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Abstract—In recent years, power electronics has evolved dra-
matically due to their importance in power extracted manage-
ment from renewable sources. In this paper an overview of grid
interconnection systems with galvanic isolation is presented. The
most common used topologies from AC/AC, AC/DC, DC/AC and
AC/AC conversion are analyzed y summarized in order to provide
a good understanding of the existing technologies.

Index Terms—Grid interconnection, Power converters, Gal-
vanic Isolation

I. INTRODUCTION

TODAY, an increased penetration of Renewable Energy

Sources (RES) and other Distributed Energy Sources

(DES) has been seen and power electronic converters play a

crucial role by providing the interconnection of these energy

sources. The efficiency of the overall interconnection system

or Future Electricity Network (FEN) will largely depend on

the efficiency of the power converter. Therefore, different

AC/AC power converter architectures and configurations must

be investigated for this purpose. The AC/AC power converter

architectures will be evaluated based on the requirements from

power converter in FEN such as bi-directional power flow

capability, flexibility and reliability [1], [2]. In addition to

these requirements, the power converter should also possess

the following requirements:

• Galvanic isolation: technologies of converter, such as

matrix converters, offer a direct conversion of AC/AC

with a high power density as the overall size of the

converter decreases by avoiding the large energy storage

components but unfortunately, such converters are not

much useful in the applications which are more prone

to faults [3]. In such applications, it is highly required to

have galvanic isolation between the input and the output

side of the converters and an example of such a system is

Universal Flexible Power Management (UNIFLEX-PM)

[1], [3]. Since, such a power converter has a large number

of semiconductor devices [2], therefore without galvanic

isolation, an occurrence of a fault can cause an excessive

current flow through the semiconductor devices which
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can possibly destroy expensive equipment on both the

input and the output sides of the converter. Although

the galvanic isolation can be provided by employing a

line frequency transformer at the output of the power

converter, but the transformer operating at line frequency

is expensive, bulky and heavy [4], [5]. Hence, by em-

ploying the line frequency transformer with the converter,

the idea to reduce overall size of the converter becomes

vague. A compact and cost effective solution is to employ

a Medium Frequency/High Frequency (MF/HF) trans-

former in between the two power converters. Therefore,

the MF/HF isolated power converter architectures are

proposed.

• Bidirectional power flow capability: in order to make

the power converters usable in the FEN, the converters

with bi-directional power flow capability are considered

only and this is due to the fact that European region is

looking towards liberalizing the electricity market which

will allow different distributed system operators (DSOs)

and multiple transmission system operators (TSOs) to

operate on the same electrical network system [2]. The

idea of utilizing power electronics in such a network

with bi-directional power flow leads to developing and

studying new isolated power converter topologies which

will allow a better interconnection of the whole FEN.

• Flexibility and scalability: the interconnection and in-

tegration of different distributed energy sources (DES),

demanding different power and voltage levels, require the

structure of converter to be flexible and scalable. This

implies that the structure of each module remains the

same but it can provide a parallel or a series connection

of the cell depending on the requirements from the

DES. Therefore, a modular or cellular architecture is

proposed [1].

• Easy maintenance and low cost: it is expected that the

modular architecture will also require minimum main-

tenance and the topologies should avoid the large com-

ponents such as electrolytic DC-link capacitor and line

frequency transformers to help the overall converter to

have decreased cost and an increased life time.

• Compact power conversion and low weight: in order to

have high power density, the topologies of converters such

as matrix converters with isolation must be given special

consideration.

• High efficiency and reliability: in addition to the afore-



mentioned constraints, the converter must be able to

provide a high efficiency with acceptable performance

and the specifications such as modular structure will

increase the reliability.

This paper discusses the possible MF/HF isolated AC/AC

architectures and the evolution of a new isolated AC/AC

topology. The new isolated AC/AC topology can serve as

a potential candidate for Future Electricity Network (FEN)

because it combines the advantages of matrix converters with

those of modular converters, providing high modularity and

scalability, reduced weight and volume, minimum number of

conversion stages and minimum energy storage.

