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Abstract—This paper adds to a growing body of research into
the practical utility of using interval-valued (IV) response modes
to efficiently capture richer quantitative data from people—
e.g., through surveys. Specifically, IV responses offer a cohesive
method of capturing uncertainty, vagueness, or range associated
with individual quantitative responses. In turn, IV data provide
a strong foundation for subsequent fuzzy set based modelling—
e.g., using the Interval Agreement Approach. The present paper
focuses on the impact of soliciting IV estimates upon accuracy of
group perceptual judgements—the ‘Wisdom of the Crowd’. We
report results from two empirical studies, examining the utility of
IV data in the context of estimating specific (i.e., discrete point)
ground truths, and directly comparing IV perceptual judgements
(quantity estimates) against more traditional point estimates.
There were two main hypotheses concerning the potential impacts
of permitting uncertain (i.e., IV) estimates. First, it is possible that
when specific predictions are required, permitting deliberately
imprecise responses may reduce (prediction) accuracy versus
forcing each respondent to provide their single ‘best guess’.
Second, that capturing the uncertainty associated with individ-
ual predictions should permit improved aggregation of group
estimates, through weighting individual estimates according to
their certainty. We report findings from two studies designed
to investigate these hypotheses, and outline proposals for future
research in this area.

I. INTRODUCTION AND BACKGROUND

In comparison with conventional point response modes, e.g.,
Likert-type [1], or Visual Analogue [2], [3] scales, interval-
valued (IV) estimates offer the capacity to capture additional
information in each response, concerning individual response
uncertainty, vagueness, or range [4]. Recent evidence indicates
that an ellipse response mode (cf. Fig. 1) is able to do
so efficiently, in terms of user experience (i.e., perceived
workload and complexity) [5], [6]. These positive attributes
have contributed to a recent surge in interest in IV response
elicitation—exploring a variety of real-world applications
([7]–[10]), leading to development of open-source software
[11], and motivating associated theoretical advances [12]–[17].

The benefits in accuracy gained from aggregating estimates
from multiple estimators have been long established, in an
effect often termed the ‘Wisdom of the Crowd’ [18], [19]. The
basic principle is that, in the absence of significant bias, indi-
vidual estimate errors tend to balance out. The present paper
explores the impact of soliciting IV estimates on the accuracy
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Fig. 1. Illustrative responses. A: Likert-type (ordinal). B: VAS-type. C: Ellipse
(low uncertainty). D: Ellipse (high uncertainty).

of group aggregate perceptual judgements—weighing the po-
tential informational advantages against potential drawbacks of
permitting estimators to provide explicitly uncertain estimates.
There were two main hypotheses concerning the potential
impacts of permitting uncertain (i.e., IV) estimates. First, it is
possible that when specific predictions are required, permitting
deliberately imprecise responses may reduce estimate accuracy
versus forcing each respondent to provide their single ‘best
guess’. Second, that capturing the uncertainty associated with
individual predictions should permit improved aggregation
of group estimates, through weighting individual estimates
according to their certainty.

In Section II we describe the participants, stimuli and
procedures of two empirical studies—including details regard-
ing data collection and analysis. In Section III we report
descriptive and inferential results from each study. In Section
IV we summarise key findings, discuss their implications, and
describe planned future work.

II. METHOD

A. Study Participants

Study 1: Eighty participants completed the first study, re-
cruited through opportunity sampling across three UK cam-
puses of the University of Nottingham. Note that separate user
feedback data obtained from this same experimental sample is
reported in [5]. These were a mixture of academic and non-
academic staff, as well as under- and post-graduate students.
Participants volunteered approximately five minutes of their
time to complete the study, in return for the option to enter a
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prize draw to win a jar of sweets (upon which they had made
their judgements). Of these, 27 self-identified as female, 52
male and one declined to report their gender. Self-reported
ages ranged from 17 to 57 (M=26.15, SD=10.08), though one
participant declined to report their age. Fifty-five reported as
native English speakers, and 25 as not.

