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Abstract 

Introduction. There are not many conditions in which the last few decades have brought such 

a major change in the landscape of treatments as is the case of multiple sclerosis (MS). A 

number of disease modifying treatments (DMTs) are presently available for the treatment of 

the inflammatory phase of this disabling disease; however, the need for treating 

neurodegeneration and halting the progression of disability is still unmet.  

Areas covered: In this paper we review the available information on existing and emerging 

DMTs and we discuss their place within the context of different treatment strategies in MS, 

Expert Commentary: The future of MS treatments should include the development of new 

treatment strategies tackling disease progression, together with a better understanding of the 

side-effects and the best sequential strategy of implementation of available and emerging drugs. 
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Introduction 

Multiple sclerosis (MS) is a chronic, immune-mediated condition causing inflammation and 

neurodegeneration in the brain and spinal cord and the most common non-traumatic cause of 

neurological disability in young people in the western world [1]. In most patients, MS initially 

has a relapsing–remitting course (RRMS) with bouts of inflammation (relapses) and periods of 

remission. In the majority of people with MS, the relapsing course will later be followed by a 

secondary progressive phase (SPMS) [2]. In around 15% of cases, the disease progresses from 

the beginning with a primary progressive course without superimposed relapses (PPMS) [2]. 

More recent classifications put emphasis on the inflammatory activity which can be present at 

all stages of the disease and can be targeted with disease-modifying treatments (DMTs) [3]. 

A number of DMTs are currently available for the treatment of RRMS and their aim is to 

decrease the relapse rate and the inflammation within the central nervous system (CNS) [4]. 

The past 25 years have brought important changes in the treatment for MS. After several years 

in which first-line injectable DMTs interferon beta (IFNβ) and glatiramer acetate (GA) were 

the main treatment options, new medications with different regimens became available. The 

first oral DMT, fingolimod, was approved in 2010 in the US and soon after that in Europe. A 

number of other oral agents have been approved since or are currently in phase III trials or are 

due to be submitted to the regulatory agencies for approval [5]. Three monoclonal antibodies 

are now approved for MS treatment, and others are also in late stage development. 

Nevertheless, the challenges raised by the protracted course of the disease, the presence of 

neurodegeneration in all MS stages and the pathological burden (demyelination and axonal 

loss) inflicted over time by both inflammation and neurodegeneration raise challenges that are 

not yet completely tackled by the current therapies. In other words, despite a real breakthrough 

in treating MS, the available therapies are far from having sorted out the current unmet needs 

raised by the complexity of MS. Here we provide an outline of the actual treatment landscape 

in MS and some prospects on its future development. 

 

Expert commentary 

Approved treatments in MS 

Injectable drugs 
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Three IFNβ preparations are in widespread use as first-line DMTs for relapsing MS (RRMS 

and SPMS with relapses) and in some countries for clinically isolated syndrome (CIS). Each 

of them was licensed following single multicenter, double-blind, placebo-controlled, phase III 

trials [6]. Two of these medications require subcutaneous administration and one is given 

intramuscularly. GA (Copaxone®) is a four amino acid synthetic copolymer based on the 

composition of myelin basic protein [7]. GA was approved after a single phase III multicenter 

randomized placebo-controlled clinical trial [8]. GA is approved for RRMS and, in some 

countries, for patients with CIS. IFNβ and GA have different immunomodulatory effects but 

relatively comparable efficacy, reducing the relapse rate (RR) by approximately 30% [9]. Data 

from a large observational cohort study recently showed that treatment with IFNβ and GA 

reduces disability progression measured by EDSS scores over 6 years of treatment [10]. Both 

IFNΒ and GA are generally safe and well tolerated. Nevertheless, both IFNβ and GA require 

regular, long-term, self-injections. Side effects of IFNβ preparations include flu-like 

symptoms, an increase in liver enzymes, and injection-site reactions. Side effects of GA include 

local injection site reactions and post-injection reactions which occur in about 15% of people 

[11]. Issues of adherence and tolerance may therefore reduce the likelihood of achieving 

durable treatment efficacy [12]. 

Approved therapies such as the humanized antibodies natalizumab, alemtuzumab [13] and 

daclizumab, and the currently less used, cytostatic agent mitoxantrone are more effective but 

their use is associated with safety concerns. These drugs are administered parenterally and can 

have potentially severe side effects [e.g. progressive multifocal leukoencephalopathy (PML) 

for natalizumab; autoimmune-associated conditions for alemtuzumab; liver injury, colitis and 

skin reactions for daclizumab; cardiotoxicity and acute leukemia for mitoxantrone]. They are, 

therefore, reserved for the treatment of highly active MS. 

Natalizumab is a humanized recombinant monoclonal antibody directed against α4-integrin 

[13]. Natalizumab interferes with leukocyte migration from the peripheral blood into the CNS 

by preventing its binding via α4-integrin to the vascular cell adhesion molecule (VCAM) on 

endothelial cells [13]. This step has an impact on CNS inflammation as it blocks the adhesion 

and subsequent migration of lymphocytes across the blood–brain barrier (BBB). The drug was 

suspended in 2005 by the manufacturer [15] following two cases of PML in the SENTINEL 

trial in which it was given in combination with intramuscular IFNβ 1a [14]. In the pivotal 

placebo-controlled phase III trial which led to its approval natalizumab administered in the 

dose of 300 mg intravenously (i.v.) monthly reduced RR by 68% and sustained progression of 
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disability at 2 years by 42% [15]and MRI activity by 92% [16]. Natalizumab was reintroduced 

in 2006 with revised labelling and after the introduction of risk management programs [17]. 

The PML risk stratification for people with MS on natalizumab takes into account duration of 

treatment, prior immunosuppressant use and the anti- JC virus (JCV) antibody status reflecting 

infection with JCV [18,19]. This is allowing further risk stratification during natalizumab 

treatment [20]. In 4- to 6% of cases natalizumab treatment may induce the formation of 

persistent neutralising antibodies (NABs), usually within the first 12 months. The NABs are 

associated with higher rates of infusion-related adverse events and can lower the efficacy of 

the treatment [21]. 