II. EVOLUTION OF MF/HF LINK AND GALVANIC

ISOLATION

Matrix converter offers an all silicon solution for AC/AC

conversion systems. Unlike a typical IGBTs based conven-

tional voltage source converter, the matrix converter does

not have large energy storage components [6]. The overall

size of the converter considerably reduces by removing the

large energy storage components but unfortunately, there is

no galvanic isolation. In case of fault, an excessive current

can possibly destroy expensive equipment and semiconductor

devices especially in medium and high power applications.

There is no doubt that, the galvanic isolation can be

provided by employing a line frequency transformer, at the

output of the matrix converter, that can even step-up or step-

down the primary voltage of the transformer in accordance

with the turns ratio present between primary and secondary

side of the transformer and can also provide galvanic isolation

when connected with a matrix converter but a line frequency

transformer is bulky in size and the idea of reducing the overall

size of the converter equipment becomes vague. Therefore,

there is a need for power converter topology which gives

special considerations to galvanic isolation and compact size.

In electrical distribution system, a line transformer is one

of the heaviest and expensive equipment due to the bulky iron

core and heavy copper windings [5]. Therefore, increasing the

frequency will either allow a reduction in the core area or

winding area, which in turn decreases the size of the trans-

former [7]. The concept of introducing a high frequency (much

higher than line frequency of 50Hz or 60Hz) transformer in

power conversion (AC/AC, DC/DC AC/DC or vice versa) is

usually referred in literature as high-frequency-link or AC-

link. The high frequency link in the power conversion leads

to the following main advantages:

• A significant reduction in the size and weight of the

transformer.

• Electrical/galvanic isolation.

It is interesting to mention that an AC-link is a dual of a DC-

link just as an inductor is a dual of capacitor due to that fact

that a capacitor always try to oppose the change in the voltage

whereas the same statements holds true by inductor for the

change in current. Ideally, a voltage source is stiff with respect

to voltage such that no matter how much current a load draws,

the voltage remains constant but in reality, a high valued

capacitance is usually connected in parallel to the voltage

source to increase the stiffness of the voltage. For instance, in

a Voltage Source Converter (VSI) a bulky capacitor is usually

added to provide the DC-link. Similarly, an inductor is added

in series with a current source. For example, in order to realize

a Current Source Inverter (CSI), a large inductor is connected

in series with the current source. As a current source imposes

the current regardless of the voltage across its terminals, this

implies that the series impedance of a current source should

be infinite. Therefore, the impedance of a high frequency AC-

link with low inductance value is same as the low frequency

AC-link with a high value of inductance. So, the concept of

high frequency AC-link helps in reducing the weight and size

of the transformer. Conversely, by connecting an inductor in

series to the voltage source, give rise to the concept of source

transformation from a voltage source to current source. Hence,

the mentioned concepts are dual in nature, so a transformation

of a current source to a voltage source is also feasible. Pene-

tration of the distributed energy sources, including renewable

energy sources and energy storage systems, demands a bi-

directional power flow capability from the power converters.

In order to make the power converters usable in the future

electrical network, the converters with bi-directional power

flow capability must be considered only and this is due to

the fact that European region is looking towards liberalizing

the electricity market which will allow different distributed

system operators (DSOs) and multiple transmission system

operators (TSOs) to operate on the same electrical network

system [2]. The idea of utilizing power electronics in such a

network with bi-directional power flow leads to developing and

studying new isolated power converter topologies which will

allow a better interconnection of the whole FEN. A study has

been done under the European frame work under the name of

UNIFLEX-PM in Future Electrical Grids. In this paper will be

presented a discussion regarding the different cases of power

conversion via Medium/High Frequency AC-link which can

be DC/DC, AC/DC, DC/AC and then finally AC/AC.

III. TYPES OF MODULAR TOPOLOGIES WITH MF/HF LINK

Considering bi-directional power flow, modular architec-

tures and galvanic isolation in a AC distribution system, the

possible power converter configurations for the future grid

can be AC/DC/AC via MF/HF link between DC/AC stage,

AC/DC/DC/AC via MF/HF link between DC/DC stage or

AC/AC via MF/HF link. The mentioned cell architectures are

shown in Fig. 1 to Fig. 3.