Study 2: Twenty-two participants completed the second
study, recruited through opportunity sampling of attendees
at an interactive online workshop session held for ‘Canberra
AI Week’ (Dec. 2020). These were a combination of under-
and post-graduate students, academics, industry professionals,
and the general public. Participants volunteered to take part
during the session, with a study duration of approximately
five minutes, in return for the chance to win a $100AUD prize.
As this was a short pilot study, held during a time-sensitive
workshop session, we did not collect participant demographic
information.

B. Questions and Experimental Stimuli

Study 1: In this study, participants provided five percep-
tual estimates concerning a stimulus viewed in person. Each
person was presented with a transparent plastic sweet jar,
approximately half filled with coloured sweets (Bassett’s Jelly
Babies®). They were tasked with judging the overall weight
of the jar, including contents, and the number of sweets that
it contained of each of four colours: purple, yellow, green
and orange. In fact, the jar weighed a total of 1669g, and
contained 74 purple, 106 yellow, 26 green and 50 orange
sweets. Responses were made on paper. The continuous scales
upon which ratings were made ranged from [0, 4]kg, and from
[0, 120] for each sweet colour.

Study 2: In this study, participants provided four perceptual
estimates concerning a series of image stimuli, viewed on their
own internet connected device. Each image was a photograph
showing a group of penguins, and participants were tasked
with reporting the number of penguins shown in each image—
this was pitched as representing a ‘citizen science’ project,
to monitor population size. In reality, the images contained
51, 212, 23, and 51 (again) penguins, respectively. Responses
were made using ‘DECSYS’ [11]. The continuous scales upon
which ratings were made ranged [0, 300].

C. Experimental Design

Study 1 used a between-subjects design, in which half of
participants made point estimates (VAS), while the other half
provided interval-valued estimates. Study 2 used a within-
subjects design, with all participants providing interval-valued
estimates. In both studies, participants were instructed that
they should provide their best estimates, and in the case
of interval estimates, they were instructed that each interval
should cover the area of the scale that they believed the correct
value to fall within (a disjunctive interval).

Importantly, while in Study 1 participants were entered into
a random draw to win the prize (the jar of sweets), in Study 2
the $100AUD prize was used to incentivise participants to give
accurate interval estimates. Each participant was informed:

“The winner will be the respondent who gives the most
answers where the correct value falls within their interval
estimate. In the case of a draw (e.g., multiple respondents’
estimates all contain the correct answer), the prize will go
to whoever provided the more specific estimates (i.e., the
narrowest correct intervals)”.

D. Data Collection Procedure

Each study was approved by the University of Nottingham
School of Computer Science Ethics Committee. For Study 1,
participants were randomly allocated to a response condition
(i.e., point or interval-valued), then shown either one or two
information sheets. The first provided basic information about
the study and use of resulting data. The second was shown only
to respondents allocated to the interval response condition.
This provided a brief explanation of the response mode—
instructing them to mark each estimate with an ellipse, which
could be made narrower or wider to indicate their uncertainty.
Illustrative examples were provided here of both more and
less certain responses. For Study 2, each participant was
presented with equivalent study and response information over
the internet, via DECSYS [11]. Having had the opportunity
to review the study information, participants who wished to
proceed recorded their consent, before beginning the task.

Study 1 responses were made on paper and encoded digitally
afterwards. When making their perceptual estimates, partici-
pants were instructed that they were permitted to view the
jar and its contents from different angles, but not to lift it to
aid their weight judgements. After this, participants provided
subjective user feedback on whichever of the two response
modes they had used—these data were analysed in [5].

Study 2 participants viewed each image stimulus and made
their perceptual estimates online, using DECSYS [11]. They
were not asked subsequent user feedback questions due to time
constraints in the workshop session.

Upon completing the survey, Study 1 participants were given
the opportunity to enter into a random draw to win the sweet
jar and its contents, while Study 2 participants were given
the option to provide contact details in case of winning the
performance-based prize. Each study took only around five
minutes to complete for each respondent.

E. Analysis Procedure

We report a variety of descriptive and inferential statistics
across both studies. First, we will report results from the larger
Study 1, before proceeding to those from the pilot follow-up
Study 2. The latter comprise a test of repeatability of certain
Study 1 findings under selectively different circumstances—
i.e., a different task, in which:

• It is possible to be more accurate with added effort
investment.

