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We propose to “gauge” the group of similarity transformations that acts on a space of non-Hermitian
scalar theories. We introduce the “similarity gauge field,” which acts as a gauge connection on the space of
non-Hermitian theories characterized by (and equivalent to a Hermitian) real-valued mass spectrum. This
extension leads to new effects: if the mass matrix is not the same in distant regions of space, but its
eigenvalues coincide pairwise in both regions, the particle masses stay constant in the whole spacetime,
making the model indistinguishable from a standard, low-energy, and scalar Hermitian one. However,
contrary to the Hermitian case, the high-energy scalar particles become unstable at a particular wavelength
determined by the strength of the emergent similarity gauge field. This instability corresponds to
momentum-dependent exceptional points, whose locations cannot be identified from an analysis of
the eigenvalues of the coordinate-dependent squared-mass matrix in isolation, as one might naively
have expected. For a doublet of scalar particles with masses of the order of 1 MeV and a similarity gauge
rotation of order unity at distances of 1 meter, the corrections to the masses are about 10−7 eV, which
makes no experimentally detectable imprint on the low-energy spectrum. However, the instability occurs at
1018 eV, suggestively in the energy range of detectable ultra-high-energy cosmic rays, thereby making this
truly non-Hermitian effect and its generalizations of phenomenological interest for high-energy particle
physics.
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I. INTRODUCTION

The quantum mechanics of systems with non-Hermitian
Hamiltonians has attracted significant attention since the
realization that Hermiticity can be superseded by other
antilinear symmetries [1], while still guaranteeing real
energy eigenvalues and a unitary evolution [2]. In many
examples, the antilinear symmetry at work is the combined
action of parity P and time reversal T [3] (for an intro-
duction, see Ref. [4]). More generally, such models fall into
the class of pseudo-Hermitian quantum theories [5–7].
For many pseudo-Hermitian quantum theories, there

exists a nonunitary similarity transformation that maps

the non-Hermitian Hamiltonian to an isospectral Hermitian
one [7]. In the case of quantum mechanics, this trans-
formation can be time dependent (for recent studies, see
Refs. [8,9]). In the case of quantum field theories, this
similarity transformation can be made local. The latter is
the focus of this work, wherein we describe a local
similarity transformation of an archetypal non-Hermitian
scalar field theory. This allows us to introduce an associated
vector field, which we refer to as a “similarity gauge field,”
which allows spatial variations of the parameters of the
field theory to be connected.
Spacetime inhomogeneity of fundamental particle

parameters (masses, couplings) can lead to various phe-
nomena that differentiate one spacetime region from
another [10].1 For example, inhomogeneous masses can
serve as external potentials acting on particle (field)
constituents of the model. At the same time, varying
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1Here, we stress the word “spacetime,” since we envisage not
only space-dependent but also time-dependent phenomena.
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couplings can enhance certain processes in one region of
space and inhibit them in another region [11].
The parameters of the StandardModel of particle physics

are known to be spatially uniform to a high degree in a vast
local region of our Universe [12]. Moreover, the time
independence of various couplings, especially of the fine-
structure constant, has been shown to hold to a high
accuracy within billions of years [13]. Therefore, any
noticeable spacetime variation of the parameters of the
Standard Model seems to be excluded. Our article
challenges this by showing that weakly inhomogeneous
mass parameters in a non-Hermitian theory can lead to a
tiny effect on locally measured physical masses at
low energies—thus being compatible with local mass
measurements—while noticeably affecting the propagation
of particles at very high energies. This behavior sounds
puzzling and nontrivial because it asserts that the high-
energy, ultraviolet (UV) particle spectrum is affected by very
slow, infrared (IR) spacetimevariations of themassmatrix of
the model. We will show that this merging of two different
scales is a particular feature of a non-Hermitian model,
originating in the viability of anti-Hermitian interactions. At
the same time, its Hermitian analog—which possesses a
similar spectrum and the same particle content—does not
exhibit this exotic mixing of UV and IR scales.
This novel connection between weak spacetime varia-

tions of physical parameters and the UV dynamics could
have interesting applications in the context of cosmology.
For instance, it may provide a new mechanism by which IR
physics is screened from (non-Hermitian) modifications to
the gravitational dynamics, which instead affect only the
UV physics (cf. other screening mechanisms in, e.g.,
Refs. [14–16]). Alternatively, in the presence of space-
time-dependent defects, such as domain walls or cosmic
strings, and once extended to higher-spin fields, this effect
could significantly alter the high-energy phenomenology,
for instance, of cosmic rays from superconducting strings
(see, e.g., Refs. [17–19]).
The remainder of this article is organized as follows.

In Sec. II A, we begin by introducing the prototypical
scalar non-Hermitian model on which our analysis will
focus. We describe the global similarity transformation
that maps it to a corresponding Hermitian theory in Sec. II
B, before generalizing this to the case of a local similarity
transformation in Secs. II C and II D. Doing so neces-
sitates the introduction of a new vector field—the “sim-
ilarity gauge field”—and its impact on the classical
equations of motion and dispersion relations is analyzed
in Sec. II E. We include a comparison to the ab initio
Hermitian case in Sec. II F. Before providing our con-
clusions in Sec. IV, we further elucidate the impact of the
similarity gauge theory by means of a physical example
in Sec. III. Details of the operator-level formulation of
the local similarity transformation are provided in the
Appendix for completeness.

II. NON-HERMITIAN PT -SYMMETRIC BOSONS

A. Lagrangian

Following Ref. [20], we consider a minimal non-
Hermitian scalar model, which contains a complex doublet

Φ ¼
�
ϕ1

ϕ2

�
; ð1Þ

whose squared-mass matrix is non-Hermitian, having the
form2

M2 ¼
�

m2
1 m2

5

−m2
5 m2

2

�
ð2Þ

and describing mixing between the two complex scalar
fields ϕ1 and ϕ2. The squared-mass matrix is skew
symmetric, and there exists a matrix

P ¼ P−1 ¼
�
1 0

0 −1

�
; ð3Þ

which fulfills the pseudo-Hermiticity condition

PM2P ¼ ½M2�T; ð4Þ

where T indicates the matrix transpose. We should there-
fore expect that the squared-mass matrix, although non-
Hermitian, has a real eigenspectrum within certain regions
of the parameter space. The squared-mass eigenvalues are

M2
� ¼ 1

2

�
m2

1 þm2
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

1 −m2
2Þ2 − 4m4

5

q �
: ð5Þ

These are real, and the model does not possess an instability
in the region defined by the following constraints:

m2
1 þm2

2 ≥ 0; ð6aÞ

m2
1m

2
2 þm4

5 ≥ 0; ð6bÞ

ðm2
1 −m2

2Þ2 − 4m4
5 ≥ 0: ð6cÞ

In Eq. (6), we have assumed that the squared massesm2
1 and

m2
2 can take negative values. The conditions in Eq. (6) then

determine the region of the parameter space ðm2
1; m

2
2; m

2
5Þ

within which the PT symmetry is said to be unbroken
[20,22,25]. Hereafter, we will assume that the diagonal
squared masses m2

1 and m
2
2 are positive quantities, in which

case the conditions (6a) and (6b) are automatically

2This model was introduced in Ref. [20] in the context of
Noether’s theorem, and similar self-interacting extensions of this
model have been studied in the contexts of the Goldstone theorem
and the Englert-Brout-Higgs mechanism [21–27].
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satisfied, and we are left with only the condition (6c). In
addition, without loss of generality, we will take m2

1 > m2
2.