Fig. 1 shows the single isolated AC/DC/DC/AC cell com-

prising of four H-bridges with two DC-link capacitors there-

fore, making a total of three power stages whereas Fig. 2

shows the isolated AC/DC/AC cell comprising of two H-

bridges and one cyclo-converter based module (CBM) with

one DC-link capacitor, therefore the total number of power

conversion stages decrease to two. Fig. 3 shows the cell

architecture of an isolated AC/AC direct converter and this

type of architecture does not need DC-link capacitors unlike

the other two architectures. Up till now, a comprehensive

study has been done on the first two mentioned architectures

i.e. AC/DC/DC/AC or VSIBM and AC/DC/AC or CBM for
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Fig. 1. Isolated AC/DC/DC/AC (VSIBM) cell.
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Fig. 2. Isolated AC/DC/AC (CBM) cell.
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Fig. 3. Isolated AC/AC direct converter cell.

UNIFLEX in the last 6 years. Reference [8] discusses the

implementation and comparison of 25kVA rated converters of

architectures shown in Fig. 1 and Fig. 2 and this paper provides

a brief overview of the said comparative study.

A. Isolated AC/DC/DC/AC cell architecture

The principle of operation of this type of cell i.e. active

power flow is based on the DC/DC dual active bridge and the

DC-link voltages regulation is provided through the grid side

converters. An isolated DC/DC dual active bridge converter

vdc1 vdc2

Fig. 4. Isolated DC/DC dual active bridge converter.

Lσ1 + Lσ2

v1(t) v2(t)

Fig. 5. Simplified MF transformer model for DC/DC dual active bridge.

is shown in Fig. 4. The active power flow control is achiev-

able by applying the phase shift δ between the primary and

secondary voltages in the DC/DC dual active bridge. In order

to understand the working of the DC/DC dual active bridge,

one must have the prior knowledge about the interconnection

of different voltage sources, such as a voltage source can be

directly connected to a current source but a voltage source

cannot be directly connected to another voltage source [9],

therefore, the leakage inductance of the transformer helps

to provide the interconnection of the two voltage sources

as shown in Fig. 5. This type of control is not difficult to

implement and a lot of work has been done on this. A detailed

study and design of the DC/DC dual active bridge converter

has been done in [10], [11]. In short, by varying the phase

shift between the secondary voltage and the primary voltage

of the transformer, the direction and the amplitude of the

current passing through the leakage inductance is controlled

[12]. For instance, when vp=vs and if vs is leading vp, then

the component of the vs in the direction of vp will be smaller

implying that the direction of the power flow will be from vs
to vp. Therefore, by changing the phase shift δ while vs leads



vp, the amount of active power flow (from vs to vp) can be

changed whereas by changing the phase shift δ while vs lags

vp, the amount of active power flow (from vp to vs) can be

changed. Reference [8] has also employed snubber capacitors

in parallel with the IGBTs to help the switches turn off with the

reduced value of current. It must also be noted that the anti-

parallel diodes with the IGBTs allow the IGBTs to turn on

with reduced value of voltage. Ideally, at turn off, the current

flowing through the switch goes to zero before the voltage

appears across it but in reality, the current takes some time to

go to zero and due to this there exist an overlap between the

current and the voltage, therefore leading to switching losses.

This phenomenon is often referred to as hard switching and

this happens due to the fact that the intrinsic region holds the

charges for some time even after gating signal of the device

has gone to zero i.e. even after the device has been switched

off [13]. Therefore, connecting a capacitor in parallel to the

switch will always help the device to have lesser turn off losses

therefore, this phenomenon, in literature, is usually referred

to as soft switching or zero voltage switching (ZVS).

Reference [13] illustrates the difference between hard and

soft switching. Switching losses considerably increase with the

increase of the switching frequency as the turn on and turn off

phenomenon happens frequently. At this moment, the further

discussion of ZVS for DC/DC converter is not of interest. The

complete switching sequence of the DC/DC converters can be

found in [8].

1) Summary of the topology:

• Control is possible by having phase shift between trans-

former voltage primary voltage vp and secondary voltage

vs.

• Easiest with respect to modulation and commutation i.e.

dead-time commutation.

• Contains energy storage components i.e. two DC-link

capacitors.

• Design of isolation module is comparatively easier than

other two AC/AC solutions.

• Isolation module has core losses of about 3.9 W/kg and

ohmic losses of 7 W/kg, respectively for a 61.6 kVA

transformer with rated current of 56A and the overall

efficiency of 95.5% claimed at 2000 Hz [8].

• Isolation module has higher short circuit impedance.

• Semiconductor losses are lesser in this architecture in

comparison to other two solutions.