• There is a performance-based incentive to encourage
making added effort investment.

More specifically, we first report IAA plots [15] illustrating
grouped estimates for each Study 1 stimulus, as well as mean
interval and mean point estimates for the same stimuli. Then,



we report group-level (i.e., ‘crowd’) estimates and error for
each question, according to a series of different aggregation
metrics for each response mode. We then report individual
level errors, both MBE and MAE, for each question and
response mode. Following this, we examine three hypotheses:

1) That interval-valued estimates, once reduced to a point
(in order to compare against a point ground truth), may
be less accurate than point ‘best guess’ estimates.

2) That interval estimates offer an advantage over point es-
timates in that narrower (i.e., more certain) estimates are
more accurate than wider (more uncertain) estimates—
therefore permitting improved aggregation of group es-
timates by weighting individual estimates according to
this additional information.

3) That uncertainty (i.e., interval widths) will scale posi-
tively with magnitude of the estimate.

To address the first hypothesis, we report two mixed-
model ANOVAs, examining whether there were significant
differences in error between estimates made for each response
mode, or between task stimuli. For our main effect of interest
(difference in accuracy between point and interval response
modes), a priori statistical power calculations, made using
G*Power [20], indicated power of >.99 to detect a large effect,
of .81 for a medium effect, and .21 for a small effect (ANOVA:
repeated measures, between factors, α = .05, f=.4, .25, .1
respectively, corr. among rep. measures = .5—cf. [21]).

We then examine a second hypothesis, reporting a linear
mixed effects model (LMEM) designed to examine the impact
of interval width upon estimate accuracy. We also include
estimate magnitude (i.e., interval position along the response
scale) as a second fixed effect, along with a two way in-
teraction term, in order to elucidate whether the relationship
between estimate width and accuracy varies depending upon
magnitude of estimate (e.g., narrower intervals around smaller
estimates may indicate more reliable information than nar-
rower intervals around larger estimates). We include random
intercepts, to permit differing baseline accuracy in relation to
each participant and question. The model formula is therefore:

γe
i,j =β0 + β1x

w
i,j + β2x

m
i,j + β3(x

w
i,j · xm

i,j) + µi + µj + ϵi,j
(1)

where γe
i,j is the outcome variable of estimate error, β is

the coefficient, xw
i,j is estimate width w, xm

i,j , is estimate
magnitude m, and (xw

i,j ·xm
i,j) is the interaction between these

two factors—for a given participant i and question j. β0 de-
notes the fixed intercept; µi and µj denote respective random
intercepts for participant and question; and ϵ represents the
residual error.

To examine the third hypothesis, we then report one further
LMEM, with the outcome variable of interval width, γw

i,j . This
model is as follows:

γw
i,j =β0 + β1x

m
i,j + µi + µj + ϵi,j (2)

Following these analyses, we will proceed to report findings
from Study 2. These will comprise IAA plots [15] to illustrate
grouped estimates for each Study 2 stimulus, as well as a
linear mixed effects analysis designed to examine whether the
results of model (1)—concerning hypothesis 2—are replicated
on this new task, which differs from the first in the two respects
reported near the beginning of this section.

F. Aggregation Methods

We compare a total of seven aggregation measures to deter-
mine group-level (‘crowd’) estimates—two of these concern
point estimates, and five interval estimates. Each measure is
listed below, with brief explanation.

First, Point Mean—this is simply the arithmetic mean of all
point estimates.

Second, Point Median—this is the median value of all point
estimates. In fact, as there were 40 point estimates for each
question, this was the mean of the twentieth and twenty-first
estimates, ordered by magnitude.

