
Journal of Neuroscience Methods 372 (2022) 109556

Available online 7 March 2022
0165-0270/Crown Copyright © 2022 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Easy to interpret coordinate based meta-analysis of neuroimaging studies: 
Analysis of brain coordinates (ABC) 

CR Tench a,c,*, R. Tanasescu a, CS Constantinescu a, DP Auer b,c,d,e, WJ Cottam b,c,d,e 

a Mental Health & Clinical Neurosciences, Clinical Neurology, University of Nottingham, Queen’s Medical Centre, Nottingham, UK 
b Radiological Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, UK 
c NIHR Nottingham Biomedical Research Centre, Queen’s Medical Centre, University of Nottingham, Nottingham, UK 
d Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK 
e Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK   

A R T I C L E  I N F O   

Keywords: 
Meta-analysis 
Neuroimaging 
Voxel-based morphometry 
Functional MRI 

A B S T R A C T   

Background: Functional MRI and voxel-based morphometry are important in neuroscience. They are technically 
challenging with no globally optimal analysis method, and the multiple approaches have been shown to produce 
different results. It is useful to be able to meta-analyse results from such studies that tested a similar hypothesis 
potentially using different analysis methods. The aim is to identify replicable results and infer hypothesis specific 
effects. Coordinate based meta-analysis (CBMA) offers this, but the multiple algorithms can produce different 
results, making interpretation conditional on the algorithm. 
New method: Here a new model based CBMA algorithm, Analysis of Brain Coordinates (ABC), is presented. ABC 
aims to be simple to understand by avoiding empirical elements where possible and by using a simple to interpret 
statistical threshold, which relates to the primary aim of detecting replicable effects. 
Results: ABC is compared to both the most used and the most recently developed CBMA algorithms, by repro-
ducing a published meta-analysis of localised grey matter changes in schizophrenia. There are some differences 
in results and the type of data that can be analysed, which are related to the algorithm specifics. 
Comparison to other methods: Compared to other algorithms ABC eliminates empirical elements where possible 
and uses a simple to interpret statistical threshold. 
Conclusions: There may be no optimal way to meta-analyse neuroimaging studies using CBMA. However, by 
eliminating some empirical elements and relating the statistical threshold directly to the aim of finding replicable 
effects, ABC makes the impact of the algorithm on any conclusion easier to understand.   

1. Introduction 

Coordinate based meta-analysis (CBMA) is commonly used to esti-
mate effects by analysing multiple independent, but related by a shared 
hypothesis, neuroimaging studies. It is employed to meta-analyse 
(amongst others) voxel-based morphometry (VBM) or functional mag-
netic resonance imaging (fMRI) and uses only reported summary sta-
tistics; coordinates and/or statistical effect sizes such as the t statistic. 
CBMA can be important in neuroimaging where often studies use few 
subjects or employ no principled control of the type 1 error rate so po-
tential for false results is high (Bennett et al., 2009; Kiefer, 1953), and 
when the available analysis options can produce different results even 
on the same data (Li et al., 2020; Popescu et al., 2016). By analysing 

multiple studies simultaneously, those results that are replicated across 
at least some can be identified and are assumed indicative of relevance 
to the hypothesis. In the absence of whole brain statistical images with 
which to perform full image based meta-analysis (IBMA), CBMA can 
help clarify our understanding, provide testable hypotheses for future 
prospective studies, or help to test hypothesised effects. 