Alemtuzumab is a humanized monoclonal antibody targeting CD52 expressed on lymphocytes, 

natural killer (NK) cells, monocytes, and some granulocytes [22,23]. Alemtuzumab produces 

rapid and profound lymphopenia lasting for years via antibody-dependent cellular cytotoxicity 

[13]. Alemtuzumab was compared to IFNβ-1a administered subcutaneously three times a week 

in two phase III trials of RRMS [24,25]. Alemtuzumab reduced the annualised relapse rate 

(ARR) by 49%–55%, MRI gadolinium enhancing lesions by 61%–63% and the rate of 

disability progression by 30%–42% [25,26]. The major safety concern with alemtuzumab are 

the autoimmune conditions (cumulative risk between 22% and 47%) [27,28] involving mainly 

the thyroid gland and blood cells (thrombocytopenia, hemolytic anemia, and pancytopenia), 

and nephropathies (in 0.3% of patients [29]). Prophylaxis of herpetic infections with oral 

acyclovir is required during and for 28 days after alemtuzumab infusion [28]. In Europe 

alemtuzumab is licensed as a first-line medication in active RRMS, however some neurologists 

would use it as a second-line drug because of the risk of secondary autoimmunity [21]. 

Daclizumab is a humanized neutralizing monoclonal antibody against the interleukin-2 (IL-2) 

receptor subunit CD25 on T cells [30]. Its effect on reducing CD25+ T cells is minimal but it 

expands CD56 bright NK cells and this correlates with the clinical effect [30]. Daclizumab is 

given either intravenously once every four weeks or subcutaneously once every four weeks 

(daclizumab high-yield process, DAC HYP). Daclizumab showed promising effects on MRI 

outcomes in randomized double-blind trials (two phase II, one phase III trial) [31-33] either as 

add-on therapy to IFNΒ-beta1a or placebo, and there were no indications of rebound effects 

after treatment interruption. In a phase III trial DAC HYP 150 mg was compared to 

intramuscular IFNΒ beta-1a and led to a 45% reduction in AAR but no statistically significant 

difference in the reduction of sustained disability. An extension phase is ongoing. There had 

been two deaths in the phase II trials (one from a psoas abscess and one from autoimmune 
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hepatitis) and one death in the DAC HYP not deemed to be related to the medication. The 

safety profile includes an increased incidence of cutaneous adverse events, serious cutaneous 

events, serious infections and elevations in liver function tests [33]. The cutaneous effects are 

distinctive adverse events of daclizumab. A review of the cutaneous adverse events in the 

DECIDE trial has recently been published [34]. Cortese et al. followed 31 participants in the 

phase I study of DAC-HYP (NCT01143441) over 42 months and observed cutaneous adverse 

events in 77% of patients treated with daclizumab[35]. The majority of skin events consisted 

of patches of eczema requiring no treatment [35], while moderate to severe rash (some with 

psoriasiform phenotype) developed in 19% and required treatment discontinuation in 13%. The 

skin biopsies from the lesions had nonspecific features of eczematous dermatitis, with 

important CD56+ lymphocytic infiltrates [35]which were not related to the clinical severity 

and with no histopathologic post-treatment changes [35]. 

Daclizumab (Zinbryta©) has very recently been approved by the FDA for RRMS [36]. 

Daclizumab should be given to patients who have had an inadequate response to two or more 

MS drugs. Because of the risk of side effects, daclizumab has a boxed warning and is available 

only through a restricted distribution program under a Risk Evaluation and Mitigation Strategy 

[36]. Monitoring of liver function is required before commencing on daclizumab and monthly 

before each dose, and then for up to six months after the last dose [36]. The boxed warning 

highlights the risk of severe liver injury which could be potentially fatal, of non-infectious 

colitis, skin reactions, and lymphadenopathy [36]. 

Mitoxantrone is an anthracenedione that inhibits type II topoisomerase and disrupts DNA 

synthesis. Mitoxantrone was approved by the FDA in 2000 for rapidly worsening RRMS or 

SPMS after several clinical trials [37,38]. Mitoxantrone can cross the disrupted BBB and may 

induce microglial death as shown by in vitro studies [39]. Mitoxantrone is given in infusions 

at doses of 12 mg/m2 monthly however the cumulative dose is limited due to cardiologic and 

hematologic adverse effects. The use of mitoxantrone has rapidly decreased due to the risk of 

severe complications such as acute leukemia [40] and the increasing number of alternative 

highly effective and less toxic treatment options [21]. 

 

Oral drugs 

Teriflunomide is the metabolite of leflunomide, which has been approved for mild to moderate 

rheumatoid arthritis. Teriflunomide is given as 14 mg tablets once daily and the oral 
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bioavailability is almost 100% [41]. It inhibits the rate-limiting mitochondrial enzyme in de 

novo pyrimidine synthesis dihydroorotate dehydrogenase (DHODH) [41]. This leads to 

reduced proliferation of cells that need de novo synthesis of pyrimidine to divide. A salvage 

pathway independent of DHODH is enough for resting lymphocytes, however fast-

proliferating cells such as activated lymphocytes are dependent on de novo synthesis thus being 

a selective target of teriflunomide [42]. Other immunological mechanisms of teriflunomide 

have been suggested [41]. 

In two phase III trials in RRMS [43,44] teriflunomide reduced the ARR compared to placebo 

by 31%–36%, the MRI gadolinium enhancing lesions by about 80% and the rate of disability 

progression by 26%–27%. Teriflunomide had similar effects on the ARR and on time to a new 

relapse or termination of treatment compared with subcutaneous IFNβ-1a [45]. Teriflunomide 

has been tested in a randomized, double-blind, placebo-controlled trial on clinically isolated 

syndrome (CIS) patients with silent MRI lesions [46] and it delayed the time to a second relapse 

and a reduction in new MRI lesions. Teriflunomide is generally well tolerated, however 

common adverse events include alanine aminotransferase (ALT) increase, headache, diarrhoea, 

hair thinning, and nausea [47]. These are usually mild-to-moderate in intensity and are self-

limiting [47]. ALT elevation is the most common reason for treatment discontinuation and a 

relatively frequent (every second week) ALT screening during the first 6 months of treatment 

and thereafter every second month is recommended [47]. 

Delayed-release dimethyl fumarate (DMF) is the most recently approved oral DMT for RRMS. 