Third Interval Mean—the most common method to compute
the mean of a set of intervals is to calculate the mean of all
left endpoints and the mean of all right endpoints, as shown
below [22]: [

1

N

N∑
i

xi,
1

N

N∑
i

xi

]
(3)

Where xi is each left endpoint and xi is each right endpoint,
and N is the number of responses. This value is itself an inter-
val. In order to reach a point-valued mean—for straightforward
comparison against a point-valued ground truth—the midpoint
of this mean interval can be taken. However, doing so discards
information concerning interval width, which is valuable in
many circumstances. Note that this is then mathematically
equivalent to taking the mean of all individual interval mid-
points, as shown below:(
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Fourth and fifth Interval Median—unlike the point-valued
mean of a set of intervals, when calculating the median of
all intervals, different values are obtained (we report both)
depending upon whether the midpoint of the median interval
is taken, or the median of the interval midpoints, as shown
below (for odd numbered dataset):
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)
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(5)

Sixth and seventh IAA Mean of Maxima and IAA Centroid—
the Interval Agreement Approach (IAA [15]), provides a
group-level of agreement across the (group of) intervals in
the form of a 2-dimensional distribution, effectively a fuzzy
set [23], where the degree of membership at each x-value
depends directly upon the degree of ‘agreement’ of the data—
i.e., overlap between intervals. Different measures of central



Fig. 2. IAA plot showing aggregated IV estimates for the overall weight of
the sweets jar (Study 1), based upon 40 observations. Actual weight is shown
in brackets and marked with a black vertical line. Magenta line shows IAA
mean of maxima, and red line shows IAA centroid.

tendency of an IAA set can be taken. These may prioritise the
degree of agreement, such as the point of maximum agreement
between all intervals, or the mean of maxima if there are
multiple such points. Alternative measures may give weight
to the full range the set comprises; the centroid, for instance,
represents the ‘centre of mass’ of the complete IAA set. It is
notable however that this centroid is mathematically equivalent
to a weighted average of all interval midpoints, with a greater
weight given to broader intervals (see below).

C(x) =

∑N
i

(
xi+xi

2

)
∗ (1 + xi − xi)∑N

i (1 + xi − xi)
(6)

This runs counter to the more intuitive weighting approach,
whereby narrower intervals—indicating greater confidence in
the estimate—may be weighted more highly. It may therefore
be considered unlikely that this metric will outperform others
based on IV data, such as an unweighted mean. Note here that
there also exist more complex approaches to derive central
tendency from IAA sets, such as ‘alpha-cut defuzzification’
[24]. We purposely do not consider more complex approaches
in the present analysis to limit the potential to identify a
measure, or set of aggregation parameters, that performs well
with the current data set by chance (i.e., overfitting).

III. RESULTS

A. Descriptives—Study 1

IAA plots visualising Study 1 interval estimates are shown
in Figures 2 and 3. Mean Study 1 estimates, both point and
interval, are shown in Fig. 4.

Error for group-level estimates, according to each of the
seven aggregation methods, is shown in Table I. Note here
that we constrain each group-estimate to the same dimensions
as the ground-truth for comparison. In each question of the
present study the ground truth is a discrete value, and therefore
when calculating accuracy on this basis we disregard some
information inherent in the interval-valued estimates. This
will accurately reflect some real-world circumstances, but not
others.

TABLE I
GROUP-LEVEL ‘CROWD’ ERROR FOR EACH AGGREGATION METHOD AND

QUESTION.

Agg. Method Weight Purple Yellow Green Orange MAE

Point Mean +6.2 -28.7 -42.7 +2.2 -12.2 18.4
Point Median +3.4 -34.0 -43.5 +2.5 -13.0 19.3
IV Mean -0.7 -21.4 -42.2 +2.2 -11.1 15.5
IV Med. of Mid. -3.1 -23.5 -43.5 -0.7 -14.2 17.0
IV Mid. of Med. -4.8 -23.2 -45.5 -1.2 -15.0 17.9
IAA M. of Max. -5.6 -34.0 -50.3 +2.0 -18.5 22.1
IAA Centroid +4.4 -19.6 -42.1 +3.5 -10.2 16.0

Actual Value 50.1 74 106 26 50
40 obs. per group. MAE is average group-level error across all questions.

TABLE II
AVERAGE INDIVIDUAL-LEVEL ERROR FOR EACH RESPONSE MODE AND

QUESTION.

Response Mode Weight Purple Yellow Green Orange Avg.