It is helpful to introduce a parameter [20]

η≡ 2m2
5

m2
1 −m2

2

; ð7Þ

which parametrizes the deviation from Hermiticity. At
η ¼ 0, the two flavors decouple and the model is
Hermitian. For 0 < η < 1, the model is non-Hermitian
but in the regime of unbroken PT symmetry, where the
squared-mass eigenvalues are real. For η > 1, the squared-
mass eigenvalues are complex, and the PT symmetry is
said to be broken. At η ¼ 1, the squared-mass eigenvalues
merge, we lose an eigenvector, and the squared-mass
matrix becomes defective. This exceptional point, a feature
unique to non-Hermitian matrices, occurs at the boundary
between the regimes of broken and unbroken PT sym-
metry. A key finding of this article is that an analysis of the
squared-mass eigenvalues of a non-Hermitian, spacetime-
dependent mass matrix is not sufficient to locate the
exceptional points of the field theory. Instead, the space-
time dependence leads to momentum-dependent excep-
tional points, such that, for any given spacetime
dependence, low-momentum modes remain in the regime
of unbroken PT symmetry, whereas high-momentum
modes are instead in the regime of broken PT symmetry.
The eigenvectors of the squared-mass matrix [20],

eþ ¼ N
�

η

−1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
�
; ð8aÞ

e− ¼ N

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
η

�
; ð8bÞ

are not orthogonal with respect to the usual Dirac inner
product. However, there exists an additional matrix A,
given by [28]

A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
�

1 η

−η −1

�
; A2 ¼ I; ð9Þ

with which the eigenvectors are orthogonal and with which
we can define a positive-definite norm [2]. We will refer to
this as the APT inner product3:

eAPT
� · e� ≡ e�� · P · A · e� ¼ 1; ð10aÞ

eAPT
� · e∓ ≡ e�� · P · A · e∓ ¼ 0; ð10bÞ

fixing the normalization [20]

N ¼
�
2η2 − 2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q �
−1=2

: ð11Þ

Notice that theAPT norm is ill defined as we approach the
exceptional point η → 1, since jNj2 → ∞.
It will prove convenient in the analysis that follows to

define a parameter

κ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p ¼ m2
1 −m2

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

1 −m2
2Þ2 − 4m4

5

q ; ð12Þ

such that κ ¼ 1 corresponds to the Hermitian theory of two
decoupled complex scalar fields and κ > 1 corresponds to
the unbroken PT -symmetric regime. The exceptional
points lie at κ → ∞, and κ ∈ C signals the regime of
broken PT symmetry.
The squared-mass matrix is diagonalized by a similarity

transformation S of the form

M2
diag ¼ S−1H M2SH; ð13Þ

with

SH ¼ N

�
η −1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
η

�
;

¼ 1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffi

κ þ 1
p

−
ffiffiffiffiffiffiffiffiffiffiffi
κ − 1

p

−
ffiffiffiffiffiffiffiffiffiffiffi
κ − 1

p ffiffiffiffiffiffiffiffiffiffiffi
κ þ 1

p
�
; ð14Þ

giving M2
diag ¼ diagðM2þ;M2

−Þ.4 The transformation is
parametrized by the single real-valued, coordinate-
independent parameter κ with S†H ≡ SH and S†H ≠ S−1H .
This similarity matrix is related to the A matrix of the
APT transformation via

S2H ¼ AP; ð15Þ

as is known for PT -symmetric theories (see also the
“V-norm” of Ref. [29]).
It will prove convenient to write the similarity matrix in

the form

SH ¼ e−ξHσ1 ¼
�

cosh ξH − sinh ξH
− sinh ξH cosh ξH

�
; ð16Þ

where σ1 is the first Pauli matrix and3In the case of PT -symmetric quantum mechanics, this was
introduced as the CPT inner product [2]. However, C does not
coincide with charge conjugation. To avoid confusion, this was
denoted as the C0PT inner product in Ref. [20]. Here, we use
A ≃ C0 with A ¼ ðC0ÞT from Ref. [28].

4Relative to Ref. [28], we have introduced an overall minus
sign into the definition of SH by convention, so that the diagonal
entries are positive in the PT -symmetric regime.
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ξH ≡ 1

2
arctanh η ¼ 1

2
arccosh κ: ð17Þ

This makes the relation S−1H ðξHÞ ¼ SHð−ξHÞ apparent.
Having now outlined the non-Hermitian structure of the

model, we can turn our attention to theLagrangian of the scalar
field theory. We want to build our Lagrangian out of irreduc-
ible, scalar representations of the Lorentz group, as we do for
Hermitian field theories. However, since the Hamiltonian is
non-Hermitian, so too is the generator P0 of the Poincaré
group. We therefore have two copies of the algebra of the
Lorentz group—one constructed from P0, and the other from
its Hermitian conjugate—and these algebras are disconnected,
since ½P0; P

†
0� ≠ 0. Hence, if we are to have canonical

dynamics, we must build the Lagrangian out of scalar
representations of only one of these Poincaré algebras, with
both the fieldΦ and its conjugate momentumΠ transforming
with respect to the same generator of time translations, say,P0.
Notice that Π ≠ _Φ†, since Φ† will evolve with respect to P†

0.
Following Ref. [28], the Lagrangian of interest therefore

takes the form

L ¼ ∂μΦ̃†∂μΦ − Φ̃†M2Φ; ð18Þ
where Φ̃† ≠ Φ† will be defined below. Note that we could
equivalently have chosen to work with the algebra of P†

0,
amounting to placing the tildes on Φ rather than Φ†, giving

L̃ ¼ ∂μΦ†∂μΦ̃ −Φ†M2Φ̃: ð19Þ

However, this is equivalent to the transformation
m2

5 → −m2
5, and the sign of m2

5 is irrelevant, since observ-
ables consistent with the PT symmetry depend only onm4

5

[20]. To see this, it is convenient to rewrite the Lagrangian
(19) in terms of the individual scalar fields ϕ1 and ϕ2:

L ¼ ∂μϕ̃
�
1∂μϕ1 þ ∂μϕ̃

�
2∂μϕ2

−m2
1ϕ̃

�
1ϕ1 −m2

2ϕ̃
�
2ϕ2 −m2

5ðϕ̃�
1ϕ2 − ϕ̃�

2ϕ1Þ; ð20Þ
wherein we see that swapping the tildes in the final
m2

5-dependent term amounts to an overall change of sign.
Since Φ̃† ≠ Φ†, theEuler-Lagrange equations obtained by

varying with respect to Φ̃† andΦ, along with their Hermitian
conjugates, are mutually consistent (cf. Ref. [20]).
Specifically, we have (with the d’Alembert operator
□≡ ∂μ∂μ ¼ ∂2

t − ∇2)

□ϕ1 þm2
1ϕ1 þm2

5ϕ2 ¼ 0; ð21aÞ

□ϕ2 þm2
2ϕ2 −m2

5ϕ1 ¼ 0; ð21bÞ

□ϕ̃1 þm2
1ϕ̃1 −m2

5ϕ̃2 ¼ 0; ð21cÞ

□ϕ̃2 þm2
2ϕ̃2 þm2

5ϕ̃1 ¼ 0; ð21dÞ

along with their complex conjugates. Notice again that the
untilded and tilded equations differ by m2

5 → −m2
5. The

untilded and tilded fields are related via parity (seeRef. [28]),
as is necessary since theHamiltonian (and the Lagrangian) is
not invariant under parity. For the c-number fields, we have
the transformations