DMF is administered as a 240 mg capsule twice daily. Its mechanisms of action are not 

completely understood; however, data suggest they are mediated via the activation of the 

nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway [48]. DMF was compared to placebo 

in two phase III trials in RRMS [49,50] and it reduced the ARR by 44%–53%, the MRI 

gadolinium-enhancing lesions by about 75%–94% and the rate of disability progression by 

22%–32% [51]. DMF reduced the ARR by 24% and the rate of disability progression by 17% 

compared to GA [50], however the differences were not significant and the study was not 

powered to detect statistically significant differences in treatment effect. An interim analysis 

of an ongoing long term extension of the phase III trials showed that treatment with DMF was 

followed by continuously low clinical and MRI disease activity [52]. Common adverse events 

include flushing, nausea, diarrhoea and abdominal pain [51], are usually transient and mild to 

moderate in severity and can limit patient tolerance of DMT [53]. The treatment may induce 

leucopenia and increase liver transaminases, and regular blood tests are therefore 
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recommended. Prolonged severe lymphopaenia (<500 cells/mm3) has been suggested as a risk 

factor for PML [54]. In 2014, a case of PML was reported in a patient treated with DMF [55]. 

Four other PML cases have been previously reported in patients with psoriasis who had 

received fumaderm [56]. In JCV-positive patients with persistent lymphopaenia, DMF should 

be stopped. Up to now, PML has not been observed during DMF therapy without lymphopaenia 

and in the presence of appropriate monitoring and drug-discontinuation rules [57]. 

Fingolimod was the first of the oral agents for relapsing forms of MS to be approved by the 

FDA in 2010. Fingolimod is administered as a once-daily 0.5-mg capsule. Fingolimod is a 

nonselective sphingosine-1-phosphate (S1P) receptor modulator [58,59]. It acts as a functional 

antagonist, by internalising and degrading the S1P1 receptor on lymphocytes (a receptor 

responsible for T lymphocyte exit from the lymph nodes, circulation, and T cell 

differentiation)[58]. This leads to sequestration of T lymphocytes in secondary lymphatic 

tissues and thus reduces inflammation in MS [60]. An additional direct effect on the CNS has 

been suggested by animal studies [60].  

In two phase III trials in RRMS fingolimod compared to placebo educed the ARR by 48%–

55%, the MRI gadolinium-enhancing lesions by more than 80% and the rate of disability 

progression by 25%–30% [61]. Compared to IFNβ-1a 30 lg intramuscularly once weekly 

fingolimod reduced ARR by 52%, the MRI gadolinium-enhancing lesions by more than 50% 

and the rate of disability progression by 25% [62]. In a phase 3 trial in PPMS fingolimod failed 

to delay disability progression compared to placebo [63]. 

Common adverse events include upper respiratory tract infection, diarrhoea, cough, headache, 

and back pain [64]. Because it can cause bradycardia and atrioventricular block at first 

administration it is recommended to have electrocardiogram monitoring continuously for 6 h 

after the first dose [65]. After one death due to a fulminant primary varicella zoster in one of 

the phase III trials [66], screening for previous varicella zoster infection is advised in patients 

due to start fingolimod, and vaccination is recommended if negative. Rare adverse events 

include elevated liver enzymes and macular oedema and bloods and ophthalmological follow-

up are recommended [67]. 

Agents in trial 

Monoclonal antibodies 
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Three anti-CD20 agents (rituximab, ocrelizumab, and ofatumumab) that deplete pre-B cells 

and mature B cells without affecting plasma cells or progenitor cells in the bone marrow have 

been studied in MS [23]. Rituximab is a human–mouse chimeric monoclonal antibody against 

CD20. Rituximab has been used off label for MS as well as neuromyelitis optica. Rituximab 

has been approved to treat B cell lymphomas, rheumatoid arthritis, Wegener’s polyangiitis and 

microscopic polyangiitis [23]. In a phase II double-blind, placebo-controlled trial rituximab 

reduced new MRI gadolinium-enhancing lesions by 91% and the proportion of patients with 

relapses [68]. 78% of treated patients experienced an infusion-related adverse effect. Infection 

incidence was similar in both groups [68]. A phase II trial of rituximab in PPMS failed to meet 

its primary endpoint of delaying confirmed disability progression [69] and showed a 3.5% 

increase in risk of serious infections in the treated arm. In patients using rituximab for other 

indications, PML cases have rarely been reported [70]. Although rituximab rapidly and 

consistently decreases the numbers of peripheral CD20+ and CD19+ cells [71], a small phase 

II trial of intrathecal rituximab was terminated early because of low efficacy on the CSF 

biomarkers [72]. Rituximab induced an incomplete and transient depletion of B cells in the 

CSF, whilst the effects on peripheral B cells were complete and lasting.[72]. No phase III trials 

of rituximab for MS have yet been performed. Some suggest rituximab can be an option in 

RRMS patients who have failed to respond to first- and second-line therapies, in those with 

concomitant autoimmune disorders  [73] or in people with stable RRMS who switch from 

natalizumab to other DMT due to increased PML risk[74]. 

Ocrelizumab and ofatumumab are humanized anti-CD20 monoclonal antibodies. In a phase II 

placebo-controlled RRMS trial [75] two doses of ocrelizumab met the primary outcome of 

reducing the number of MRI enhancing lesions.  Infection side effects were equivalent between 

the two groups, but more infusion related side effects occurred in the ocrelizumab group than 

in the placebo arm. Two phase 3 clinical trials (OPERA I and II) for relapsing remitting MS 

were completed in 2015 [76]. The trials compared intravenous ocrelizumab 600 mg every 6 

months to subcutaneous IFNΒβ-1a. The studies reported that ocrelizumab reduced the annual 

relapse rate by 46% in OPERA I and by 47% in OPERA II [76]. Also, they showed a reduction 

of clinical disability by 40 %, as measured by the EDSS. Ocrelizumab reduced the number of 

T1 gadolinium-enhancing lesions in the brain by 94%, and 95% respectively [76]. Additionally, 

it resulted in a 77% and 83% reduction of hyperintense T2 lesions compared with IFNΒβ-1a. 

At 96 weeks, 47.9% of patients treated with ocrelizumab in OPERA I and 47.5% in OPERA II 

achieved the composite measure of ‘no evidence of disease activity’ (NEDA) defined as no 
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MS relapses, no confirmed disability progression, and no new or enlarging T2 or gadolinium-

enhancing T1 lesions, compared to 29.2% and 25.1% of patients treated with IFNΒβ-1a [77]. 