MBE - Point +6.2 -28.7 -42.7 +2.2 -12.2 -15.1
MBE - Interval -0.7 -21.4 -42.2 +2.2 -11.1 -14.7

MAE - Point 20.4 31.0 43.4 7.5 15.5 23.5
MAE - Interval 19.0 26.7 43.1 9.1 16.2 22.8
40 obs. per group. Note that all MAE values are necessarily positive.

Errors (both mean bias, and mean absolute), across all
individual estimates for each response mode, are shown in
Table II. Note that the same constraints apply to individual
interval estimates as acknowledged for group estimates, that
is, we reduce intervals to their midpoints for a straightforward,
but arguably naı̈ve, assessment of accuracy.

Also note that in both Tables I and II weight estimates and
error are converted to the same scale as the other questions
[0,120], for ease of comparison.

B. Analyses of Variance—Study 1

Descriptive results suggest that while there were substantial
differences in error between questions, no large differences
were apparent between response modes. In order to formally
examine differences in estimate error, we conducted two 2x5
mixed model ANOVAs—with dependent variables of MBE
and MAE respectively—each included the 2-level between
subjects factor of point vs IV response mode, and the 5-level
within subjects factor of task question.

Both models were Greenhouse-Geisser corrected for viola-
tions of sphericity. For MBE, results indicated a significant
main effect of question, F(2.798,218.216)=114.517, p<.001,
but neither significant main effect of response-type, F<1.0,
nor a significant interaction term, F(2.798,218.216)=1.966,
p=.124. The same pattern was evident for MAE. A significant
main effect of question was evident, F(2.278,177.711)=81.553,
p<.001, but neither a significant main effect of response
type, F<1.0, nor a significant interaction term, F<1.0. Due
to finding no significant main effect of response mode (our
variable of interest), nor significant interaction effects, we did
not proceed to conduct post-hoc pairwise comparisons.



Fig. 3. IAA plots showing aggregated IV estimates for the number of sweets in the jar of each of the four colours (Study 1), based upon 40 observations.
Actual values are shown in brackets and marked with a black vertical line. Magenta line shows IAA mean of maxima, and red line shows IAA centroid.

Fig. 4. Showing group mean estimates for both point and IV response
conditions in Study 1. Mean point responses shown as red asterisks, Mean
intervals as blue lines, and actual ground truth values as black vertical lines.
x-axis labels represent sweet number, with weight in brackets.

TABLE III
MODEL SHOWING STUDY 1 EFFECTS OF IV ESTIMATE WIDTH (w),
MAGNITUDE (m), AND TWO-WAY INTERACTION TERM (w ·m) ON

ESTIMATE ERROR (MAE) (e).

Fixed Effects Estimates β SE t p

Intercept : (0) 38.381 8.693 4.415 <.001
Width w : (xw

i,j) -.197 .205 -.960 .338
Magnitude m : (xm

i,j) -.281 .085 -3.304 .001
W.*M. int. w ·m : (xw

i,j · xm
i,j) .002 .003 .571 .569

Random Effects Estimates µ

Participant intercept (i) 4.041
Question intercept (j) 16.269

Residual ϵi,j 12.881
Fitted using REML, N = 200, DF = 196, AIC = 1647.2, BIC = 1670.1

C. Linear Mixed Effects Models—Study 1

To examine the hypothesis that narrower intervals were
more accurate on this task than wider intervals, as well as
whether this effect varies in relation to estimate magnitude, we
implemented the LMEM shown in (1). Results are reported in
Table III.

To examine the hypothesis that larger interval estimates
(i.e., of greater magnitude) were wider, reflecting greater
uncertainty—phrased differently, that uncertainty scaled pos-
itively with the size of the estimate—we implemented the
LMEM shown in (2). Results are reported in Table IV.

D. Descriptives—Study 2

IAA plots visualising Study 2 interval estimates are shown
in Figure 5.

TABLE IV
MODEL SHOWING STUDY 1 EFFECT OF IV ESTIMATE MAGNITUDE (m) ON

ESTIMATE WIDTH (w).