Probably the most popular method of performing CBMA is the acti-
vation likelihood estimate (ALE) algorithm (Eickhoff et al., 2009, 2012; 
Laird et al., 2005; Turkeltaub et al., 2002, 2012). However, there are 
multiple others (Albajes-Eizagirre et al., 2018; S. G. Costafreda, 2012; 
Sergi G. Costafreda et al., 2009; Montagna et al., 2018; Radua et al., 
2012; C. R. Tench et al., 2017, 2020; Wager et al., 2003, 2007) but using 
different approaches and assumptions to perform the analysis. 
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Commonly CBMA requires a smoothing kernel to extrapolate the re-
ported coordinates into a voxel-wise analysis. Across the different al-
gorithms the kernel can be Gaussian or spherical, and have full width 
half max (FWHM), or width, of 10–25 mm that can be fixed or depen-
dent on the study sample size. Many algorithms employ randomisation 
of coordinates into an image space to represent an empirical null hy-
pothesis reflecting the situation of no systematic spatial agreement 
across studies, and this requires a suitable image space be defined. Ex-
ceptions to this are the signed differential mapping permutation of 
subject images (SDM-PSI) method (Albajes-Eizagirre et al., 2018) and 
the parametric coordinate based meta-analysis (PCM) method (S. G. 
Costafreda, 2012), which make distributional assumptions about the 
reported statistical effects and employ a null of zero effect, but these 
demand that studies report both positive and negative effects (activation 
& deactivation, for example) in an unbiassed way; studies performing 
one tailed analyses would violate the assumption of these methods. 
Somewhat different again to these methods is the Bayesian latent factor 
regression model (Montagna et al., 2018). Unlike classical 
meta-analysis, which aims to estimate effects such as mean and confi-
dence interval from available evidence, CBMA uses null hypothesis 
significance testing (NHST) to identify apparently replicable effects. 
This necessitates a statistical thresholding scheme that can be voxel-wise 
or cluster-wise, based on family wise error (FWE) or false discovery rate 
(FDR) (Benjamini and Hochberg, 1995), or even uncorrected for mul-
tiple voxel-wise tests. Despite the differences between the various al-
gorithms, they all report spatial clustering of reported coordinates 
surviving thresholding to infer effects related to the hypothesis. It is the 
anatomical location of these clusters that form the output of CBMA al-
gorithms and the result on which the interpretation and conclusion are 
based. 

The different approaches to CBMA have some influence over the 
results (Ferreira and Busatto, 2010) and therefore conclusions. All 
CBMA algorithms perform NHST so when choosing a method the null 
and threshold for declaring significance must be clearly understood, 
which can be difficult with empirical elements such as the FWHM and 
when principled statistical thresholding is nonlinear. This article de-
scribes analysis of brain coordinates (ABC), which attempts to eliminate 
empirical features where possible. Results are numbered clusters of co-
ordinates that can be interpreted and subjected to further analysis. 
Software to perform ABC is provided to use freely as part of NeuRoi. 

https://www.nottingham.ac.uk/research/groups/clinicalneur 
ology/neuroi.aspx. 

Coordinate data used in this manuscript has been made available. 
https://rdmc.nottingham.ac.uk/handle/internal/9171 and 

https://rdmc.nottingham.ac.uk/handle/internal/9121. 

2. Methods 

2.1. Overview 

The ABC algorithm consists of three procedures. Firstly, the p-values 
for each coordinate are computed based on the density of the k nearest 
coordinates from k different independent studies. Secondly, a statistical 
p-value threshold (α) is applied to define which coordinates are signif-
icant. The threshold α is determined such that the expected number of 
rejections under a null hypothesis is fewer than a user specified 
threshold proportion of studies required to form valid clusters in the 
final spatial clustering procedure; this proportion is specified by the 
analyst and is the minimum required for the effect to be considered 
replicable. Spatial clustering is performed only on significant co-
ordinates and valid clusters are reported as the results of the analysis. 

2.2. Study density model 

In ABC the results considered most likely associated with the hy-
pothesis are those where the reported coordinates from different 

independent studies fall close together spatially, which is quantified by 
study density; using study density, rather than coordinate density, is 
related to the CBMA tactic of treating study as a random effect (Eickhoff 
et al., 2009; Wager et al., 2007). The algorithm computes for coordinate 
i the smallest spherical volume, dVi, encompassing the k nearest co-
ordinates (including i) from different independent studies, with a min-
imum allowed volume of dVi= 8 mm3 imposed in case all fall within a 
single voxel of typical 2 mm isotropic linear dimensions; no instance of 
reaching this minimum was recorded during analyses presented in this 
paper. In ABC k is an empirically determined parameter, however con-
straints on its value are either axiomatic or anatomical, and it is defined 
under the null hypothesis; compare this to typical CBMA parameters, 
such as the FWHM, that are defined using experimentally observed co-
ordinate data (Eickhoff et al., 2009) and may depend on the experiment 
specifics. The minimum value for k is four studies because at least that 
many are needed to define a volume, and therefore density, in three 
dimensions. Furthermore, the number must be small because the density 
estimate is only valid for small volumes to meet anatomical constraints 
such as the thin cortical ribbon. Another constraint on k is that p-values 
resulting from the density estimate must be, axiomatically, uniformly 
distributed under the null. These requirements are considered in the 
random coordinate experiment section. 