A recent phase III clinical trial (ORATORIO) tested ocrelizumab for primary progressive MS 

and compared intravenous ocrelizumab 600 mg every 6 months to placebo [78]. The primary 

endpoint was time to onset of 12-week confirmed disability progression (CDP), while 

secondary endpoints included time to onset of 24-week CDP; change in timed 25-foot walk, 

T2 lesion volume, change in whole brain volume and safety [78]. Ocrelizumab was the first 

trialed drug to meet primary and key secondary efficacy outcomes in a phase III PPMS study. 

Ocrelizumab significantly reduced the relative risk of 12-week CDP by 24% and 24-week CDP 

by 25% [78], decreased the volume of T2 hyperintense lesions and reduced the whole brain 

volume loss compared with placebo [78]. The frequency of adverse events and serious adverse 

events was similar in both groups [78]. The results of the OPERA I, OPERA II and 

ORATORIO trials will be submitted for the approval of ocrelizumab to the FDA. 

Ofatumumab is a fully human monoclonal antibody currently used for lymphocytic leukemia, 

which interacts with the early activation of the B lymphocyte and has lower potential for 

antigenicity. It was tested in a small phase II clinical trial with promising results, showing a 

99% reduction of MRI activity, with no serious adverse events [79]. A larger phase 2 trial, the 

MIRROR trial, tested the safety and effectiveness of ofatumumab compared to placebo in 232 

patients with RRMS [80]. This study also showed a 90% reduction of MRI lesions after 12 

weeks of treatment [80]. Five serious adverse events were reported in the 60mg dose regimen, 

but no cases of PML or opportunistic infections were reported [80]. The authors concluded the 

results support the further study of ofatumumab in clinical RRMS trials [80]. 

Cladribine 

Cladribine is a cytotoxic drug, an adenosine deaminase-resistant purine nucleoside, used as a 

first-line chemotherapeutic agent in the treatment of hairy cell leukemia and other neoplasms, 

in its parenteral formulation [81]. Cladribine enters cells via purine nucleoside transporters 

[82]. Cladribine works preferentially on lymphocytes and monocytes by disrupting cellular 

metabolism resulting in cell death [83], being incorporated into the DNA of the dividing cells. 

It selectively depletes the number of circulating T cells and B lymohocytes, having only a 

minor effect on NK cells [84]. The study of cladribine in MS started more than 20 years ago. 

Intravenous cladribine was initially evaluated for progressive MS (PPMS, SPMS) in two 

randomized double-blind clinical trials [85,86] with some promising results. Later, cladribine 
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was tested as an oral agent for RRMS, tablets being taken in two cycles of few days per year 

[84]. Cladribine for RRMS was tested in the placebo-controlled CLARITY trial and reduced 

both the frequency and severity of relapses, and suppressing the MRI enhancing lesions at 6 

months [87]. The recently reported results of a 120-week extension demonstrated that in a 

majority of patients, the clinical benefits on relapses and disability as well as on MRI outcome 

measures of 3.5mg/kg cladribine given in the first two years of the trial can be maintained for 

at least 4years [88,89]. ONWARD was a 2-year, randomized, double-blind phase IIb study of 

cladribine tablets (3.5mg/kg) as an add-on to IFN-β therapy in relapsing MS patients (including 

SPMS with ongoing relapses). The mean number of relapses was lower (23%) in patients 

treated with cladribine 3.5mg/kg and IFNβ than in patients on placebo plus IFNβ (56%) [90]. 

The mean numbers of new enhancing T1 lesions and active T2 were reduced in the 

cladribine+IFNβ treatment arm vs. placebo plus IFNβ [90]. In the phase III trial ORACLE 

(Oral Cladribine in Early Multiple Sclerosis) 616 CIS patients received 1:1:1 cladribine 5.25 

mg/kg, cladribine 3.5 mg/kg, or placebo [91]. Both doses of cladribine considerably delayed 

MS diagnosis compared with placebo [91]. A more recent analysis applied the 2010 McDonald 

criteria to the patient cohort at baseline and showed that the risk of further relapse and disability 

worsening was significantly reduced with cladribine 3.5 mg/kg compared to placebo [92]. 

Cladribine failed to get regulatory approval by the EMA because of concerns over the risks of 

cancers in the CLARITY active arm [93]. Cladribine was used for RRMS treatment in 2010 in 

Russia and Australia, but was withdrawn afterwards. However, a recent meta-analysis of phase 

III trials of licensed DMTs for RRMS and the CLARITY trial did not support an increased 

cancer risk from cladribine in the doses used in CLARITY and ORACLE MS, which 

previously contributed to refusal of market authorization of cladribine by EMA [94]. The 

authors concluded that longer-term follow-up is required to assess the safety profile of both 

cladribine or of the currently approved DMDs, to definitively assess cancer risk [94]. 

PREMIERE (NCT01013350), an observational prospective study of patients who have 

participated in clinical trials with cladribine or other DMTs is ongoing [94]. 

Laquinimod 

Laquinimod is an orally available carboxamide derivative, derived from linomide, a drug that 

was proved to reduce activity in RRMS, but with the cost of severe adverse events [95]. 

Laquinimod was or currently is tested for neurodegenerative disease such as Huntington’s 

disease and also for relapsing remitting and progressive MS [96]. Studies on the animal model 

of MS (experimental autoimmune encephalomyelitis, EAE) showed that laquinimod decreased 
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inflammation, demyelination and axonal injury [97]. It appears to reduce infiltration of CD4+ 

T cells and macrophages into the central nervous system (CNS), it also seems to increase the 

serum level of brain-derived neurotrophic factor which may protect against neuronal injury 

[98]. Laquinimod efficacy in RRMS patients has been assessed in two Phase III trials, 

ALLEGRO (Assessment of Oral Laquinimod in Preventing Progression in Multiple Sclerosis) 

[99] and BRAVO (Benefit–Risk Assessment of Avonex and Laquinimod) [100]. In ALLEGRO 

laquinimod was compared to placebo and showed a modest, but significant reduction of the 

annual relapse rate, and also a reduced rate of progression [99]. Initially the primary outcome 

measure of reducing annual relapse rate in BRAVO was not reached [100], but following an 

adjustment for an imbalance between the groups in the number of patients with enhancing 

lesions and of mean T2 lesion volume, both predictors of relapses, a reduction in relapse rate 

in the laquinimod arm (21% reduction vs placebo, p=0.026) was obtained. Overall laquinimod 

had more pronounced effects on disability progression and brain atrophy than on relapses and 

new MRI lesion formation [101]. Two ongoing studies are evaluating the safety and efficacy 

of laquinimod: CONCERTO (phase III, RRMS; NCT01707992), and ARPEGGIO (phase II, 

PPMS; NCT02284568). Both aimed to compare two doses of laquinimod, 0.6 and 1.5 mg/day, 

to placebo, however, in January 2016 TEVA announced the discontinuation of higher doses of 

laquinimod after the occurrence of cardiovascular events (none fatal), in eight subjects [102]. 