P∶ Φðt; xÞ → Φ0ðt;−xÞ ¼ eiασ3Φ̃ðt; xÞ; ð22aÞ
T ∶ Φðt; xÞ → Φ0ð−t; xÞ ¼ eiβΦ�ðt; xÞ; ð22bÞ

with arbitrary parameters α ¼ 0; π and β ∈ R, and where σ3
is the third Pauli matrix. Notice that the scalar field ϕ1

transforms under the parity inversion P as a genuine scalar,
whereas the scalar fieldϕ2 behaves as a pseudoscalar.We can
readily confirm that the Lagrangian (18) is PT symmetric.
There is an additional discrete symmetry—which wewill

call the A symmetry—which manifests at the level of the
squared-mass matrix as the invariance

AM2A ¼ M2: ð23Þ

In terms of the fields themselves, this is effected as

A∶
�ϕiðt; xÞ → ϕ0

iðt; xÞ ¼ Aijϕjðt; xÞ;
ϕ̃†
i ðt; xÞ → ϕ̃0†

i ðt; xÞ ¼ Ajiϕ̃
†
jðt; xÞ:

ð24Þ

In addition to the discrete spacetime symmetries
described above, the model is also invariant under the
global U(1) transformation

Uð1Þ∶
�Φðt; xÞ → Φ0ðt; xÞ ¼ eiγΦðt; xÞ;
Φ̃†ðt; xÞ → Φ̃0†ðt; xÞ ¼ e−iγΦ̃†ðt; xÞ; ð25Þ

which rotates the phases of both complex scalar fields ϕ1

and ϕ2 by the single real-valued phase factor γ.

B. Global similarity transformation

There is a continuous set of PT -invariant Lagrangians
that are physically equivalent in the sense that they all
possess the same physical spectrum. These models are
related to each other by the similarity transformation S,
under which

Φ → SΦ; Φ̃† → Φ̃†S−1; ð26Þ
where the similarity matrix S, parametrized by a single real-
valued scalar parameter ξ, is given in Eq. (16). The trans-
formation of the tilded field (26) can be written in the
following form: Φ̃→S−1Φ̃. (Recall that S¼S† is Hermitian.)
One can show that the similarity transformation (26)

with the matrix (16), characterized by the specially fixed
global parameter ξH, as defined in Eq. (17), maps the
original non-Hermitian model (18) to a Hermitian model of
two noninteracting scalar fields with the constant masses
(5) (see Ref. [28]):

MAXIM N. CHERNODUB and PETER MILLINGTON PHYS. REV. D 105, 076020 (2022)

076020-4



LH ¼ ∂μΦ†∂μΦ −Φ†M2
diagΦ; ð27Þ

wherein we have dropped the now redundant tildes on the
conjugated fields.

C. Local similarity transformation

Under a local transformation with ξ≡ ξðxÞ, the space-
time derivatives of the doublet scalar fields change as

∂μΦ → ∂μðSΦÞ≡ S½∂μ þ S−1ð∂μSÞ�Φ; ð28aÞ

∂μΦ̃† → ∂μðΦ̃†S−1Þ≡ Φ̃†½∂⃖μ þ ð∂μS−1ÞS�S−1: ð28bÞ

In order to support the local similarity invariance, we
introduce a new vector field Cμ, which promotes the usual
derivative to the covariant one, i.e., ∂μ → Dμ, with

Dμ ¼ ∂μ − Cμ ≡ 1∂μ þ σ1Cμ ≡
� ∂μ Cμ

Cμ ∂μ

�
: ð29Þ

Here, Cμ ≡ −σ1Cμ is the similarity vector “gauge” field,
which evolves under the local gauge similarity transforma-
tion as follows:

Cμ → SCμS−1 − S∂μS−1: ð30Þ

However, we also need the tilde-conjugate covariant
derivative

D̃μ ¼ ∂μ þ Cμ ≡ 1∂μ − σ1Cμ ≡
� ∂μ −Cμ

−Cμ ∂μ

�
; ð31Þ

and we see that the interactions of the similarity gauge field
are non-Hermitian. We then have

DμΦ → SDμΦ; D̃μΦ̃ → S−1D̃μΦ̃; ð32Þ

and, consequently, ðD̃μΦ̃Þ† → ðD̃μΦ̃Þ†S−1. Here, we have
used the relations S∂μS−1 ¼ −S−1∂μS ¼ ð∂μS−1ÞS and
SCμS−1 ¼ S−1CμS.
This similarity transformation can also be expressed in

terms of an operator Ŝ (see Ref. [28]), and we include
details of this in the case of the local transformation in the
Appendix.
Using the explicit form of the similarity matrix (16), as

well as the transformation property (30) of the matrix-
valued similarity field Cμ, we obtain that the vector field Cμ

transforms under the local similarity transformation (30) as

Cμ → Cμ þ ∂μξ: ð33Þ

Finally, we arrive at the gauge theory that is invariant
under the local similarity transformation (32),

LC ¼ ½D̃μΦ̃�†DμΦ − Φ̃†M2Φ; ð34Þ

which can be written in the following explicit form:

LC ¼ ð∂μϕ̃1 − Cμϕ̃2Þ�ð∂μϕ1 þ Cμϕ2Þ
þ ð∂μϕ̃2 − Cμϕ̃1Þ�ð∂μϕ2 þ Cμϕ1Þ
−m2

1ϕ̃
�
1ϕ1 −m2

2ϕ̃
�
2ϕ2 −m2

5ðϕ̃�
1ϕ2 − ϕ̃�

2ϕ1Þ: ð35Þ

Note that we do not treat the similarity gauge field as
dynamical.
The similarity current is a non-Hermitian structure given

by the variation of the non-Hermitian action with respect to
the similarity gauge field:

JμH ¼ δS
δCμ

¼ −Φ̃†σ1DμΦþ ½D̃μΦ̃�†σ1Φ

¼ −ϕ̃�
1∂μϕ2 þ ϕ1∂μϕ̃�

2 − ϕ̃�
2∂μϕ1 þ ϕ2∂μϕ̃�

1

− 2Cμðϕ̃�
1ϕ1 þ ϕ̃�

2ϕ2Þ: ð36Þ

We remark that the global transformation with the
coordinate-independent parameter (17) leaves the kinetic
term in the Lagrangian (34) intact. This is because the
nondiagonal part of both the usual [Eq. (29)] and tilded
[Eq. (31)] covariant derivatives involve the matrix σ1,
which commutes with the similarity transformation,
i.e., SðξÞσ1 ¼ σ1SðξÞ.

