R32 crystal structures. The 
Cy domain is colored as in Fig. 2, and the three observed orientations of the docking domain are 
colored cyan, pale cyan, and blue. (B) A 20 ns MD simulation of EpoBcy with increased protein 
movement indicated by the thickness and color of the protein trace, from thin blue (least motion) 
to thick red (greatest motion). Also see Movie S1.  
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Fig. 4.  Proposed binding sites for substrate T domains. (A) P21-EpoBcy (colored as in Fig. 2) is 
displayed in ribbons with the putative active site channels displayed in green and grey 
(calculated by HOLLOW) (31). The binding of EpoA-T at “site 1” is predicted by proximity to 
the docking domain and modeled as a red sphere; EpoB-T (orange, PDB 2VSQ) is modeled at 
“site 2” from an alignment of EpoBcy and SrfC S1003A variant (Fig. S5), with the site of Ppant 
attachment displayed in ball and stick (22). The entrance paths are the approximate length of the 
Ppant prosthetic group (dashed orange and red lines). (B) Close-up view of the observed active 
site channel of P21-EpoBcy, with locations of the EpoA-T and EpoB-T domains represented as 
in A. Ppant arms, represented as squiggly lines for acetyl-S-EpoA-T and cysteinyl-S-EpoB-T, are 
anticipated to meet within the active site channel where condensation and cyclization will occur. 
The location of the catalytically important residues D449, N335, and Q445 are indicated. (C) 
Channel calculation for R32-EpoBcy molecule A shows less connectivity between the site 1 
channel (green) and the site 2 channel (grey) than in the most “open” channel, which is shown in 
B. Residues shown as sticks have different positions in the “open” channel; carbons are colored 
purple if from the N-terminal domain and yellow if from the C-terminal domain. (D) Channel 
calculation for R32-EpoBcy molecule B shows the most restricted internal cavities. (E) The 20 
ns MD simulation of most “closed” EpoBcy R32 structure (molecule B, shown in panel D), leads 
to an opening of the channel such that this channel now resembles the channel of the P21 
structure in B. The overlay of a representative time point towards the end of the MD simulation 
is displayed with sticks colored gray. R32- and P21-EpoBcy are colored as in Fig. 2A.  
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Fig. 5. Identification of EpoBcy active site residues. (A) Putative EpoBcy active site channels 
(identified by the software HOLLOW) are depicted, oriented at the EpoA-T binding channel 
opening, with protein shown in ribbons; the EpoA-T channel is gray surface and the EpoB-T 
channel is green surface. Polar residues within this cavity that were mutated in this work are 
shown in sticks and colored with green carbons, with asterisks denoting those mutations that 
most dramatically affected enzyme activity. The previously identified D201xxxxD206xxS209 
sequence is colored with orange carbons, and previously mutated residues have gray carbons (see 
Table S3 for summary of mutational studies). R85 is colored with purple carbons and has not 
been mutated. Stereoviews are shown in Fig. S7. (B) Same as panel A, but rotated approximately 
90° clockwise about the vertical axis. (C) Calculated rates of 2-methylthiazole-4-carboxylic acid 
formation by LC/MS-MS for EpoBcy variants in this work.  

 
 