The study of lower-dose laquinimod will continue in both trials. 

Siponimod and ozanimod 

Siponimod (BAF312) is an oral modulator of sphingosine more selective than figolimod - acts 

selectively on S1P-1 and S1P-5 [103]. In a phase II trial in RRMS, siponimod was shown to 

reduce brain MRI lesions and relapses by up to 80 % compared to placebo [104]. The results 

of a phase III trial in SPMS (NCT01665144) were reported at the 32nd ECTRIMS Congress in 

London in September 2016. Patients with SPMS on siponimod had the risk of 3-month 

confirmed disability progression reduced by 21% compared with patients on placebo (p=0.013) 

Another oral selective S1P receptor modulator, ozanimod, was recently successfully tested in 

a phase 2 trial with positive MRI outcomes [24]. 

Agents in trial for progressive MS 

Finding effective treatments for progressive MS is a major priority and a challenge. The current 

treatment candidates and approaches for progressive MS have been recently reviewed in detail 

by Shirani et al [105]. An important point in testing drugs for progressive forms of MS is to 
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adapt trial methodology and clinically meaningful outcomes to this particular phenotype of 

MS, based on lessons learned from prior clinical trials [106]. 

It has been hypothesized that high-dose biotin can act on demyelinating axons by increasing 

energy production promoting synthesis of myelin [107]. Treatment with high-dose biotin was 

tested in an open-label pilot study [108] and a randomized, double-blind, placebo-controlled 

trial in progressive MS (23 and 154 patients, respectively) [109]. Both studies reported positive 

results on disability progression and a good safety profile [107]. Biotin can interfere with some 

laboratory tests (eg. false positive or negative thyroid tests [110,111]) and teratogenicity was 

reported in rabbits. Further studies are needed to clarify the duration of response to biotin over 

time and the responder profile in people with progressive MS. 

Autologous Bone Marrow Transplantation 

Hematopoietic stem cell transplantation (HSCT) has been reviewed in detail elsewhere [112-

116]. Studies on animal models showed that strong immunosuppression followed by syngeneic 

bone marrow transplantation can induce long term antigen-specific tolerance [117]. In the last 

15 years, due to the high rate of complications related to the procedure, autologous bone 

marrow transplantation was reserved only to MS patients that failed all other therapies and had 

a poor prognosis [116]. There is evidence that high-dose immune ablation and autologous 

HSCT could renew the immune system repertoire and reinforce immune tolerance mechanisms 

[118] thus having a clinical impact. Phase I clinical trials have shown that autologous 

hematopoietic stem cell transplantation may improve the quality of life of MS patients 

[112,116]. A recent phase II trial of HSCT vs mitoxantrone in RRMS and SPMS showed that 

HSCT reduced the number of new T2 and enhancing lesions and the AAR as compared to 

mitoxantrone [119]. In a very recent phase II trial, 70% of the patients who received an 

aggressive immune-ablative treatment followed by a HSCT graft depleted of autoreactive 

lymphocytes did not have any signs of disease activity (relapses, new MRI lesions, or EDSS 

progression) after a median follow-up of 6-7 years [120]. Although these results are promising, 

and progress has been made over the last decade in mitigating risks, there are many unknowns 

regarding the use of HSCT as a possible second-line therapy for refractory MS [121,122]. 

There is lack of consensus on the optimal conditioning regimen, patient selection (including 

the stage of the disease or what other prior treatments should they have failed to etc.) and the 

HSCT graft manipulation. Different conditioning regimens following the harvesting of the 

stem cells were used it the studies of autologous HSCT in people with MS [123]. The choice 
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of the conditioning regimens (myeloablative or non-myeloablative) can impact the outcomes 

both in terms of efficacy and toxicity [113].  The myeloablative conditioning regimens can 

completely eliminate the activated immune cells before the HSCT treatment, but would expose 

the patients to aplasia-related complications and death[113]. The use of lymphoablative but 

non-myeloablative conditioning regimens would be in keeping with “the rationale of auto-

HSCT […] to revive an antigen-naive immune system from the patient’s HSCs” [113] whilst 

mitigating adverse effects such as neurotoxicity[124].  Freedman recently noted that, although 

systematic comparison of regimens is lacking, the available data would suggest that the more 

intense conditioning regimens are followed by more durable responses but with more toxicity 

as well [121]. In their recently published study, Atkins et al removed the mature lymphocytes 

from the graft prior to transplantation by an ex vivo cell selection technology, avoiding graft-

mediated immune effects and thus apparently impacting disease activity[120]. However, the 

benefits of this procedure would only be seen with intense conditioning regimens which 

achieve a near-complete immune ablation[121]. Intense immune ablation with a regimen 

including a cytotoxic agent crossing the BBB would translate in an accelerated whole-brain 

atrophy rate, although the rate of atrophy would further slow to that expected from normal 

aging [125]. In a recent editorial, Sorensen suggests that, taking into account the HSCT benefit-

risk profile and the availability of highly-effective treatments with monoclonal antibodies 

which can achieve disease control in patients with active disease, intense immunosuppression 

with HSCT should remain a third-line therapy [122]. However, as Ellen Mowry notes in an 

editorial in the same journal [123], the comparison in terms of efficacy between the phase 3 

studies with monoclonal antibodies and the observational or single-arm HSCT studies does not 

provide evidence for or against the use of HSCT in MS, and further studies designed to 

comparing these treatments are warranted [123]. It is likely that the place of HSCT in MS will 

be re-evaluated over the next years, in light of the continuously-growing spectrum of available 

therapies and of new pragmatic, prospective, controlled multicentre trials.  