D. Local squared-mass parameters

Now let us consider the non-Hermitian model with the
coordinate-dependent mass term chosen in such a way
that the eigenvalues of the mass matrix are kept the same
at each point in spacetime. If we ignore the kinetic terms
then the mass terms in the Hermitian counterpart of the
non-Hermitian model would be given by the spacetime-
independent quantities (5). We show below that the pre-
sence of the kinetic terms makes the situation more
complex: the local nature of the transformation activates
the nonunitary similarity transformation and leads to the
appearance of the similarity gauge field Cμ.
Indeed, consider the model with a vanishing similarity

field Cμ ¼ 0 and globally constant squared-mass eigenval-
ues. The latter requirement is correct provided the masses
m1ðxÞ, m2ðxÞ, and m5ðxÞ are spacetime-dependent quan-
tities subject to the condition that their combinations (5) are
globally constant. This leads to two constraints on the three
squared-mass parameters:

m2
1ðxÞ þm2

2ðxÞ ¼ M2
0; ð37aÞ

½m2
1ðxÞ −m2

2ðxÞ�2 − 4m4
5ðxÞ ¼ m4

0; ð37bÞ

where M0 and m0 are the fixed parameters that enter the
physical masses,
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M2
� ¼ M2

0 �m2
0

2
: ð38Þ

The most obvious way to proceed is to parametrize the
mass matrix M2 in terms of the single real function of
spacetime coordinates

θðxÞ ¼ arctan
m2ðxÞ
m1ðxÞ

: ð39Þ

The resulting squared-mass matrix

M2ðxÞ ¼

0
B@ M2

0 cos
2 θðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

0
cos2 2θðxÞ−m4

0

p
2

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

0
cos2 2θ−m4

0

p
2

M2
0 sin

2 θðxÞ

1
CA ð40Þ

has the globally constant eigenvalues (38).
With constant θ, the mass matrix (40) corresponds to the

same physical theory with the same spectrum. The matrices
with different θ, say, θ1 and θ2, are related by the similarity
transformation with ξ ¼ θ2 − θ1. As we will see below, this
statement is no longer valid for nonuniform θ≡ θðxÞ. We
call the theories, related via a spacetime-dependent sim-
ilarity transformation, self-similar theories.
The unbroken PT symmetry requires that M2

0 ≥ m2
0 and

cos2 2θ ≥ m4
0=M

4
0, implying that

−θmax ≤ θ ≤ θmax; θmax ¼
1

2
arccos

m2
0

M2
0

: ð41Þ

Then, the parameter in the transformation matrix (14) takes
the simple form

κðxÞ ¼ M2
0

m2
0

cos 2θðxÞ; with κðxÞ ≥ 1: ð42Þ

Thus, the similarity transformation (16), which diagonal-
izes the coordinate-dependent mass matrix (40),

S−1ðξHðθÞÞM2ðθÞSðξHðθÞÞ ¼
�
M2þ 0

0 M2
−

�

≡ 1

2
M2

01þ 1

2
m2

0σ3; ð43Þ

is governed by the transformation parameter

ξHðxÞ ¼
1

2
arccosh κðθðxÞÞ; ð44Þ

with κ given in Eq. (42).
We can choose the parameter θ ¼ θðxÞ in the form of an

arbitrary function of the spacetime coordinate x, satisfying
the bound (41). In Fig. 1, we show the dependence of the
entries in the squared-mass matrix on the parameter θ,

which keeps the eigenvalues of the squared-mass matrix (5)
constant. While the squared-mass matrix evolves in space
or time—the latter dependence is encoded in the function
θ ¼ θðxÞ—the physical spectrum of the theory remains
untouched.
As we show below, the spacetime inhomogeneity of the

squared-mass matrix can be encoded in the form of a vector
gauge transformation in the isospace that acts on the upper
and lower components of the doublet fieldΦ. This mapping
in the similarity space leads to the appearance of the
similarity gauge field (discussed earlier). For the non-
Hermitian theory, and while the eigenvalues of the squared-
mass matrix are constant, even a weak local similarity field
strongly affects the physical properties of the system,
leading to instabilities for high-momentum modes, as we
describe in the next section. In Sec. II F, we discuss an
ab initio Hermitian realization of the doublet scalar model,
where the similarity field can also lead to an instability.
However, in sharp contrast to the non-Hermitian model, the
similarity field in the Hermitian model must be sufficiently
strong in order to generate an instability, which makes the
Hermitian case much less attractive from the point of view
of phenomenology.
To obtain the would-be Hermitian counterpart of the

non-Hermitian model after the local similarity transforma-
tion, it is enough to make the substitutions m1 → Mþ,
m2 → M−, and m5 → 0 in the generic non-Hermitian
Lagrangian (34), and use the similarity gauge field

Cμ
H ¼ −∂μξH; ð45Þ

where the similarity gauge parameter ξH is given by
Eqs. (42) and (44). Alternatively, one can perform the
local similarity transformation with the vanishing similarity
gauge field Cμ in the original non-Hermitian basis; the
results are the same. These procedures lead to the model

FIG. 1. Dependence of the elements m2
1, m

2
2, and m2

5 of the
squared-mass matrix (40) on the parameter θ, which keeps the
physical masses M� [Eq. (5)] constant in the non-Hermitian
model (18). The maximal angle θmax is defined in Eq. (41).
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LC;H ¼ ∂μϕ̃
�þ∂μϕþ −M2þϕ̃�þϕþ þ ∂μϕ̃

�
−∂μϕ− −M2

−ϕ̃
�
−ϕ−

þ Cμ
HCH;μðϕ̃�þϕþ þ ϕ̃�

−ϕ−Þ þ CH;μJ
μ
H; ð46Þ

where JμH is the non-Hermitian similarity current given by
Eq. (36) with Cμ¼CH;μ, ϕ1ð2Þ → ϕþð−Þ, and ϕ̃�

1ð2Þ → ϕ̃�
þð−Þ.

The fields ϕ� correspond to the diagonal mass entries M�.
The fact that the current JμH remains non-Hermitian

means that the local similarity transformation does not
map the Lagrangian to a Hermitian one. It is for this reason
that the tildes persist on the conjugated fields ϕ̃�

�.
The subscript “H” in the similarity gauge field Cμ

H, given
in Eq. (45), is used to stress that this similarity field is
a pure gauge field, which arises from a diagonalization
of the coordinate-dependent squared-mass matrix of the
two-scalar-field model (19) with a vanishing vector field
Cμ ¼ 0. In other words, the non-Hermitian two-scalar
model with (i) a vanishing similarity field, Cμ ¼ 0, (ii) a
coordinate-dependent squared-mass matrix, but (iii) coor-
dinate-independent eigenmasses can be transformed to a
two-scalar model with (i0) coordinate-independent masses
and (ii0) the pure-gauge similarity vector field Cμ

H. The
similarity field enters the non-Hermitian Lagrangian (34) as
Cμ ≡ Cμ

H in the covariant derivatives (29) and (31).
If the original mass matrix in the non-Hermitian

Lagrangian is spacetime independent, the similarity gauge
field vanishes in the would-be Hermitian representation
(46), i.e., CH;μ ¼ 0, and the Hermitian model splits into two
independent scalar theories with globally constant masses.
In this case, the equations of motion for ϕ̃�

� reduce to the
complex conjugates of the equations of motion for ϕ�, such
that we can omit the tildes.