Fixed Effects Estimates β SE t p

Intercept : (0) 15.698 2.655 5.916 <.001
Magnitude m : (xm

i,j) .165 .032 5.178 <.001

Random Effects Estimates µ

Participant intercept (i) 8.899
Question intercept (j) 3.623

Residual ϵi,j 6.840
Fitted using REML, N = 200, DF = 198, AIC = 1447.0, BIC = 1463.5

TABLE V
MODEL SHOWING STUDY 2 EFFECTS OF IV ESTIMATE WIDTH (w),
MAGNITUDE (m), AND TWO-WAY INTERACTION TERM (w ·m) ON

ESTIMATE ERROR (MAE) (e).

Fixed Effects Estimates β SE t p

Intercept : (0) -18.032 9.584 -1.881 .063
Width w : (xw

i,j) .768 .268 2.866 .005
Magnitude m : (xm

i,j) .474 .089 5.351 <.001
W.*M. int. w ·m : (xw

i,j · xm
i,j) -.005 .002 -2.499 .014

Random Effects Estimates µ

Participant intercept (i) 7.563
Question intercept (j) 6.387

Residual ϵi,j 33.898
Fitted using REML, N = 88, DF = 84, AIC = 897.50, BIC = 914.52

E. Linear Mixed Effects Models—Study 2

We now report a replication of the former model (1) on the
Study 2 data set. Results are reported in Table V.

IV. SUMMARY, CONCLUSIONS AND FUTURE WORK

This paper documents two studies designed to empirically
evaluate the impact of permitting interval-valued perceptual
estimates—and thereby explicitly acknowledging the varying
degrees of uncertainty in these estimates—upon the ‘Wisdom
of Crowds’ (i.e., accuracy of group-level estimates).

Collecting intervals provides greater informational capacity
within each response than collecting points. We propose that
IV responses can capture response uncertainty (i.e., epistemic,
or disjunctive set-valued information), and also inherent range
in the appropriate response (i.e., ontic, or conjunctive set-
valued information—cf. [25], [26]). The present paper focuses
exclusively the former case—i.e., we established a single



Fig. 5. IAA plots showing aggregated IV estimates for the number of penguins shown in each of the four stimuli (Study 2), based upon 22 observations.
Actual values are shown in brackets and marked with a black vertical line. Magenta line shows IAA mean of maxima, and red line shows IAA centroid.

point ground truth for each experimental stimulus, therefore
the information captured by interval estimate widths (if used
correctly) should represent the level of epistemic uncertainty
associated with each individual estimate. This will accurately
reflect some real-world circumstances, but not others.

To summarise, results of Study 1 found a tendency towards
underestimation of larger true values, in both point and IV
response modes. Group-level (‘crowd’) estimates based on
IV estimates tended to slightly outperform those based on
point estimates, the mean of intervals was the best performing
measure. The IAA ‘Mean of Maxima’ was the exception
to this rule, having the greatest error on three out of five
questions, and overall. This poor performance was likely due
to exacerbation of the general tendency to underestimate true
values—taking the value of maximum agreement effectively
eliminates the contribution of outliers to the group estimate,
but these may be crucial to the accuracy of the ‘Wisdom
of Crowds’ effect. Likewise, the bounding of the response
scale (to 4kg & 120 sweets maxima) may have contributed
to underestimation on this task, by precluding more extreme
positive outliers. As well as comparing accuracy of ‘crowd’
estimates, we examined two primary research questions:

1) When specific predictions are required (i.e., with a point
ground truth), does permitting imprecise IV estimates
reduce accuracy of individual estimates (by comparison
with point ‘best estimates’)?

2) Does capturing the additional information associated
with each IV estimate (i.e., concerning uncertainty) per-
mit more accurate group-level estimates, by weighting
individual estimates according to their specificity?

In relation to hypothesis one, inferential analyses revealed
significant differences in individual estimate error (both MBE
& MAE) between questions, but no evidence of a substantial
difference between point and ‘collapsed’ interval-valued esti-
mates (i.e., midpoints) on this task, despite a priori calculations
indicating high statistical power to detect either a large or
medium effect with this sample size. As discussed earlier,
comparing the accuracy of individual interval-valued estimates
versus point ground truths—by collapsing these to points—is
a naı̈ve approach to assessing their value, as this process dis-
regards the additional information that they capture. Nonethe-
less, it is interesting to observe that permitting respondents to
provide deliberately imprecise (i.e., uncertain) responses did

not lead to any significant loss in estimate accuracy, even when
reducing these responses to their midpoints.