 

Remyelination strategies 

Remyelination occurs initially in MS lesions but is inadequate, and the mechanism of repair in 

the CNS fails with time, especially in chronic disease stages [126]. The differentiation of 

oligodendrocyte precursor cells (OPC) into mature cells is essential [126]. Remyelination 

develops in two steps: the colonization of the lesions by the OPCs, and the OPC differentiation 
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into mature oligodendrocytes able to generate functional myelin sheath [127]. The factors that 

could interfere with the OPC abilities to remyelinating in MS have been reviewed [128-130]. 

The immunological-OPC crosstalk has specific features in MS [131,132]. Age and disease 

duration matter. In older animals remyelination is significantly slowed, possibly because of the 

decreased response of monocytoid immune cells which are necessary for the clearance of the 

myelin debris that inhibit remyelination [133]. Neurodegeneration itself occurs early in the 

course of the disease and repeated episodes of demyelination could conceivably lead to local 

wearing out of myelin forming OPCs [134]. Most information on these processes comes from 

studies on animal models (EAE and the cuprizone model of MS) [135]. Remyelination can be 

promoted either by intrinsic (altering intrinsic signaling pathways) or extrinsic (acting on lesion 

environment) repair mechanisms [136,137].  

Intrinsic targets for remyelination. A way of promoting remyelination is modulation of specific 

signaling pathways such as Notch, the Wnt/β-catenin pathway and the retinoid X-receptor 

(RXR) signaling pathway [136] within oligodendrocytes to outweigh the inhibition of 

remyelination. Tocopherol derivative TFA-12, a synthetic long-chain fatty alcohol and a 

member of the vitamin E family, with anti-inflammatory properties [138] stimulates OPC 

differentiation and myelin repair in experimental models of MS through the inhibition of the 

Notch/Jagged1 intrinsic signaling pathway [138]. Lithium chloride stimulates myelin gene 

expression in oligodendrocytes via Wnt/β-catenin and Akt/CREB pathways [139]. 

Indomethacin, a non-steroidal anti-inflammatory drug that penetrates the blood brain barrier 

promotes the differentiation of OPC into mature cells, hence stimulating remyelination in 

animal models via modulation of Wnt/β-catenin pathway [140]. In vitro studies showed that 

the action of indomethacin relies on the GSK3β activity [140]. The nuclear retinoid X-receptor 

(RXR)-γ regulates positively the endogenous remyelination, by stimulating OPC 

differentiation [141]. RXR-γ binds to receptors inside the OPC, including the vitamin D 

receptor, and the complex RXR-vitamin D receptor enhances OPC differentiation [142]. 

Hence, vitamin D might have a role in remyelination. Finally, miconazole and clobetasol have 

been recently shown to enhance the generation of human oligodendrocytes from human OPC 

in vitro, possibly through mitogen-activated protein kinase and glucocorticoid receptor 

signalling, respectively [143]. 

Extrinsic targets for remyelination. Leucine-rich repeat and immunogloobulin domain-

containing 1 (LINGO-1) is a nervous-system specific transmembrane protein that may be a 

therapeutic target for remyelination. LINGO-1 is expressed by oligodendrocytes and was 
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shown to inhibit their ability to differentiate and myelinate; it is also expressed on axons where 

it limits axonal regeneration [144,145]. Antibodies blocking LINGO-1 promote OPC 

differentiation in demyelinated lesions, reduce axonal damage and restore function in EAE, 

cuprizone and lysolecithin animal models [146,147]. BIIB033 (Li 81; opicinumab) is a fully 

human monoclonal antibody that binds LINGO-1. BIIB033 enhances remyelination and 

restores function in animal models, although brain concentrations were of <0.5% of those in 

blood [148]. Anti-LINGO-1 antibodies have been the first remyelinating therapy evaluated in 

humans. Two randomized placebo-controlled phase I trials tested the safety, tolerability and 

pharmacokinetics of BIIB033 administered via IV infusion or subcutaneous injection in 

healthy volunteers and people with MS [149]. In these studies, one or two doses up to 100 

mg/kg were tolerated, with no serious adverse events and low immunogenicity [149]. RENEW 

was a randomized, double-blind, placebo-controlled phase II trial evaluating the ability of anti-

LINGO-1 to promote the repair of an acute optic nerve lesion after a first episode of acute optic 

neuritis and examining the effects on remyelination over 24 weeks through the measurement 

of the latency of nerve conduction between the retina and the visual cortex [150]. The treatment 

with anti-LINGO-1 in acute optic neuritis prevented the amplitude loss of the multifocal visual 

evoked potential observed in the fellow eye visual pathway of placebo-treated subjects over 32 

weeks and had some possible positive effects on amplitude preservation on the affected eye 

[150]. 

Another phase II trial (SYNERGY) testing the safety and effectiveness of opicinumab in 

association with IFNβ-1a injections once weekly in people with RRMS or SPMS 

(NCT01864148) has recently completed and the results presented at the 32nd ECTRIMS 

Congress in London in September 2016. The trial involved 416 participants receiving IFNβ-1a 

weekly and one of five different doses of anti-LINGO-1 per kg body weight or a placebo, once 

every 4 weeks for 72 weeks. The trial missed its primary endpoint (the percentage of subjects 

with confirmed improvement of neuro-physical and/or cognitive function and/or disability). 

Wang et al. differentiated OPCs from human induced pluripotent stem cells (iPS) and engrafted 

them in a myelin-deficient mouse model [151]. The transplanted OPCs differentiated into 

astrocytes and oligodendrocytes,  myelinated the brains of the animals, and increased their 

survival [151]. However, since MS is a multifocal disease it would probably require repeated 

transplantation of the OPC in all the demyelinated regions [134]. These techniques are still 

under study, and their safety and efficacy are yet unknown. OPC recruitment is reduced in MS 

lesions and chemotactic molecules such as Sema3A receptor neuropilin-1 could be a new group 
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of drug targets to improve remyelination [152]. It is not yet clear whether remyelination 

completely prevents neurodegeneration but it does appear to restore neuronal function and at 

least limit neuronal degeneration [134], therefore remyelination strategies are likely to be part 

of the MS treatments in the future (Table 2). 

