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A cyanide-bridged [Co3Fe2] cluster with trigonal bipyramidal geometry shows solvent-driven 

reversible on/off switching of its thermally induced electron-transfer-coupled spin transition 

(ETCST) behaviour.  

Due to the favourable electronic exchange interactions offered by cyanide ions, cyanide-bridged 

mixed valence [CoFe] systems have been reported to show intramolecular electron-transfer behavior 

between neighboring metal ions, reversibly converting the diamagnetic [CoIII
LS-FeII

LS] state to the 

paramagnetic [CoII
HS-FeIII

LS] state (LS = low spin and HS = high spin).1 This so-called electron-transfer-

coupled spin transition (ETCST) phenomenon can be triggered by temperature variation or light 

irradiation, allowing potential application in future technologies such as next-generation information 

storage materials, sensors and nanoscale switching devices.2 ETCST behaviour was first reported by 

Hashimoto and co-workers in 1996 for the Prussian blue analogue K0.2Co1.4[Fe(CN)6]3·6.9H2O.3 Since 

this discovery, considerable effort has been focussed on the development of new cyanide bridged 

heterometallic molecular materials with reversible metal-to-metal electron-transfer behaviour.4 In 

2004, Dunbar et. al. reported an interesting trigonal pyramidal [Co3Fe2] complex which showed a one 

electron transfer process for the two ETCST-active [CoFe] pairs in the molecule with electronic states 

of [CoII
HS]3[FeIII

LS]2 and [CoII
HS]2[CoIII

LS][FeII
LS][FeIII

LS] for the high- and low-temperature phases, 

respectively.5 The ETCST behaviour of this material was found to be strongly related to the degree of 

solvation in the crystal lattice: desolvation led to a red solid locked in the [CoII
HS]3[FeIII

LS]2 state across 

the whole temperature range, and the further re- absorption of water resulted in a blue solid in the 

[CoII
HS][CoIII

LS]2[FeII
LS] state. The ETCST activity of this material was irreversibly lost upon desolvation. 

The group found that the [M3M'2] molecular architecture could be extended to over twenty complexes 



using the same capping ligand,6 and found that the [FeOs] homologue also exhibited ETCST 

behaviour.6e 

Over the course of our study of cyanide-bridged systems,7we have noted that structural 

perturbations arising from the desorption or absorption of solvent molecules can drastically affect the 

electron transfer processes of [CoFe] complexes, offering a convenient means to fine-tune the redox 

potential of [CoFe] pairs and thus control the ETCST in the solid state. However, as highlighted above, 

modification of ETCST behaviour upon guest desorption/absorption is usually irreversible due to the 

possibility of structural collapse during the rearrangement of the molecules.8  

Herein, we report a cyanide-bridged trigonal bipyramidal pentanuclear complex 

(Et4N)[{Co(L)2}3{Fe(CN)6}2](ClO4)·13EtOH (1) (L = N-(2-pyridylmethylene-(S)-(+)-1,2,3,4-tetrahydro-1-

naphthylamine, Scheme 1). The complex exhibits thermally induced complete ETCST behaviour that 

can be switched ‘off’ and ‘on’ by reversible solvent desorption and re-absorption. 

The pentanuclear complex 1 was obtained as red needle crystals by the reaction of CoCl2·6H2O, 2-

pyridinecarbaldehyde, (S)-(+)-1,2,3,4-Tetrahydro-1-naphthylamine, (Et4N)3[Fe(CN)6] and (Et4N)ClO4 in 

an ethanolic solution. X-ray structural data were collected at 100 and 300 K of 1 and the structure 

analyses reveal the heterometallic [Co3Fe2] complex to crystallise in the orthorhombic space group 

P212121 with a neutral cyanide-bridged trigonal bipyramidal structure comprising three [Co(L)2]2+ 

moieties in the equatorial plane with two [Fe(CN)6]3− moieties occupying the apical positions (Fig. 1).‡ 

Each Co ion has a distorted CoN6 octahedral coordination environment, formed by four N atoms 

provided by two L groups and two from cis-coordinating cyanide groups. Each Fe centre is coordinated 

by six carbon atoms from cyanide groups, where three act as bridging ligands to the Co ions and the 

remainder act as terminal cyanide groups and show hydrogen bonding interactions to lattice EtOH 

molecules (Fig. S2, ESI†).  