E. Equations of motion and background fields

The classical equations of motion following from the
Lagrangian (35) with a generic similarity gauge field Cμ

read as follows:

ð□þC2þm2
1Þϕ1þ½ð∂ ·CÞþ2ðC ·∂Þþm2

5�ϕ2¼ 0; ð47aÞ

ð□þC2þm2
2Þϕ2þ½ð∂ ·CÞþ2ðC ·∂Þ−m2

5�ϕ1 ¼ 0; ð47bÞ

ð□þC2þm2
1Þϕ̃1− ½ð∂ ·CÞþ2ðC ·∂Þþm2

5�ϕ̃2 ¼ 0; ð47cÞ

ð□þC2þm2
2Þϕ̃2− ½ð∂ ·CÞþ2ðC ·∂Þ−m2

5�ϕ̃1¼ 0: ð47dÞ

We use the dot “·” to denote a scalar product both in four
(C2 ≡ C · C ¼ CμCμ) and three (C2 ≡ C · C) dimensions. In
the absence of the similarity field, Cμ ¼ 0, Eqs. (47a)–(47d)
reduce to the equations of motion (21a)–(21d).
Let us consider the effect of the similarity gauge field

in Eq. (47) on the spectrum of the non-Hermitian

model, focusing first on the case of a constant (space-
time-independent) gauge field Cμ. We can then use the
plane-wave basis ϕaðxμÞ ¼ ϕað0Þe−ikμxμ , with kμ ¼ ðω; kÞ
and a ¼ 1, 2, to determine the energy spectrum ω ¼ ωk as
a function of the three-momentum k. The modes of the
tilded fields are obtained via the transformation (22). All
four equations in Eqs. (47a)–(47d) give the same relation
for the energy spectrum:

ðω2 − k2 − C2 −m2
1Þðω2 − k2 − C2 −m2

2Þ
þ 4ðC0ω − k · CÞ2 þm4

5 ¼ 0: ð48Þ

While it is not immediately obvious that there is no
coordinate dependence to this expression, given the pres-
ence of the squared-mass parameters m2

1, m
2
2, and m2

5, we
will see that this is indeed the case in what follows.
Equation (48) is a fourth-order algebraic equation, the

solutions of which are rather cumbersome. However,
making use of its Lorentz covariance, which originates
from the relativistic nature of the plane waves, we can
simplify the solutions of Eq. (48). Depending on the
timelike ðC2 ≡ C2

0 − C2 > 0Þ or spacelike ðC2 < 0Þ nature
of the field Cμ, we can use Lorentz boosts to bring the
system to the frame in which the field Cμ is perfectly
timelike, Cμ ¼ ðC0; 0Þ, or perfectly spacelike, Cμ ¼ ð0;CÞ,
respectively.
The energy spectrum of the timelike Cμ ¼ ðC0; 0Þ field

has the form

ω2
�;k¼k2−C2

0þ
1

2
ðm2

1þm2
2Þ

�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

1−m2
2Þ2−4m4

5−8C2
0ðm2

1þm2
2Þ−16C2

0k
2

q

≡k2−C2
0þ

1

2
ðM2þþM2

−Þ

�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2þ−M2

−Þ2−8C2
0ðM2þþM2

−Þ−16C2
0k

2

q
; ð49Þ

which differs from the usual relativistic spectrum of the
standard form ω2

k ¼ k2 þm2, provided C0 ≡ C0 ≠ 0.
Interestingly, we still have a non-Hermitian theory in the
limit m5 → 0, so long as C0 ≠ 0. Note also that since ω2

�;k

can be written entirely in terms of the eigenvalues of the
squared-mass matrix M2

�, both of which are coordinate
independent, the frequencies themselves are also coordi-
nate independent, as indicated earlier.
The energy spectrum (49) demonstrates that the presence

of the similarity gauge field leads to instabilities in the
system. At zero momentum, i.e., k ¼ 0, the instability does
not occur provided the magnitude of the field C0 satisfies
the following three requirements:

IR/UV MIXING FROM LOCAL SIMILARITY MAPS OF SCALAR … PHYS. REV. D 105, 076020 (2022)

076020-7



m2
1 þm2

2 − 2C2
0 ≥ 0; ð50aÞ

m2
1m

2
2 þm4

5 þ C2
0ðm2

1 þm2
2Þ þ C4

0 ≥ 0; ð50bÞ

ðm2
1 −m2

2Þ2 − 4m4
5 − 8C2

0ðm2
1 þm2

2Þ ≥ 0: ð50cÞ

In the absence of the field, i.e., C0 ¼ 0, these conditions
reduce to those in Eq. (6). Assuming that the system is
stable at C0 ¼ 0, we find that Eq. (50b) is satisfied
automatically, while the two other requirements,
Eqs. (50a) and (50c), can be combined into one simple
relation,

C2
0 ≤ min

�
m2

1 þm2
2

2
;
ðm2

1 −m2
2Þ2 − 4m4

5

8ðm2
1 þm2

2Þ
;

�
: ð51Þ

Significantly, the instability always arises in the ultraviolet
region. The system is stable provided the momentum k
does not exceed a certain critical scale; specifically,

k2 ≤ k2c ¼
ðm2

1 −m2
2Þ2 − 4m4

5

16C2
0

−
m2

1 þm2
2

2
: ð52Þ

The energy dispersion for the timelike similarity field is
illustrated in Fig. 2(a). The emergence of the instability is
clearly seen at large values of momentum as determined by
Eq. (52). For given mass parameters, the critical momen-
tum scale kc determines the location of the exceptional
points: modes with momentum below this scale have real
squared energies and lie in the regime of unbroken PT
symmetry; modes with momentum above this scale have
imaginary squared energies and lie in the regime of broken
PT symmetry. We reiterate that Eqs. (50a)–(52) are all
coordinate independent, since the only combinations of
coordinate-dependent squared-mass parameters that appear
are the coordinate-independent ones M2

0 ¼ ðm2
1 þm2

2Þ=2
and m4

0 ¼ ðm2
1 −m2

2Þ2 − 4m4
5 [see Eq. (37)]. We have

chosen to write these expressions in terms of the coor-
dinate-dependent parameters in order to make a connection
with the original non-Hermitian squared-mass matrix.
In the case of a spacelike similarity field, Cμ ¼ ð0;CÞ,

the spectrum becomes anisotropic:

ω2
�;k ¼ k2 − C2 þ 1

2
ðm2

1 þm2
2Þ

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

1 −m2
2Þ2 − 4m4

5 − 16ðk · CÞ2
q

≡ k2 − C2 þ 1

2
ðM2þ þM2

−Þ

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2þ −M2

−Þ2 − 16ðk · CÞ2
q

: ð53Þ

The stability conditions at zero momentum are

m2
1 þm2

2 − 2C2 ≥ 0; ð54aÞ

ðm2
1 − C2Þðm2

2 − C2Þ þm4
5 ≥ 0; ð54bÞ

ðm2
1 −m2

2Þ2 − 4m4
5 ≥ 0; ð54cÞ

and the stability region at high momentum is limited to

ðm2
1 −m2

2Þ2 − 4m4
5 ≤ 16ðk · CÞ2: ð55Þ

The real and imaginary parts of the energy dispersion
(53) for the spacelike similarity field Cμ ¼ ð0;CÞ are

FIG. 2. (a) Real and imaginary parts of the energy spectrum (49)
as a functionofmomentumk ¼ jkj for the timelike similarity gauge
fieldCμ ¼ ðC0; 0Þ and the parametersm1 ¼ m2=2 ¼ m5 ¼ m and
C0 ¼ m=10. The imaginary part is multiplied by a factor of 102 to
increase its visibility. The similarity gauge field makes the high-
energy modes unstable at momenta larger than the critical value kc
[Eq. (52)]without affecting the stability of the lower-energymodes,
including the ground state. (In this example, kc ≃ 5.36m.) Notice
that the real parts of the frequencies ω� become degenerate for
momenta k > kc. (b) Corresponding plots for the ab initio Her-
mitian model of Sec. II F with the identical parameters. The energy
spectrum is real for any value of momentum k.
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shown in Fig. 3. The stable region is determined by
Eq. (55), which selects a strip in the longitudinal direction
with respect to the field axis kkkC. The transverse momenta
are denoted k⊥⊥C.
The presence of the instability for high-momentum

modes might, at first sight, seem to cast doubts on the
phenomenological viability of the model described in this
work. However, this model is understood to be an effective
description, wherein the spacetime dependence of the
squared-mass parameters arises from interactions with
other dynamical degrees of freedom that are not treated
explicitly here. The instability for high-momentum modes
indicates that this effective description breaks down, and it
is then necessary to consider the dynamics of these addi-
tional degrees of freedom and the mechanism by which the
spacetime dependence emerges.