Given a relevant tissue volume, such as the GM volume Vgm, the 
probability of a coordinate falling within dVi if placed uniformly at 
random within the volume is dVi / Vgm. If coordinates are also inde-
pendent and study s reports Cs coordinates the probability of at least one 
of them falling within volume dVi is 

Pris = 1 −
(

1 −
dVi

Vgm

)Cs

(1) 

The p-value for coordinate i is the probability of z ≥ k coordinates 
from different studies falling in volume dVi assuming they are uniformly 
and independently distributed in Vgm, which for N studies is 

pi =
∑N

z=k

∑

Combinations

∏N

s=1
Prδs

is (1 − Pris)
1− δs , (2)  

where δs is either 0 or 1 and the sum over unique combinations includes 
all with 

∑s=N

s=1
δs = z (3) 

Combinations are found using Heap’s algorithm (Heap, 1963). One 
implementation note is that Eq. (2) is generally more efficiently 
computed by summing s from 0 to k-1 and subtracting from 1. 

2.3. Forming clusters of high study density 

The purpose of clustering in CBMA is to identify isolated anatomical 
regions that infer generalised effect related to the hypothesis consid-
ering evidence from all studies. Most CBMA algorithms form clusters 
from spatially separated islands of voxels where the test statistic is 
greater than a threshold but this does require extrapolation of the co-
ordinates, which is usually achieved using a fixed width empirical 
smoothing kernel. In ABC the clustering is not voxel-wise but 
coordinate-wise and involves only coordinates that survive statistical 
thresholding. The approach is based on mean shift clustering (Fukunaga 
and Hostetler, 1975), which shifts coordinate i in the direction of the 
weighted mean of other nearby coordinates from other studies. Itera-
tively performing this mean-shift operation drives coordinates towards 
isolated cluster centres. The process is complete when the shifted co-
ordinate and the mean coincide; this condition is considered practically 
satisfied when the largest shift for any coordinate is less than 0.001 mm. 
To proceed a kernel is required so that the shift towards the mean can be 
estimated, and in ABC the kernel takes the form of a beta distribution 
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K
(
ri, rj

)
= Beta

(

0.5+
δij

2 × δmax
|a, a

)

, (4)  

where δij is the distance between coordinates ri and rj (δij=|ri -rj|), δmax is 
the largest distance parameter, and a determines the shape of the dis-
tribution. The shape parameter can transform the kernel from Gaussian- 
like, albeit without the extended tails, with a= 3 to a flat kernel with 
a= 1, therefore covering kernel shapes similar to those used by other 
CBMA algorithms. Importantly the kernel width and shape are not fixed 
empirically, instead they are determined by an optimisation process; see 
Section 2.4. The kernel is zero for δij > δmax, which avoids influence from 
coordinates that are separated by large distances. 

The shift vector for coordinate i involves a kernel weighted sum over 
all nearest coordinates from studies other than the study to which i 
belongs. 

dri =

∑

j
K
(
ri, rj

)(
rj − ri

)

∑

j
K
(
ri, rj

) (5) 

The algorithm iterates the calculation of distance between co-
ordinates and application of the shift (Eq. (5)) to update the coordinates. 
Clusters are formed from coordinates that are shifted such that they fall 
within Δmm of each other once the algorithm has converged to a so-
lution; Δ must be larger than the 0.001 mm stopping condition of the 
mean shift algorithm, but smaller than the distance between cluster 
means, and here Δ = 1 mm is used. With this algorithm the number of 
clusters does not need to be specified a-priori. Of the clusters formed, 
each study may only contribute at most a single coordinate. If multiple 
coordinates from the same study apparently contribute, only the most 
significant (smallest p-value) is recruited into the cluster. A further 
requirement is that the number of studies contributing a coordinate to 
the cluster exceeds a minimum, which is determined as part of the 
principled statistical thresholding; see Section 2.5. 