Mesenchymal stem cells 

Mesenchymal stem cells (MSC) can be harvested from adult bone marrow and can be 

transplanted securely without the need for immunosuppression and with a low risk of aberrant 

proliferation. The IV route is preferred as it is less invasive has fewer adverse effects compared 

to intrathecal administration. It is likely that the potential therapeutic efficacy of MSC could 

be based on systemic effects as recently shown [153]. Mechanisms of action would include 

immunoregulation and anti-inflammatory changes of the cellular environment. The phase II 

trials of MSC in MS did not report major side effects related to treatment [154]. A phase 1/2 

open-safety clinical trial in patients with MS and with amyotrophic lateral sclerosis showed 

that intrathecal and intravenous administration of autologous MSCs is a clinically feasible and 

a relatively safe procedure which produced immediate immunomodulatory effects [155]. 

T-cell directed strategies  

It was suggested that the immune response in MS is directed at least in part against myelin 

proteins including basic protein (MBP), myelin oligodendrocyte protein (MOG) and 

proteolipid protein (PLP) [156-159]. Although there are differences in the activation state or 

precursor frequencies of T cells from patients with MS and healthy subjects, people without 

MS also have immune responses against such antigens. However, it was suggested based on 

indirect evidence that molecular mimicry, epitope spreading and bystander activation are 

possible mechanisms to initiate and maintain disease activity. Consequently, an alternative 

treatment approach in MS could aim to selectively restore self-tolerance to auto-antigens via 

immunization [160] and epitope-specific induction of T cell tolerization [161] or specifically 

by targeting regulatory T cells (Treg) signaling [162]. Antigen-specific therapies in MS have 

been reviewed [163,164]. A first phase I trial in humans published in 2013 showed that the 

antigen-coupled cell tolerization in MS is feasible and safe [165]. 

A number of animal studies and human clinical trials of T-cell vaccination in MS have been 

conducted and reviewed [166,167]. TCV include an attenuation step to preventing the 

encephalitogenicity of myelin-reactive T cells and is safe. Two phase II, placebo-controlled 

clinical trials of TCV in MS were reported [167,168]. Fox et al. showed that treatment with 
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myelin-reactive T-cells against up to six peptides of MBP, MOG and PLP was safe in 100 

RRMS and CIS patients, of which 44% were previously treated with DMTs [168]. Although 

no statistically significant clinical or radiological benefits were obtained when compared with 

the placebo arm, some post-hoc evidence of clinical efficacy in the active arm in the 

subgroup of patients DTM-naïve was seen[168]. Karussis et al. performed the first placebo-

controlled, double blind TCV trial in progressive MS[169]. 26 patients with relapsing-

progressive MS were included in the trial, of which 19 were treated with four injections with 

a mixture of attenuated autologous T-cell lines reactive to three to nine different peptides 

from the MBP, PLP and MOG sequences[169]. The TCV was safe, without serious adverse 

events. There was a strong clinical effect on relapses and disability measured by EDSS and 

the timed 10-meter walking test. The authors suggested that the use of multiple vaccinations, 

peptides and several anti-myelin cell lines accounted for the positive clinical effects obtained 

in this trial [169].  The ongoing or completed clinical trials using T-cell directed approaches 

are listed in Table 1. 

 

Drug repurposing in MS 

The failure to deliver successful neuroprotective therapies in MS has led to alternative 

strategies such as drug repurposing [170]. Vesterinen et al. list some of the factors contributing 

to this failure: “the incomplete understanding of disease biology, pathogenic complexity and 

heterogeneity, limited predictive value of animal models, […] a lack of established trial 

methodologies compounded by a wider context of chronically declining productivity in drug 

development based on target-based approaches, declining resources for drug development in 

the neurosciences, and the growing costs of clinical trials” [170]. In a phase 2 trial, high-dose 

simvastatin compared with placebo reduced the annualized rate of whole-brain atrophy [171]. 

Encouraging recent data suggest that phenytoin in acute optic neuritis [172] and amiloride in 

PPMS [173] could have a neuroprotective effect. We and others showed that re-purposing 

molecules such as angiotensin converting enzyme inhibitors or retinoids can be effective in the 

animal model of MS or promote remyelination [141,174-176]. It is probable that repurposing 

drug development will play a bigger role in the future despite the inherent pitfalls which impact 

its feasibility [177]. 

Choice of treatment strategy 
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The best treatment strategy in MS is still debated. Escalation strategy implies starting with less 

effective but safer treatments and escalating to more efficacious but riskier DMTs if the 

inflammation is not controlled [178,179]. This approach would select only patients with a more 

active MS to be commenced on riskier drugs. The downside of this approach is that often in 

practice some patients have already accumulated some degree of disability at the time of 

escalation, which may be irreversible [180]. This disadvantage is taken into account by those 

advocating starting treatment with a more potent drug from the outset (induction strategy). This 

approach applied indiscriminately would in turn expose people with less active MS to 

unwanted drug side-effects. The treatment selection should take into account how aggressive 

and active the inflammation is; medications such as natalizumab and alemtuzumab would be 

preferred in people with active MS. However, alemtuzumab was EMA registered for patients 

“with active disease defined by clinical or imaging features” [29] and this allows treatment in 

people with early disease and moderate relapse rate if active disease is demonstrated (defined 

as at least 2 relapses within the prior 2 years). 