F. Comparison with the Hermitian model

It is helpful to compare the non-Hermitian model
involving the similarity gauge field to an analogous
construction for an ab initio Hermitian model composed
of two complex scalar fields with a Hermitian mass
mixing, i.e.,

L0 ¼ ∂μϕ
�
1∂μϕ1 þ ∂μϕ

�
2∂μϕ2

−m2
1jϕ1j2 −m2

2jϕ2j2 −m2
5ðϕ�

1ϕ2 þ ϕ�
2ϕ1Þ: ð56Þ

The squared Hermitian mass matrix

M02 ¼
�
m2

1 m2
5

m2
5 m2

2

�
ð57Þ

is diagonalized by an SO(2) transformation of the form

M02 → U†M02U; ð58Þ

with

U ¼ e−iσ2ξ
0
; ξ0 ¼ 1

2
arctan

2m2
5

m2
1 −m2

2

; ð59Þ

where σ2 is the second Pauli matrix. Notice that this is
nothing other than the analytic continuationm2

5 → �im2
5 of

the non-Hermitian model.
However, if we take m2

1;2;5 ¼ m2
1;2;5ðxÞ and demand that

the eigenmasses

M02
� ¼ 1

2

n
m2

1ðxÞ þm2
2ðxÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

1ðxÞ −m2
2ðxÞ�2 þ 4m4

5ðxÞ
q o

ð60Þ

are spacetime-independent quantities, the same arguments
as for the non-Hermitian model lead us to the Lagrangian

L0 ¼ ðDμΦÞ†DμΦ −Φ†M02
diagΦ

¼ ð∂μϕ
�þ þ Cμϕ

�
−Þð∂μϕþ þ Cμϕ−Þ

þ ð∂μϕ
�
− − Cμϕ

�þÞð∂μϕ− − CμϕþÞ
−M02þϕ�þϕþ −M02

−ϕ
�
−ϕ−; ð61Þ

where

Dμ ¼ ∂μI2 þ iσ2Cμ ð62Þ

FIG. 3. Real (a) and imaginary (b) parts of the energy dispersion (53) for the frequency ω ¼ ωþ with the model parameters m1 ¼
m2=2 ¼ m5 ¼ m and jCj ¼ m=10 in the case of the spacelike similarity field Cμ ¼ ð0;CÞ, with the momenta kk (k⊥) being parallel
(orthogonal) to the vector C. The presence of the similarity gauge field leads to an instability of the high-energy modes propagating
along the field direction. The stability of the lower-energy modes and the ground state is not affected. The frequency ω ¼ ω− possesses a
qualitatively similar real part, while the imaginary part comes with an opposite overall sign.
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is the covariant derivative equipped with the Hermitian
similarity gauge field

Cμ ¼ −∂μξ
0; ð63Þ

which depends on the parameter ξ0 given in Eq. (59).
The conserved current is

Jμ ¼ ϕ�
−∂μϕþ − ϕ�þ∂μϕ− þ ð∂μϕ�þÞϕ− − ð∂μϕ�

−Þϕþ
þ 2Cμðϕ�þϕþ þ ϕ�

−ϕ−Þ; ð64Þ

and the equations of motion are as follows:

½□ − C2 þM02þ�ϕþ þ ½ð∂ · CÞ þ 2ðC · ∂Þ�ϕ− ¼ 0; ð65aÞ

½□ − C2 þM02
− �ϕ− − ½ð∂ · CÞ þ 2ðC · ∂Þ�ϕþ ¼ 0: ð65bÞ

For a constant similarity field Cμ, the energy spectrum is
obtained from the equation

ðω2 − k2 þ C2 −M02þÞðω2 − k2 þ C2 −M02
−Þ

− 4ðC0ω − k · CÞ2 ¼ 0: ð66Þ

Taking, as before, the purely timelike case Cμ ¼ ðC0; 0Þ,
we get the following dispersion relation:

ω02
�;k¼ k2þC2

0þ
1

2
ðM02þþM02

−Þ

�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM02þ−M02

−Þ2þ8C2
0ðM02þþM02

−Þþ16C2
0k

2

q

≡k2þC2
0þ

1

2
ðm2

1þm2
2Þ

�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

1−m2
2Þ2þ4m4

5þ8C2
0ðm2

1þm2
2Þþ16C2

0k
2

q
:

ð67Þ

The purely spacelike case Cμ ¼ ð0;CÞ gives us

ω02
�;k ¼ k2 þ C2 þ 1

2
ðM02þ þM02

−Þ

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM02þ −M02

−Þ2 þ 16ðk · CÞ2
q

≡ k2 þ C2 þ 1

2
ðm2

1 þm2
2Þ

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

1 −m2
2Þ2 þ 4m4

5 þ 16ðk · CÞ2
q

: ð68Þ

Notice that Eqs. (67) and (68), respectively, are again the
analytic continuations of the non-Hermitian results in
Eqs. (49) and (53), with m2

5 → �im2
5 and Cμ → �iCμ.

This analytic continuation leads to a substantial difference
between the Hermitian and non-Hermitian models.

Consider first the timelike case (67). For a weak
similarity field C0, the energy spectrum of the Hermitian
model is purely real, indicating the absence of any
instability. This property is illustrated in Fig. 2(b), where
the Hermitian parameters were taken to match the corre-
sponding plots for the non-Hermitian model depicted in
Fig. 2(a).
As the similarity field strengthens in the Hermitian

model, modes in a window of wavelengths develop an
instability. While the ωþ branch of the spectrum is always
real, the instability emerges for the ω− modes when the
similarity field C0 ≡ C0 exceeds a critical value, given by
the lowest physical mass (60), and ω2

− becomes negative.
This occurs when

jC0j > C0
c ¼ M0

−: ð69Þ

The unstable modes, having a nonzero imaginary compo-
nent in the energy dispersion, appear for the momenta

max ð0; C2
0 −M02þÞ < k2 < C2

0 −M02
− ; ð70Þ

while other modes are stable.
In the range of strengthsM0þ > jC0j > M0

−, the instability
occurs within the sphere 0 ≤ k2 < C2

0 −M02
− in momentum

space. If the similarity field exceeds the higher physical
mass, i.e., jC0j > M0þ, then the instability takes placewithin
the momentum shell C2

0 −M02þ < k2 < C2
0 −M02

− . Notice
that in the unstable region, the ω− branches of the spectrum
are zero modes in a sense that the real part of the energy is
vanishing and the energy dispersion ω− is a purely imagi-
nary function of momentum.
The energy dispersion in the Hermitian model in the

presence of the timelike similarity field C0 is illustrated in
Fig. 4. Contrary to the plane-wave instability in the non-
Hermitian model, the instability in the Hermitian model
appears only for large values of the timelike field, as
discussed in the caption of this figure.
The spacelike similarity field C leads to the dispersion

relation (68), which becomes complex if and only if the
determinant of the Hermitian mass matrix (57) is negative.
Therefore, the dispersion relation (68) develops a complex
part provided one of the mass eigenvalues (60) is purely
imaginary even in the absence of the similarity field C. This
case corresponds to a trivial tachyonic instability of the
ab initio Hermitian model (56), which is not interesting
from the phenomenological point of view.5 One can also
show that a nonvanishing spatial similarity field, contrary to
its temporal analogue, improves the stability properties of
the model by increasing the real-valued part of the energy