2.4. Choosing the kernel width and shape 

The mean shift clustering algorithm requires the specification of 
parameter δmax, which is somewhat analogous to the FWHM parameter 
used in other CBMA methods. It also requires a shape parameter a. In 
ABC these parameters are automatically determined specifically for the 
studies being analysed rather than being empirically specified once for 
all analyses. The adaptive nature of the kernel is an important feature of 
ABC because the optimal shape is not intuitively obvious and fixed 
widths can cause results that do not converge with increasing numbers 
of studies (Eickhoff et al., 2016; Tench et al., 2014). Only the co-
ordinates that have survived statistical thresholding in ABC are 
considered for clustering, which makes the task simpler because 
non-significant coordinates that fall sparsely between the dense clusters 
are excluded from the process. The chosen values for δmax and a are those 
that maximise the number of the significant coordinates that get clus-
tered by the mean shift method. If δmax is set too low, then clusters are 
formed by too few studies to be valid, while if set too large clusters can 
merge reducing the number of clustered coordinates because studies 
may only contribute a single coordinate to any cluster. Values consid-
ered for the shape parameter a are a= 3, a= 2, a= 1, which represent 
Gaussian-like shape, dome-like shape, and flat; see supplementary ma-
terials for examples of analysis with each of these shapes. The search for 
the optimal value of δmax is performed by systematically searching be-
tween reasonable range of 3–20 mm in 0.1 mm steps; this range can be 
widened if no optima are found. 

2.5. Thresholding the coordinate p-values 

The NHST performed by CBMA necessitates a justifiable threshold. 
Other CBMA methods use fixed p-value thresholds, FDR, or FWE, and 

can be cluster-wise or voxel-wise. Fixed p-value thresholds offer no 
principled control over the false positives and are not recommended 
(Bennett et al., 2009). Voxel-wise FDR controls the expected number of 
voxels rejected under the null hypothesis as a proportion of total re-
jections, but these falsely rejected voxels can form spurious clusters that 
become part of the results and conclusions; because of this FDR is no 
longer the recommended threshold scheme for the ALE method 
(Eickhoff et al., 2016). Family wise error allows the analyst to control 
the proportion of analyses of null data that would produce significant 
results. Cluster-wise FWE requires the specification of two thresholds 
(cluster forming and FWE) and prioritises larger clusters over smaller 
clusters despite the latter potentially suggesting tighter agreement 
across studies. Perhaps the biggest limitation of the various methods 
employed is that non can be directly related to the aim of detecting 
replication of effects across studies. 

In ABC the aim is to apply a statistical threshold to the p-values such 
that the expected number of rejections, under the null hypothesis, is 
fewer than needed to form a valid cluster from the significant co-
ordinates; this is an attempt to overcome the issue with spurious clusters 
that can result from using FDR (Eickhoff et al., 2016). It is somewhat 
analogous to FDR, but instead of controlling for the proportion (often 
5%) of the rejections that are expected under the null hypothesis, it 
constrains the maximum number of rejections expected under the null. 
This number is the minimum number of studies contributing to a cluster 
for it to be considered a replicated effect. It would be difficult to specify 
this minimum a-priori since the number of studies is unknown, but it is 
possible to specify it as a proportion of studies (β). For number of studies 
N, and the total number of coordinates Nc, the statistical threshold α is 
defined as the largest p-value computed using Eq. (2) that obeys the 
inequality 

αNc < βN (6) 

The threshold is generally more stringent than FDR, but FDR is also 
employed as an upper limit to provide FWE control under the null hy-
pothesis (Benjamini and Hochberg, 1995) so that when studies show no 
evidence of spatially consistent effects the algorithm is unlikely to return 
significant results; note this obeys the inequality in Eq. (6) as required 
for interpretation. An implementation note is that a minimum of k 
studies must contribute to a cluster (βN≥k), where k is the number of 
studies used in calculating the study density, and k must be at least 4 in 
three dimensions. 

A feature of this method is that the analyst must consider the pro-
portion β carefully because there is a trade-off between the desire to 
detect more clusters and the need for those clusters to be significant. For 
example, if the analyst requires only a small proportion in the hope of 
finding more valid clusters, then the p-value threshold becomes more 
stringent as is clear from Eq. (6). Another important feature is that it 
considers studies that report no coordinates. An analyst requiring 25% 
of studies to contribute a coordinate to a cluster for it to be of interest 
does so regardless of those studies reporting no coordinates; consider 
that it is easier to achieve 25% of studies contributing to a cluster if 
coordinates are reported by all studies compared to only half of studies. 
Consequently, studies that report no significant coordinates, which is 
suggestive of no detectable hypothesis related effects, impose them-
selves on the analysis by making valid clustering more difficult to 
achieve. 