B. Isolated AC/DC/AC cell architecture

The principle of operation of this type of cell i.e. power

flow is based on the DC/AC CBM and the DC-link voltage

regulation is provided through the grid side inverter. An

isolated DC/AC CBM shown in Fig. 6. Each bidirectional

switch of CBM is bi-directional with respect to current as

well as bidirectional with respect to voltage [9]. Therefore, the

switch has a four-quadrant operation. In [12], the AC side is

considered as a stiff current source while the DC side behaves

as the voltage source (Fig. 6). The control scheme has been

developed and implemented in [12]. The main idea of this

type of control is that the voltage at the AC side can be varied

H-bridge

Cyclo-converter
based module

(CBM)

DC/AC

vdc1

v2(t)

AC/AC

Fig. 6. Isolated DC/AC with Cyclo-converter based module (CBM).

regardless of the voltage of the transformer. The phase shift

τ between the AC voltage and the voltage at the transformer

which in turn makes the transformer current to delay with

respect to the transformers voltage. This type of control can

result in a two level or a three level modulated AC voltage

i.e. for two level modulation Vc can have -1, +1 and for three

level modulation Vc can have -1, 0, +1 [13]. Improvements

in decreasing the switching losses can be made by adding the

snubber capacitors on the VSI side and by adding a snubber

inductance on the CBM side (secondary side of transformer)

to help the devices of VSI with ZVS operation and CBM

with ZCS operation, respectively. It should be mentioned that

the mathematical modelling of the snubber inductance Lf

and the snubber capacitance C is explained in detailed in

[12]. Reference [14] has demonstrated a two-cell multilevel

approach of the DC/AC with CBM converter by connecting

the two CSI cells in series at AC side and VSI in parallel at

DC side as shown in Fig. 7 [14]. In comparison to AC/DC/DC

of Fig. 1, AC/DC with CBM offers a lower voltage resolution

at the output but similar voltage resolution can be obtained at

the expense of commutation losses [13], [14]. As mentioned

earlier, study in [8] has compared the two topologies of

DC/DC dual active bridge and DC/AC of Fig. 4 and Fig. 6

respectively. The key features of the comparative study were

based on the design of the MF transformer and conduction

losses. Since, both topologies are different in operation, the

requirement for the MF transformer for both of these are quite

different. For instance in DC/AC architecture, one side has a

VSI and the other side has CSI, the side with CSI required

the short circuit impedance of the transformer to be as small

as possible in order to avoid losses:

Bmax α
U

NAcf
(1)

where Bmax correspond to the maximum allowed core mag-

netic flux density, U the applied voltage, N the number of



Fig. 7. Simplified scheme of a two-cell multilevel AC/DC with CBM for
traction applications.

turns, Ac the cross-sectional area of core and . f the operating

frequency of transformer. Increasing the operating frequency

of the transformer can help to decrease Ac but CBM based

DC/AC converter demands the transformer to have a small

short circuit impedance and this can be achieved by decreasing

the number of turns N but consequently, the cross sectional

area AC of the transformer increases. This leads to higher

core losses than the transformer for VSIBM. Therefore in [8],

a dual core has been employed to concentrate the leakage field

within the core.

Pcore = kfxByVe (2)

where Pcore correspond to the core losses of the transformer,

k the constant of the core material, f the operating frequency

in kHz, y the flux density exponent, x the frequency exponent

and Ve the effective core volume. Therefore, the core losses in

the transformer for CBM will be higher than in a transformer

for VSIBM whereas the ohmic losses will be lower for CBM

than as compared to VSIBM because CBM employs the

transformer with lesser number of turns N [8]. The CSI side

in CBM DC/AC converter has higher conduction losses due to

a high count of power semiconductor devices in comparison to

VSI side. In [8] it shows the comparative analysis of VSIBM,

CBM-2n and CBM-3n in terms of semiconductor losses, with

approximately 2.5%, 3.75% and 3.45%, respectively. It must

be noted that in case of CBM, the conduction losses are

contributing towards most of the semiconductor losses. If

possible, it is suggested to use reverse-blocking IGBTs in

order to avoid the diodes in a four-quadrant switch [13]. Also,

in [8] it illustrates the comparison of the isolation modules i.e.