5The tachyonic instability can, however, be generated by the
Englert-Brout-Higgs mechanism in an interacting model, which
is not considered in our paper.
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squared ω2
�. This—the spatial similarity field—does not

lead to any instability in the Hermitian model, contrary to
its non-Hermitian analog. The latter requires the presence
of only the tiniest similarity field Cμ to induce, according to
Eqs. (52) and (55), the instability of modes with sufficiently
high energy while keeping moderate and low-energy states
stable. This property makes the concept of the similarity
gauge field in the non-Hermitian theory attractive from a
phenomenological point of view, in clear distinction with
the Hermitian case.
Summarizing, we have seen that, while both Hermitian

and non-Hermitian models possess an instability in the
background of similarity gauge fields, there is a number of
essential differences between the properties of these
instabilities.
First, in the Hermitian case, the instability is realized at

very strong background fields of the order of the mass of
the particles, while the instability in the non-Hermitian
model occurs at any value of the field.
Second, in the Hermitian model, the instability occurs

within a finite window of momenta, typically of the order
of the inverse Compton wavelength of the scalar particles.
On the contrary, the unstable modes in the non-Hermitian
model appear at very high energies with wavelengths much
shorter than the Compton wavelength of the particle. We
therefore observe that the non-Hermitian model features a
novel IR/UV mixing, with a weak similarity field (corre-
sponding to small, i.e., IR gradients of the mass parameters)
leading to instabilities of the high-energy (UV) particle
modes. The Hermitian model does not possess this IR/UV
mixing.
These properties make the instability in the Hermitian

model less useful from the point of view of present-day
phenomenology, contrary to its non-Hermitian counterpart.
Even so, the instability in the Hermitian case could still be

important in the early Universe, where strong variations of
the mass matrix could occur due to the presence of thin
domain walls.

III. PHYSICAL REALIZATION

In the non-Hermitian model, the symmetric 2 × 2 mass
matrix involves three parameters [Eq. (2)] that encode two
physical masses [Eq. (5)]. Fixing the eigenvalues of the
squared-mass matrix, we still have one unfixed degree of
freedom with which we can make the mass matrix
spacetime dependent while keeping the eigenvalues glob-
ally constant in the whole spacetime. This behavior is
reproduced in Fig. 1, where the role of the auxiliary
parameter is played by the angle θ, which enters the
squared-mass matrix via Eq. (40).
In the case where the angle θ is a uniform and time-

independent parameter, the choice of its value has no effect
on the physical spectrum of the model. If the parameter θ is
inhomogeneous, it leads to the appearance of a nonzero
similarity field [Eq. (45)], which affects the particle
spectrum by modifying the dispersion relation and gen-
erating an instability at high energies.
Let us consider the case where the entries of the mass

matrix of the model in two distant spacetime regions are
connected by a slowly varying similarity transformation,
ξH ¼ −Cμxμ þOðx2Þ. Assuming that the variation is
small, i.e., C2

0 ≪ m2 and C2 ≪ m2, where m defines the
scale of the physical masses in the model, we expand the
energies in powers of the similarity field and momenta to
check the effect on the low-energy spectrum.
If the similarity field evolves in time but not in space, the

rotation induces the temporal field C0 ¼ −∂tξHðtÞ, pro-
ducing the following correction to the energy (49) of the
long-wavelength modes:

FIG. 4. Dispersion relations for the ab initio Hermitian model (61) with the massesm1 ¼ m2 ¼ 2m andm5 ¼ m in the presence of the
timelike similarity field C0 ≡ C0. The eigenvalues of the mass matrix, M0þ ¼ ffiffiffi

3
p

≃ 1.7m and M0
− ¼ ffiffiffi

5
p

≃ 2.2m, determine the three
possible regimes of the model: (a) C0 ¼ m < M0

−, a completely stable case; (b)M0
− < C0 ¼ 2m < M0þ, where the unstable region of the

ω− mode appears in the interior of the momentum surface k2 < C2
0 −M02

− ; (c) C0 ¼ 3m > M0þ, where the unstable region of the same
mode corresponds to a shell in the momentum space, C2

0 −M02þ < k2 < C2
0 −M02

− . The ωþ mode is always stable.
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ω2
� ¼ M2

� − C2
0

�
1� 2

M2þ þM2
−

M2þ −M2
−

�

þ k2
�
1 ∓ 4C2

0

M2þ −M2
−

�
þOðC4

0; k
4Þ: ð71Þ

The critical momentum, which determines the onset of the
instability of the high-energy modes, is determined by
Eq. (52):

kc ¼
M2þ −M2

−

4jC0j
þOðC0Þ: ð72Þ

Notice that we always arrange the modes as Mþ > M0.
For the spacelike inhomogeneity of the similarity gauge

field, which induces the spatial field C ¼ −∇ξH, we get the
following low-energy expansion from Eq. (53):

ω2
�;k ¼ M2

� − C2 þ k2⊥

þ k2k

�
1 ∓ 4C2

M2þ −M2
−

�
þOðC4

0; k
4Þ: ð73Þ

The critical momentum along the direction of the field
kkkC comes from Eq. (55):

kk;c ¼
M2þ −M2

−

4jCj : ð74Þ

It has the same magnitude as the critical momentum (72)
for the timelike similarity field of the same value, i.e.,
jCj ¼ jC0j. No instability appears at small values of the
spatial field C, as is illustrated in Fig. 2(b).
At the level of particle phenomenology, one can think

about the field Φ as a generic doublet Higgs(-like) field.
The effect of nonuniform similarity, which varies in either
time or space, has negligible consequences in the low-
energy domain so that the inhomogeneous similarity can
easily avoid detection. On the other hand, this phenomenon
strongly affects the propagation of particles with very high
energies.
For example, let us consider the inhomogeneous self-

similar squared-mass matrix, which varies with a similarity
parameter of order unity, ξH ∼Oð1Þ, at microscopic dis-
tances of 1 meter (or, equivalently, at the time scale of
1 m=c ≃ 3 × 10−9 s, corresponding to a frequency of the
order of 1 GHz). The similarity field has a minuscule
magnitude C ¼ cℏ=ð1mÞ ∼ 2 × 10−7 eV and its correction
to the masses of particles [Eqs. (71) and (73)] lies well
below the sensitivity of modern particle physics experi-
ments at low energies. For particles with masses in the MeV
range (Mþ ∼M− ∼Mþ −M− > 0), the particle instability
appears at the critical momentum kc [Eqs. (72) and (74)],
corresponding to energies Ec ¼ ℏckc ≃ 1018 eV, which
fall in the range of energies carried by ultra-high-energy
cosmic rays. Of course, if the similarity effects vary more
slowly (say, at the distance scale of 1 AU), then the

low-energy mass corrections become even smaller while
the high-energy cutoff, which marks the onset of the
particle instability, increases. Therefore, the similarity
evolution of the scalar field theory can rest unnoticed at
low energy scales while substantially affecting the stability
of scalar particles at high energy scales.