2.6. Combining multiple related hypotheses 

In some cases there may be multiple studies testing a similar hy-
pothesis, but which are categorised according to some factor that might 
be a source of heterogeneity. As an example consider studies employing 
different modalities such as fMRI or positron emission tomography 
(PET). In ABC the coordinate p-values can be computed per modality 
before they are combined for statistical thresholding and clustering. In 
this way the p-values for coordinates reported by fMRI studies could be 
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computed independently of coordinates reported by PET studies. 
Generally, ABC can analyse coordinates from studies that differ by a 
factor with the p-values being computed independently by factor level. 

2.7. Including multiple within-subject analyses 

Typically, a study may report tables of coordinates from multiple 
analyses on the same subjects; it is also possible that these analyses are 
reported across multiple papers. These should not be considered inde-
pendent evidence of effect, so it is recommended that coordinates are 
arranged by subject group to form one independent study (Turkeltaub 
et al., 2012). However, this can increase the number of coordinates 
without associated increase in independent effects; consider that two 
within-subject group analyses producing perfectly correlated results 
would double the number of coordinates but not independent evidence 
of effect. In ABC this adversely impacts sensitivity by increasing the 
probabilities from Eq. (1), which assumes that reported coordinates 
represent independent effects. This issue also impacts other methods 
where coordinates are assumed independently and identically distrib-
uted under the null hypothesis such as ALE (Eickhoff et al., 2012). 

In ABC, several approaches have been implemented to reduce the 
impact of multiple correlated within-subject group analyses. Firstly, any 
within-subject group coordinate duplicates are automatically removed; 
such duplicates cannot be considered independent evidence of the same 
effect but equally should not reduce sensitivity to real effects. Further-
more, ABC has the facility to consider correlated effects in a analogous 
way to the multilevel kernel density analysis (MKDA) algorithm (Wager 
et al., 2007). In MKDA empirical coordinate clusters are formed 
within-subject group, each representing a single independent reported 
effect. An equivalent in ABC is to modify Eq. (1). 

Pris = 1 −
(

1 −
dVi

Vgm

)C
′

s

, (7)  

where Cs’ represents the number of independent effects rather than 
coordinates and Cs’≤ Cs. To estimate the number of independent effects 
ABC is executed initially with Cs’=Cs to find any instance of multiple 
coordinates from within-subject group that are localised in single clus-
ters. As a numerical example consider a study reporting Cs= 10 co-
ordinates where two of these are located within the same cluster 
according to the mean shift clustering algorithm, the study is then 
considered to only report Cs’= 9 independent effects. Automatically 
ABC will then use the estimated number of independent effects instead 
of coordinates, which has been found in testing to make p-values slightly 
smaller as expected. 

2.8. Further analyses 

ABC provides extra analyses associated with significant clusters. A 
binary logistic regression is performed for each significant cluster with 
independent variables including the square root of the sample size, and a 
user set covariate to allow meta-regression. The user set covariate can, 
for example, be set to a binary group indicator making group compari-
sons possible in ABC. 

In CBMA it is important that reported effects are included without 
selection bias. This means that both positive and negative effects (i.e. 
activation and deactivation) should be included to detect any within 
cluster sign inconsistencies, which would demand some explanation. In 
ABC the statistical effects (Z scores, t statistics or the sign of the effects) 
can be included with the coordinates. The algorithm then outputs forest 
plots of the reported effects for each cluster, allowing scrutiny, similarly 
to the coordinate based random effect size (CBRES) method (C. R. Tench 
et al., 2017). 

There is also some interest in network type features of the significant 
clusters reported by CBMA (Cauda et al., 2018; Chu et al., 2015; Lan-
caster et al., 2005; Neumann et al., 2005; Xue et al., 2014). Because the 

reported statistical effects can be included with the coordinates in ABC, 
network features similar to those produced by the coordinate based 
meta-analysis of networks (CBMAN) algorithm (C. R. Tench et al., 2020) 
are automatically saved. 

2.9. Experiments 

In this report ABC is demonstrated using simulated and real data. In 
each example the grey matter volume, required for the probability 
model, is considered to be 780 ml, which is the mean of the reported 
average grey matter volume in females and males (Lüders et al., 2002). 