 

Significant structural changes associated with the intramolecular electron transfer process can also 

be observed with changing temperature. At 100 K, the Co-N bond lengths for Co1 and Co2 ranged from 

1.873(9) to 1.963(9) Å, in accordance with typical CoIII
LS-N bond lengths (ca. 1.9 Å)5,7b. In contrast, Co3 

 
Scheme 1 Chemical structure of ligand L. 
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was assigned to a CoII
HS state based on the significantly longer Co-N bond lengths of 2.027(8) to 

2.201(8) Å (expected value for CoII
HS = 2.1 Å)5,7b. It is challenging to elucidate the difference between 

FeII
LS and FeIII

LS states with X-ray analysis alone, however, the electronic state of all Fe ions was found 

to be FeII
LS at 100 K by Mӧssbauer spectra (see below), giving a composition of [CoII

HS][CoIII
LS]2[FeII

LS]2 in 

the low-temperature (LT) phase. As the temperature was increased to 300 K, the average Co-N 

distances for the Co1 and Co2 ions showed a significant increase from 1.924 to 2.135 Å and from 1.928 

to 2.101 Å, respectively, whereas the value associated with Co3 remained virtually constant. The 

changes in the Co1-N and Co2-N bond lengths (c.a. 0.2 Å) suggest electron transfer occurs at the Co1 

and Co2 centres upon temperature increase. Mӧssbauer spectroscopic analysis indicates that the Fe 

ions are oxidized to the FeIII
LS state at300 K during the electron transfer process, leading to a 

[CoII
HS]3[FeIII

LS]2 high-temperature (HT) phase. 

 

The magnetic susceptibility of 1 was measured in the temperature range of 300 - 2 K to elucidate 

the ETCST behaviour and the resulting χMT versus T plots are depicted in Fig. 2. The χMT value at 300 K 

is 9.92 emu mol−1 K, which is in good agreement with the assignment of three CoII
HS and two FeIII

LS ions 

(assuming S = 3/2, g = 2.5 for CoII
HS and S = 1/2, g = 2.3 for FeIII

LS)7g predicted by crystallographic studies 

and 57Fe Mӧssbauer analysis. Upon lowering the temperature, the χMT value initially remains constant 

and then decreases abruptly to reach a value of 3.02 emu mol−1 K at 224 K, a value close to that 

  

 
Fig. 1 Molecular (a) and core (b) structures of 1 at 300 K. The hydrogen atoms, (Et4N)+, ClO4-, and solvent molecules have been omitted for clarity. 



expected for a single CoII
HS ion. The further decrease of the χMT value below 100 K is due to the orbital 

contribution of the remaining CoII
HS ion. Upon heating, the χMT values increase, ultimately returning to 

the initial value, giving a plot that closely tracks that collected in cooling mode. A fully reversible, 

thermally induced [CoII
HS]3[FeIII

LS]2 ↔ [CoII
HS][CoIII

LS]2[FeII
LS]2 transition with T1/2 of 262 K is thus inferred.  

 

 

57Fe Mӧssbauer spectra were also collected at various temperatures to determine the oxidation and 

spin states of the Fe centers. The sample was suspended in EtOH to prevent possible lattice solvent 

loss during measurement. The spectra are depicted in Fig. 3 and the Mӧssbauer parameters are 

summarized in Table S3, ESI†. The Mӧssbauer spectrum collected at 100 K showed one quadrupole 

doublet characteristic of FeII
LS species5a with an isomer shift of δIS = 0.00 and quadrupole splitting of 

ΔEQ= 0.20 mm s−1, relative to -Fe foil at room temperature. The values were consistent with the 

[CoII
HS][CoIII

LS]2[FeII
LS]2 assignment obtained from the crystallographic studies and the magnetic data. 

As the temperature was increased to 260 K, an additional doublet corresponding to FeIII
LS

6g was 

observed with Mӧssbauer parameters of δIS = -0.07 and ΔEQ= 0.56 mm s−1, suggesting thermally 

induced electron transfer had occurred between the neighbouring metal centres. The area fractions 

of the FeIII
LS and FeII

LS components at 260 K were 45 % and 55 %, respectively, in agreement with the 

FeIII
LS/FeII

LS ratio (0.44/0.56) calculated from the magnetic data at the same temperature, indicating 

that some of the CoIII-FeII pairs had undergone transition to the CoII-FeIII state. As the temperature was 

further increased to 300 K, the FeIII
LS fraction reached a value of 100%, suggesting full ETCST from the 

LT to HT phase.  

 

 
Fig. 2 χMT versus T plots for the [Co3Fe2] complex in different solvated forms.  



Upon drying under N2, complex 1 undergoes a single-crystal to single-crystal (SC-SC) transformation 

whereby the solvent molecules in the crystal lattice are partially lost to give a desolvated form with a 

formula of (Et4N)[{Co(L)2}3{Fe(CN)6}2](ClO4)·5EtOH (1de). X-ray diffraction data collected at 100 K reveals 

that the desolvated complex 1de retained in the same P212121 system and with similar a and b cell 

lengths to 1, but with a significantly shorter c axis (46.041(3) and 38.04(2) Å for 1 and 1de, respectively), 

resulting in a unit cell volume reduction of c.a. 17 %.‡ Further analysis shows that the average Co-N 

bond lengths for the three CoII centers range from 2.095 to 2.150 Å, indicative of CoII
HS ions. 