IV. CONCLUSIONS

In the case of non-Hermitian field theories, the similarity
transformation is usually understood as a global transforma-
tion acting in the space of fields that maps one field theory to
another equivalent theory with precisely the same physical
spectrum. Our article proposed to “gauge” the group of the
similarity transformations, thus making the transformation
dependent on the spacetime coordinate. In order to elucidate
this point, we concentrated on both Hermitian and non-
Hermitian field theories with two scalar fields.
The new similarity gauge symmetry leads to the emer-

gence of a new type of vector field, which we called the
similarity gauge field. The similarity gauge field acts as a
gauge connection in the space of similar field theories
characterized by the same (equivalent to a Hermitian) real-
valued mass spectrum.
The extension of the global similarity map to the local

map leads to new effects for the particle properties. In our
article, we considered the physically appealing case where
the similarity gauge field is absent while the squared-mass
matrix of the two-field model is allowed to acquire
coordinate dependence so that the local masses of particles
are globally constant in the whole spacetime. This phe-
nomenologically relevant setup leads to the appearance of a
local similarity gauge field that, at the same time, keeps this
“locally similar” model indistinguishable from a standard,
low-energy scalar Hermitian model.
In the ab initio Hermitian model, such coordinate

dependence of the mass matrix leads to anisotropy in
the propagation of particles and a tachyonic instability for a
narrow window of momenta. On the other hand, in the non-
Hermitian theory, we get several additional and principally
new effects:
(1) The high-energy particles become unstable at a

particular wavelength determined by the strength
of the similarity gauge field, which is related to the
anisotropy of the mass matrix. These properties
make our proposal phenomenologically interesting
for ultra-high-energy particle physics, including
detectable high-energy cosmic rays.

(2) The emergent similarity gauge field keeps current
low-energy phenomenology largely unaffected, thus
making no experimentally detectable imprint on the
low-energy spectrum over a wide range of reason-
ably chosen parameters.

(3) The emergence of the similarity gauge field leads to
a phenomenologically coherent interplay between
the infrared and ultraviolet energy scales: the lower

MAXIM N. CHERNODUB and PETER MILLINGTON PHYS. REV. D 105, 076020 (2022)

076020-12



the strength of the similarity gauge field, the more
negligible the impact on the low-energy physics,
including particle masses and anisotropy in particle
propagation. At the same time, the weaker the
similarity field, the higher the energy a particle
should achieve to make the effects generated by
the presence of the similarity field significant. (The
latter effects include particle instabilities and anisot-
ropies in particle propagation.) We stress that this
behavior arises only because anti-Hermitian inter-
actions are permissible for a non-Hermitian theory.

(4) An elemental particle-physicsmodel does not contain
an inhomogeneous mass matrix as a fundamental
quantity. Instead, the inhomogeneity of the mass
matrix should be considered as emerging from addi-
tional dynamics not considered here, e.g., as an
effective operator that is parametrized in terms of
the expectation value of some additional scalar field,
say, χ. The inhomogeneousmassmatrix does not then
correspond to the lowest-energy, vacuum state of the
theory. Instead, when a particle with a wave vector
above the threshold set by the similarity gauge field
propagates in the inhomogeneous background, it
loses energy via emission of quanta of the field χ.
Since the total energy is conserved, one could expect
that the radiation process excites the decaying
eigenmode above threshold, slowing down the par-
ticle and, at the same time, smoothening the inho-
mogeneities in the expectation value of the χ field.
The investigation of any such mechanism requires a
separate study beyond the scope of the present work.

(5) A distant analog of the discussed phenomenon is the
electromagnetic Cherenkov radiation that accompa-
nies a highly energetic particle entering a dielectric
medium. The radiation occurs provided the magni-
tude of the particle wave vector exceeds a certain
threshold, which is determined by the condition that
the particle velocity equals the velocity of light in the
medium. Eventually, the emitted radiation leads to a
decrease in the particle energy, so that the wave
vector reaches the critical value and the particle can
no longer generate the radiation. This picture shares
a similarity with the spectrum shown in Fig. 2(a) in
the non-Hermitian model.

An obvious extension of this article is to consider local
similarity transformations of non-Hermitian fermionic field
theories, such as those described in Refs. [30–36]. We leave
this for future work.
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APPENDIX: OPERATOR-LEVEL
TRANSFORMATIONS

Generalizing the transformations described in Ref. [28],
the local similarity transformation S can be written in terms
of the following operator:

Ŝðt; xÞ ¼ exp

�
iξðt; xÞ

×
Z
y
ðπ1ðt; yÞϕ2ðt; yÞ þ π2ðt; yÞϕ1ðt; yÞ

− π̃†1ðt; yÞϕ̃†
2ðt; yÞ − π̃†2ðt; yÞϕ̃†

1ðt; yÞÞ
	
: ðA1Þ

We do not distinguish the operator-valued fields and
conjugate momenta from their c-number counterparts so
as to avoid further complicating our notation.
Making use of the canonical algebra [28]

½ϕiðt; xÞ;ϕjðt; yÞ� ¼ 0; ðA2aÞ

½ϕiðt; xÞ; πjðt; yÞ� ¼ iδijδ3ðx − yÞ; ðA2bÞ

½ϕ̃†
i ðt; xÞ; ϕ̃†

jðt; yÞ� ¼ 0; ðA2cÞ

½ϕ̃†
i ðt; xÞ; π̃†jðt; yÞ� ¼ iδijδ3ðx − yÞ; ðA2dÞ

½ϕiðt; xÞ; ϕ̃†
jðt; yÞ� ¼ 0; ðA2eÞ

½ϕiðt; xÞ; π̃†jðt; yÞ� ¼ 0; ðA2fÞ

where i, j ¼ 1, 2, we can show that the fields transform as

ϕiðxÞ → ϕiðxÞ cosh ξðxÞ − ϕ=i ðxÞ sinh ξðxÞ; ðA3aÞ

ϕ̃†
i ðxÞ → ϕ̃†

i ðxÞ cosh ξðxÞ þ ϕ̃†
=i ðxÞ sinh ξðxÞ; ðA3bÞ

where =i ¼ 2 if i ¼ 1 and vice versa. Hereafter, we omit the
spacetime arguments for notational convenience. It then
follows straightforwardly that

∂μ½Ŝ−1ϕiŜ� ¼ coshðξÞ∂μϕi − sinhðξÞ∂μϕ=i

þ ∂μξ½sinhðξÞϕi − coshðξÞϕ=i�; ðA4aÞ

∂μ½Ŝ−1ϕ̃†
i Ŝ� ¼ coshðξÞ∂μϕ̃

†
i þ sinhðξÞ∂μϕ̃

†
=i

þ ∂μξ½sinhðξÞϕ̃†
i þ coshðξÞϕ̃†

=i �: ðA4bÞ

For ξ ¼ const, the kinetic terms are invariant under this
transformation. Instead, for the local transformation, we
have
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X2
i¼1

∂ϕ̃†
i · ∂ϕi →

X2
i¼1

∂½Ŝ−1ϕ̃†
i Ŝ� · ∂½Ŝ−1ϕiŜ�

¼
X2
i¼1

½∂ϕ̃†
i · ∂ϕi − ϕ̃†

i ϕ̃ið∂ξÞ2�

þ ∂ξ · ½ϕ̃†
1∂ϕ2 þ ϕ̃†

2∂ϕ1

− ð∂ϕ̃†
1Þϕ2 − ð∂ϕ̃†

2Þϕ1�; ðA5Þ

wherein we recognize the similarity current from Eq. (36).

Note that the transformation described here maps the
Lagrangian but not the field operators themselves. In order
to map both the Lagrangian and the field operators, it is
necessary to construct the similarity transformation in Fock
space and at the level of the particle and antiparticle
creation and annihilation operators, as was done in
Ref. [28]. We refrain from doing so here, since the
coordinate dependence of the squared-mass matrix signifi-
cantly complicates the Fock-space quantization for
this model.
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