2.9.1. Experiments with random coordinates 
CBMA performs null hypothesis significance testing, so must have 

predictable behaviour under the null. Errors are controlled in ABC such 
that the expected number of false positive coordinates is fewer than 
necessary to form a valid cluster by imposing the inequality in Eq. (6) 
and by an upper limit imposed by FDR. For this to work correctly the p- 
values must be uniformly distributed under the null hypothesis. Co-
ordinates from VBM studies of Schizophrenia, meta-analysed in this 
report, and from 83 fMRI studies of painful thermal stimulus (see 
(Tanasescu et al., 2016) and supplement) are randomised uniformly into 
a grey matter mask to simulate an approximate null hypothesis. To 
explore the impact of few studies, analysis is also performed on 15 
(~half) of the schizophrenia studies. In a further experiment, the 
schizophrenia studies are duplicated to analyse double the number of 
studies, which are characteristically similar but made independent by 
virtue of the randomisation. Randomisation and ABC analysis is per-
formed 500 times for each set of coordinates. The number of experi-
ments producing significant clusters is counted, and the distribution of 
the p-values recorded. The procedure is performed using the k=4, k=5, 
and k=6 nearest studies when estimating study density. The number of 
random experiments producing clusters is reported and the cumulative 
p-value distributions plotted. 

2.9.2. CBMA of VBM studies of schizophrenia 
A previously published CBMA (Glahn et al., 2008) of grey matter 

alteration in schizophrenia has been reproduced here to demonstrate 
ABC. This involves 31 VBM studies comparing 1195 people with 
schizophrenia to 1262 healthy controls. ABC analyses are performed 
with a threshold of 5 (~23%) studies required to make a valid cluster. 
For comparison the data are also analysed using the ALE algorithm, 
which is probably the most commonly used CBMA algorithm, and the 
SDM-PSI algorithm, which is the most recent CBMA algorithm. In both 
cases the default settings are employed. 

Coordinates relating to both GM increase and decrease are recorded 
along with statistical effect sizes if reported. Most of the studies find that 
GM in schizophrenia is decreased relative to a control group, although 
some reports indicate relatively increased regional GM. Studies that 
don’t report analysis of both GM increase and GM decrease are excluded 
from the SDM-PSI analysis since these may overestimate significance 
given null hypothesis of zero statistical effect. For ALE analysis GM in-
crease and GM decrease studies are analysed separately as is common 
practice when using ALE and is consistent with the original meta- 
analysis. ABC analysis is performed on the same data as the SDM-PSI 
and ALE analyses to highlight similarities and differences. The result-
ing clusters are shown as overlays for qualitative comparison between 
algorithms; the depiction of clusters from ABC analysis uses a coloured 
sphere of radius 6 mm (3 voxels; user selectable) for each clustered 
coordinate to create solid clusters rather than coordinate scatter. The 
main details (centre and anatomical location) of each of the clusters is 
also tabulated to provide a more quantitative comparison of results from 
different algorithms. 
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3. Results 

3.1. Random experiments 

Fig. 1 shows the cumulative distribution of p-values of random co-
ordinates from the four examples considered. In each case k=4 studies 
produced an excess of small p-values, which would suggest a potentially 
high rate of false positives. Conversely k=6 studies produced a deficit of 
small p-values, which would produce a conservative result. For k=5 the 
distribution of p-values under the approximately null condition of 
random coordinates was closest to uniform in each case. The number of 
experiments producing clusters from the randomised coordinates is 
detailed in Table 1. For k=5, which produces approximately uniformly 
distributed p-values under the simulated null, the FWE rate is low in 
these examples. 

3.2. Schizophrenia compared to healthy control study 

3.2.1. SDM-PSI results 
For this analysis 23 of the 31 VBM studies that reported results of 

both increased and decreased GM were included. SDM-PSI produced 
multiple clusters indicating meta GM loss in schizophrenia relative to a 
control group when using the implemented threshold free cluster 
enhancement (TFCE) algorithm (Smith and Nichols, 2009) to declare 
significance; no regions of GM increase were declared significant. 
However, when using voxel-wise FWE thresholding the results were 
strikingly different, detecting one small (3 voxels) cluster of GM increase 
and no regions of decreased GM. The TFCE results are shown in Fig. 2, 
and for comparison the ABC results for the same data are also depicted. 
Some of the clusters formed by the two algorithms coincide spatially, but 
only when the TFCE option in SDM-PSI is used emphasizing how 
different settings can produce quite different conclusions. Peak 

coordinates and main anatomical areas covered are reported in Table 2. 