R

v(t)

L
i

vdc2vdc1 Lm

Ls

Fig. 8. Method to decrease conduction losses in CBM isolate DC/AC
converter.

MF transformer. Efficiency for VSBM, CBM-2n and CBM-

3n are approximately 95%, 93% and 94%, respectively. In

comparison to VSIBM, the increased core losses in CBM

cause the efficiency of MF transformer to decrease. Therefore,

the overall efficiency of the DC/AC with CBM decreases in

comparison to DC/DC/AC with VSIBM [8]. Reference [15]

has explained a method to decrease the conduction losses by

providing a smaller circuit path for the current to flow such

as shown in Fig. 8. If iA is positive and ureci is positive

or if iA is negative and ureci is negative then this method

can work but when either of them has opposite polarity, this

method is not useful. [16] discusses and presents a comparison

between the commutation of the switches in DC/AC CBM

with conventional naturally commutated devices and self-turn

off devices. Moreover, a modulation method, using saw tooth

carrier signal is also explained in [17].
1) Summary of the topology:

• Two types of control i.e. two-level or three-level control

by phase shift between transformer voltage Vt and output

AC voltage Vout.

• Comparatively difficult with respect to modulation and

commutation i.e. dead-time commutation on VSI side

bridge and multi-step commutation on CBM side.

• Contains energy storage components i.e. one DC-link

capacitor.

• Design of isolation module is comparatively difficult than

the previous solution.

• Isolation module has core losses of about 5 W/kg and

ohmic loses of 3 W/kg, respectively for a 36.3 kVA with

rated current of 33 A and overall efficiency of 94.5% at

2000 Hz was claimed in [8].

• Isolation module needs lower short circuit impedance.

• Semiconductor losses are higher in this architecture in

comparison to the previous solution.

C. Isolated AC/AC (direct) cell architecture

There has also been some work on the single phase matrix

AC/AC converter shown in Fig. 9 i.e. considering only one

part of the cell of Fig. 3. The cell of Fig. 9 can also be

used in the applications where the desired output frequency is

different than input but unfortunately, the galvanic isolation is

not present. Although, some improvement in the commutation

strategy of [18] has been done in [19] by providing the

load current a free-wheeling path but in order to obtained
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Fig. 9. Single phase AC/AC converter.

an output with lesser THD, the cell of Fig. 9 must be

provided with a high frequency link and galvanic isolation

otherwise said topology is not of practical importance for

high power grid interconnection applications. Therefore, the

scheme of Fig. 3 (with galvanic isolation) will be discussed.

Fig. 3 shows an AC/AC converter with high frequency link

present between the two bridges. Since, in a VSI the voltage

source is unidirectional i.e. not alternating and the current

through the source is bidirectional, anti-parallel diodes with

IGBTs can serve the purpose in providing a bidirectional

path for the current [20] but in case of alternating voltage

and alternating current, the switches must be not only be

bidirectional with respect to current but the switches should

also be bidirectional with respect to voltage. Considering the

AC grid as a stiff current source, this type of converter cell

provides the interconnection of two current sources (via high

frequency link) while behaving as CSI. This type of cell

helps in removal of the bulky DC-link capacitors. One step

power conversion using conventional cyclo-converters based

on naturally commutated devices has been used for decades.

The converter architecture of Fig. 3 was initially presented by

Paul M. Espelage et.al in 1977 which was based on thyristors

[21] but it should be mentioned that the research on the AC/AC

converters is mainly limited to naturally commutated convert-

ers or non-isolated matrix converters [22]. Moreover, the turn

off time tq , of the thyristors, puts a limit on the frequency.