In relation to hypothesis two, for Study 1, linear mixed
effects analysis revealed no significant relationship between
widths of interval estimates and the accuracy of these estimates
(see Table III). This model did identify a significant negative
effect of estimate magnitude on error, consistent with the
overall tendency towards underestimation in this task, but
also found no significant two-way interaction between these
factors, indicating that estimate width did not reliably relate
to accuracy irrespective of the magnitude of the estimate.
These results mean that weighting interval estimates by their
specificity (i.e., inversely by their width) would not offer any
improvement on group-level estimates for the Study 1 data set.

It is surprising that those respondents who felt confident to
provide more specific estimates were not, in fact, any more
accurate than those who felt less able to do so. This result
implies one of two things—on this task, either intervals didn’t
capture uncertainty, or uncertainty didn’t relate to accuracy.
The former seems inconsistent with previous research, which
has established a reliable relationship between interval re-
sponse width and respondent uncertainty [4], the latter also
seems to run counter to both intuitions and existing evidence
[27]. In either case, the findings may represent some specific
issue relating to the Study 1 task and/or sample. We propose
two potential explanations for further evaluation—relating to
participant motivation and task difficulty, respectively.

1) Due to insufficient incentives—i.e., the prize was not
high value, and the draw was random—many partici-
pants did not invest enough effort to provide high quality
estimates.

2) Due to the difficulty of the task—i.e., not all sweets were
visible, so participants couldn’t be genuinely certain—
there was insufficient inter-rater variance in certainty to
capture a significant effect.

In short, either participants weren’t trying or simply weren’t
able to give precise estimates on this task—each leading to
low-fidelity responses. This may reflect generally poor quality
data, or it may be driven by a confounding subset of partic-
ipants who failed to engage with the task, thereby providing
both inaccurate estimates and failing to effectively use the
interval response mode by defaulting to narrow, ‘point-like’,
responses. Best practice in identifying ‘careless respondents’



to IV survey questions is another area that will require substan-
tial consideration and development. We planned a follow-up
study to explore these hypotheses. Study 2 represents a pilot
for this study, the broad aim being to test the repeatability of
Study 1 findings on a different task, in which:

• It was possible to be more accurate with added effort
investment.

• There was a performance-based incentive to encourage
making added effort investment.

Importantly, the task incentivised the narrowest correct
estimates, so it was in participants’ interest for their intervals
not only to be close to the true values, but also to accurately
reflect their certainty. Also note that performance on this task
(penguin counting) should scale positively with the potentially
intra-rater variable factor of effort invested (i.e., care taken),
rather than another factor that varies only on an inter-rater
level (e.g., expertise), this should increase ‘metacognitive
awareness’ [28] of differences in knowledge and performance,
thereby increasing signal to noise ratio.

Results on the second task did not replicate those on the
first (see Table V). A significant positive effect of estimate
width on estimate error was found, as well as an interaction
term indicating that this effect was significantly stronger when
estimates were of lower magnitude (i.e., reported certainty was
more reliable for lower estimates). This means that, on this
task, weighting intervals by their certainty could offer signif-
icant improvements in group-level ‘crowd’ estimate accuracy.
However, as task changes were made relating to both putative
explanations for the null Study 1 results, this pilot study is not
able to differentiate the two accounts. We hope soon to publish
results from a more comprehensive empirical study, with a
substantially larger and more representative sample, additional
experimental manipulations designed to tease apart the impacts
of each factor, as well as a point response control condition,
to permit comparison versus a conventional response mode on
the updated task design.

To summarise, in this paper we report results and discuss
implications of two empirical studies examining the efficacy
of interval-valued perceptual estimates. Results suggest that
intervals can capture more (useful) information in this context
but, importantly, that this may depend on the nature of the task,
as well as levels of participant motivation and engagement.
These considerations are important more generally across
quantitative data collection—however, it is possible that IV
responses may be more sensitive to these factors, due to lack
of familiarity and potential to revert to habitualised ‘point-like’
responses. Further work is ongoing.
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