A new strategy aims to attain ‘no evidence of disease activity’ (NEDA). NEDA emerged as 

therapeutic expectations and targets evolved to enclose possible remission from evolving 

disease. NEDA is defined as absence of relapses, progression of disability and MRI activity 

such as new or newly enlarging T2 lesions and new enhancing lesions [181]. Achieving the 

NEDA status at 2 years has a good prognostic value over a 7-year period [182]. NEDA is 

criticized of not reflecting patients’ needs in clinical practice [183]. The absence of brain 

atrophy measured by MRI as a marker of neuroaxonal loss was proposed as an additional 

criterion for NEDA (NEDA-4 )[184]. The effects of MS treatments on disability progression 

relate with the effects on atrophy over 2 years, independently from the effect on active MRI 

lesions[185]. This would support the use of brain atrophy as a surrogate marker of disability 

progression [186]. However, routinely assessing atrophy is difficult due to logistical and 

technical restraints (for example variability between scans and scanners). As Zimmsen et al. 

note, “the increasing focus on NEDA as an aim of MS therapy implies that regular, systematic, 

monitoring should be a central aspect of the management of the condition” [179]. This raises 

the issue of disease monitoring: how often and what measures to use. How each of the detected 

MRI changes would entail a specific and timely change in the treatment strategy is still a matter 

of debate. Moreover, it is not clear yet if an escalation approach aiming of achieving NEDA 

would certainly improve disease outcome over the long term [180]. Possibly additional 

outcome measures (ie. cognitive impairment) and MS patient reported measures may prove 
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useful to identify non-responders to DMT and therefore could be candidate measures to be 

incorporated in NEDA. Nevertheless, data from clinical trials back the idea of a benefit of early 

initiation of treatment in MS [187-190] [191]. Early treatment would have an impact on long-

term prognosis in terms of mortality [192]. Although it is intuitive that MRI measures can 

reflect breakthrough disease, there is a lack of clinical consensus on the quantitative aspects of 

these measures. Two new enhancing lesions were predictive of disability worsening in a 15-

year follow-up study of patients enrolled in a pivotal IFNβ trial [193]. A recent systematic 

review of studies examining differential response to IFNβ showed that patients with 2 or more 

new hyperintense T2 lesions or new gadolinium-enhancing lesions had significantly increased 

risk of both future relapses and progression [194]. The Rio score was developed by the 

Barcelona group and included the number of clinical relapses, disability progression and new 

T2 or enhancing MRI lesions [195]. Patients with RRMS who met at least two of these criteria 

(but not relapses or MRI criteria alone) had a higher risk of having relapses or disability 

progression in the next 2 years. A new version of the Rio score was validated in the original 

data set and classified patients in low-, medium- and high-risk of progression based on relapses 

or MRI activity only [196,197]. A study by Prosperini et al. suggested that MRI alone could be 

a 4-year good predictor of outcome after the first year of treatment with IFNβ-beta [198]. While 

changes in clinical and MRI measures of disease activity can lead to a treatment change, the 

disease-related outcomes reported by the patient could too. It is probable that over the next 

years more information from real-life experience regarding specific drug efficacy, long term 

safety concerns, cost-benefit considerations and patient-perceived therapy burden, will be 

available. 

 

Five year view 

In a recent review, Coles [180] describes the current era of treatments of MS as ‘the era of 

complexity’. This followed the ‘era of nihilism’ when no DMT were available and the ‘era of 

modest efficacy’ which started after 1993 with the IFNβ-beta and glatiramer acetate trials 

(which were proven modestly effective on relapse rate but safer than immunosuppressants such 

as mitoxantrone and cyclophosphamide) [180]. The current ‘era of treatment’ started with the 

introduction of natalizumab and the first reports of PML as the main drug side-effect which 

mitigated the enthusiasm for this medication [180]. Over the next decade, the oral drugs 

fingolimod, dimethyl fumarate and teriflunomide, and the injectable alemtuzumab have 
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become available in many countries. As mentioned above, it is likely that daclizumab and 

ocrelizumab will soon follow. The development of the newer therapies for MS raises new 

challenges to the treating neurologist. The questions the doctors are facing regard the correct 

sequence of drugs to be offered to a given patient; and the appropriate and safe sequence of 

switching between drugs. Since all the available DMTs are directed against the inflammatory 

phase of MS, the major unmet need at this time is for treatments for progressive disease. It is 

likely that in the next and fourth era of DMTs in MS  the efforts of tackling progressive disease 

will become successful [180]. It is also likely that more evidence would become available to 

support the different strategies for the sequencing and timing of treatments. Clarifying the 

monitoring strategies for adverse effects and breakthrough MS would be crucial. The 

development of radiological and biological biomarkers could allow in the future personalizing 

treatment  and precision medicine in MS [199]. Features such as detection of central veins in 

the MS lesions could improve diagnostic quality [200]. Biomarkers such as neurofilament light 

chains [201] and chitinase 3-like proteins in the CSF [202] could be used as potential prognostic 

markers after CIS while markers such as CSF lipid-specific IgM bands[203] and L-

selectin[204] could be incorporated in the PML risk stratification in patients under natalizumab 

[203]. 

Over the past 50 years, the largest impact on increasing life expectancy in the general 

population came from primary prevention. MS is the result of the interaction between the 

genetic background and environmental factors. Among the latter, vitamin D deficiency, 

infection with the Epstein-Barr virus (EBV), cigarette smoking, obesity in youth and lack of 

exposure to intestinal parasites are environmental predictors of MS risk [205]. Considering that 

research into preventing MS currently has a high priority, developments in prevention 

strategies are anticipated. Studies of anti-EBV vaccination in people at risk of developing MS, 

clinical trials of smoking cessation in MS and more clinical trials with vitamin D are expected. 

The prevalence of MS is inversely correlated with helminth infections and studies of helminth 

treatments in MS could help in understanding the mechanisms of parasite-induced 

immunomodulation [206]. 

Treating the right patient with the right drug early in the disease course, before disability has 

been acquired, could yield long term benefits. It is realistic to expect over the next decade more 

data from approaches aiming to prevent MS and on methodologies to protect neurons or 

promote remyelination. Finally, the future of MS treatments would rely on a better 

understanding of the immunopathogenesis of MS.  



22 
 

Key issues 

 MS is an immune condition of the CNS characterized by focal damage (inflammation) 

which manifests clinically mainly as relapses and diffuse damage (neurodegeneration) 

and brain volume loss) which are both responsible for disability. 

 There is no cure for MS. A number of disease modifying treatments (DMTs) have been 

approved which are primarily directed against inflammation. There are a number of 

additional DMTs in trial or being submitted for approval. 

 There are different treatment strategies in MS. In patients with active disease despite 

treatment it has been recommended to switch early to a therapy of higher efficacy. 

 Despite important advances in the treatment of MS, the burden of progressive disability 

and premature mortality remains considerable. There is no currently approved 

treatment for progressive MS, but recently a monoclonal antibody (ocrelizumab) was 

reported to be effective in a primary progressive MS trial. 

 New treatment strategies involving remyelination or neuroprotection are under study. 

It is likely that the next decade brings substantial changes in the understanding and 

ways of approaching the treatment in MS.  
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