Therefore in 1988, Pradeep K. Sood et.al implemented the

high frequency link with a three phase converter made of four-

quadrant self-commutated switches (instead of thyristors) to

derive motor/generator. Daolian Chen, in [23] and in [24], has

shown different topologies of the converter cell for isolated

AC/AC conversion. The converter cell of Fig. 3 has been

shown in [23] but the detailed bi-polarity voltage mode control

and commutation has only been developed for isolated full

bridge-full wave converter AC/AC. The term bipolarity is

referred to the output AC voltage with respect to the bipolar

voltage at the high frequency link. The bipolar voltage mode

control is not suggested because of the bad frequency spectrum

[23], [24]. Therefore, a unipolar voltage mode control was

proposed in [25] and the basic idea of the this type of

voltage mode control is that the high frequency bipolarity

three state (-1,0,+1) voltage at the transformer is demodulated

to a unipolar output AC voltage. Therefore, the polarity of

the output AC voltage remains same till half of the desired

output period. The modulation scheme has been developed

using a saw tooth wave as a carrier signal with sine wave

signal. The THD and efficiency obtained by unipolar voltage

mode control is claimed to be ≤4% and 80%-85.3%. The

complete switching sequence and design has been explained

in [25]. In 2008, a current mode control, for a full bridge-full

wave isolated AC/AC converter, was presented in [26]. In the

current mode control, the input voltage is converted into a high

frequency ripple current instead of high frequency voltage. Lei

li, in [27], has compared the two controls i.e. voltage mode

control and current mode control for the said converter. Power

flow control in the voltage mode control is obtained by phase

shift method whereas in current mode the power flow control

is obtained by instantaneously controlling the transformer

current. Although, the current control mode is much easier

to implement but the switches in current mode operate under

hard switching whereas the voltage mode control is difficult to

realize but it can offer advantages such as ZVS and suitability

for high power applications. A very simple hard switching

based control strategy has been presented in [28] and a careful

design of MF transformer is suggested i.e. using a dual core

transformer as in [8] to minimize the leakage inductance and

proximity effect but the core losses are approx. 3.2 W/kg and

the efficiency of transformer was claimed to be 98% at 1000

Hz [28]. It should be noted that the core losses in [8] were

about 4.8 W/kg, therefore the cell under study was not selected

for UNIFLEX. An input voltage reference mode and output

current reference mode controls are discussed in detail in [28]

for the cell shown in Fig. 3. The voltage reference mode works

on considering the sign of input voltage as a reference and

whereas, the current reference mode works on considering the

sign of the output current reference. Since, the current at the

load side and voltage at the input side are at low frequency, the

current reference control has been implemented on the output

side converter whereas the voltage reference control has been

implemented on the input side converter. The commutation

strategy implemented in [28] is the extended version of the

conventional four-step commutation explained in [3], [29] and

the evolution of the commutation strategy is based on the two

rules i.e. the voltage source must never be short circuited and

the current source/load must not be open circuited. Interrupting

the current of the load will result in the very high voltage

spikes due to the abrupt change in the current and the dual

of this situation happens by shorting the voltage source. In

the first case, the valves or switching devices will come under

high voltage stress whereas in the second case, the switching

devices will have an excessive current/over current.
1) Summary of the topology:

• Very difficult with respect to modulation and commuta-

tion i.e. multi-step commutation on both bridges.

• Two types of control for each part of circuit i.e. current

reference control voltage reference control.

• Single power stage.

• Energy storage component i.e. no DC-link capacitor is not

required and switching pattern must be carefully designed

to avoid open circuiting the load.

• Design of isolation module is comparatively difficult than

other two AC/AC solutions.

• Optimized design of isolation module can help to de-

crease the core losses and hence, overall efficiency can

be improved.

• Isolation module has core losses of about 3.2 W/kg

and ohmic loses of 2.4 W/kg, respectively for a 10



kVA transformer with rated current of 15 A and overall

efficiency of 98% at 1000 Hz was claimed in [28].

• Semiconductor losses are assumed to be same or higher,

in this architecture in comparison to the previous solu-

tions.

IV. CONCLUSIONS

This paper discussed the possible isolated MF/HF-link

AC/AC cells and a comparative analysis has been presented

based on the literature review. The efficiency of the whole cell

is largely dependent on the efficiency of the isolation module.

VSIBM and CBM has been experimentally compared in [8]

and there is a need to compare direct topology with the said

topologies. Direct topology offers a decrease in the DC-link

capacitors but this comes at an increased difficulty in mod-

ulation and commutation. Based on the summarized points,

the direct AC/AC solution has provided promising efficiency

but the said solution has not been given importance due to

extreme complexity in implementation in commutation and

modulation but now with the advancement in the technology

of processors i.e. DSPs and FPGAs, the direct AC/AC solution

has the potential to emerge as a viable candidate. Therefore,

there is a need to explore new modulation, commutation and

control methods. In short, this paper has provided a brief

overview of present AC/AC solutions with an emphasis on

the direct AC/AC solution.
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