Meanwhile, the Mӧssbauer spectrum collected at 100 K for 1de suggests that all Fe ions are in their 

FeIII
LS states (Fig. S7, ESI†). In other words, the desolvated form 1de maintains the same electronic 

structure ([CoII
HS]3[FeIII

LS]2) as the HT phase of 1, even at 100 K and no electron transfer occurs upon 

temperature change. The absence of ETCST is further confirmed by magnetic measurement (Fig. 2). 

The notable difference in the ETCST activity for the fresh and desolvated forms is most likely derived 

from the change of hydrogen bonding interactions during the desolvation process. 

Complex 1 shows various hydrogen bonding interactions between terminal cyanide groups of the 

[Co3Fe2] cluster and EtOH solvent molecules, which stabilize the hexacyanoferrate units in the 

electron-rich FeII state by exerting an electron-withdrawing effect.7g The loss of solvent leads to the 

destabilization of the [CoII
HS][CoIII

LS]2[FeII
LS]2 LT phase and thus the absence of ETCST. Interestingly, when 

 
Fig. 3 Mӧssbauer spectra of as-synthesized 1 at various temperatures. The green crosses are the experimentally obtained data points and the 
solid lines are the Lorentzian curves calculated using the parameters given in Table S3, ESI†. 



the desolvated complex 1de was exposed to ethanol vapour, the magnetic behaviour of the re-

absorbed sample ((Et4N)[{Co(L)2}3{Fe(CN)6}2](ClO4)·7EtOH·7H2O, 1re) was effectively restored to that of 

the as-synthesized sample, showing only a slight increase of T1/2 to 265 K. The structure of the re-

absorbed form 1re is consistent with that of the fresh 1, as evidenced by Synchrotron powder XRD 

studies (Fig. S10, ESI†). The results suggest that the [Co3Fe2] cluster in 1 is stable during solvent 

desorption/adsorption and shows significant solvent-tunable ETCST behaviour. 

In conclusion, we have reported a pentanuclear trigonal bipyramidal [Co3Fe2] cluster that exhibits 

thermal ETCST activity and is uniquely sensitive to the degree of solvation. This has allowed us to 

demonstrate a solvent-driven fully reversible on/off switching mechanism. The present complex 

therefore constitutes a rare example of the control of magnetic bi-stability through dynamic host-guest 

interactions in the solid state. Studies on the selective guest dependence of the ETCST behaviour are 

currently ongoing and will be reported in due course. 
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Notes and references 

‡X-ray crystallographic data for 1: C142H194ClCo3Fe2N25O17, Mr = 2847.15 g mol−1, Orthorhombic, 

P212121, Z = 4, T = 100 K, a = 16.6410(11) Å, b = 18.9061(13) Å, c = 46.041(3) Å, V = 14485.2(17) 

Å3, Dc = 1.306 g cm−3, (Mo K) = 0.621 mm−1; 154669 data measured, 28547 unique (Rint = 

0.1117), 1608 parameters, R1 = 0.0803 (20854 with I > 2s(I)), wR2 = 0.2156 (all data), S = 1.056, 

Flack parameter = 0.030(18).T = 300 K, a = 17.278(2) Å, b = 18.940(2) Å, c = 48.462(6) Å, V = 

15859(3) Å3, Dc = 1.192 g cm−3, (Mo K) = 0.567 mm−1; 84465 data measured, 31152 unique (Rint 

= 0.1012), 1042 parameters, R1 = 0.0741 (10348 with I > 2s(I)), wR2 = 0.1579 (all data), S = 1.033, 

Flack parameter = 0.028(16). 

X-ray crystallographic data for 1de: C126H145ClCo3Fe2N25O9, Mr = 2477.61 g mol−1, Orthorhombic, 

P212121, Z = 4, T = 100 K, a = 16.991(9) Å, b = 18.555(10) Å, c = 38.04(2) Å, V = 11993(11) Å3,  Dc = 1.372 

g cm−3, (Mo K) = 0.734 mm−1; 111656 data measured, 21113 unique (Rint = 0.1613), 1608 

parameters, R1 = 0.1655 (13143 with I > 2s(I)), wR2 = 0.4256 (all data), S = 1.013, Flack parameter = 

0.24(5). The intensity data were collected on a Bruker SMART APEX II diffractometer with Mo-K 

radiation ( = 0.71073 Å). Empirical absorption corrections by SADABS (G. M. Sheldrick, 1994) were 

applied to the reflection data. Direct methods were used to solve the structure and to locate the heavy 



atoms using the SHELXTL-97 program package. The remaining atoms were found from successive full-

matrix least-squares refinements on F2 and Fourier syntheses. 
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