3.2.2. ALE results 
All 31 VBM studies are included in two independent analyses, one 

involving only increased GM and a second involving only decreased GM. 
The ALE algorithm declares multiple clusters of decreased GM, and two 
clusters of increased GM (Fig. 3). For comparison the ABC results on the 
same data files are also depicted in Fig. 3, although no clusters of 
increased GM were detected. It should be noted that increases were 
reported by only 13 of the 31 studies. There are two difficulties with this 
analysis: 1) 13 is not sufficient to produce convergent results from ALE 
(Eickhoff et al., 2016), and 2) those studies that do not report increases, 
and are therefore suggestive of no effect, do not influence the statistical 
significance in the ALE algorithm. ABC does consider those studies not 
reporting any coordinates of increased GM when declaring statistical 
significance, which might explain the differences between the two 
analyses. 

3.2.3. ABC Schizophrenia results 
ABC was used to analyse all 31 VBM studies of Schizophrenia with 

Fig. 1. The cumulative distribution of random coordinate p-values computed using k=4 (solid line) and k=5 (dotted line) and k=6 (dashed line) studies to estimate 
the study density. For each of the experiments the k=5 results are closest to uniformly distributed. 

Table 1 
The proportion of simulated null analyses resulting in significant clusters. For 
k = 4 the estimated family wise error (FWE) rate is high because there is an 
excess of small p-values. For k = 6 the method has zero FWE rate reflecting the 
deficit in the number of small p-values. For k = 5 the simulated null p-values are 
closest to uniformly distributed, and the FWE is acceptable in these examples.   

K¼4 K¼5 K¼6 

15 Schizophrenia studies  15.6%  0.4%  0% 
All Schizophrenia studies  26.8%  1.8%  0% 
Duplicated Schizophrenia studies  25.8%  2.8%  0% 
fMRI of painful stimulation  3.2%  0%  0%  
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both increased GM and decreased GM coordinates analysed together. 
Analysis is performed with k=5 studies, and for this data the summary 
statistics for the radii of smallest volumes encompassing these studies 
(dVi in Eq. (1)) are: mean= 12 mm, minimum= 4.2 mm, 1st quarti-
le= 8.7 mm, median= 11 mm, 2nd quartile= 14.6 mm and max-
imum= 30 mm. The resulting clusters are presented in Fig. 4 along with 
a forest plot of standardised statistical effect size estimates for a single 
example cluster. Inspecting the forest plots (see (C. R. Tench et al., 2017) 
for details) there are multiple cases where at least one study has reported 
an increased GM density amongst multiple others reporting decreases. 
Inspection of the forest plots is important because the apparent het-
erogeneity might indicate a data entry error or study specific effect and 
should be investigated further. 

4. Discussion 

Here a method of performing a meta-analysis of functional MRI or 
voxel-based morphometry studies has been presented. The aim of ABC is 
to provide analysis where direct influence of the algorithm on the results 
is relatively simple to interpret. Just as with other CBMA algorithms ABC 
can help further understanding of brain function by providing clear 
summaries of results from multiple studies and can even be used to test 
hypotheses if results can be predicted independently before performing 
the study. 

Amongst the various CBMA algorithms the closest to ABC is para-
metric voxel-based meta-analysis (PVM) (Sergi G. Costafreda et al., 
2009). A model of study density, similar to that in ABC, is used 
voxel-wise before thresholding to control the FDR. ABC offers some 
potential advantages over PVM in terms of interpretability and 
computational efficiency. Because of the computational demands of 
computing the voxel-wise p-values the PVM method uses approxima-
tion, and use of voxel-wise FDR is known to cause issues in CBMA 

Fig. 2. Clusters resulting from the meta-analysis of the Schizophrenia studies using TFCE and SDM-PSI (top) and ABC (bottom). The analysis includes the 23 studies 
that report both increased and reduced GM. 

Table 2 
List of cluster centres (Talairach coordinates) as reported by SDM-PSI and ABC. 
The anatomical structures are the main structures reported; differences reflect 
the different methods of reporting results, and clusters reported by SDM-PSI tend 
to be larger than those reported by ABC and cover more structures. BA is 
Brodmann area.  

Structure SDM-PSI 
(TFCE) 

ABC 

Left: Insula, BA13/ Inferior Frontal Gyrus, 
BA47 

-39 3 − 12 -41.0 14.8 − 3.2 

Cingulate gyrus BA32 -2 38 25 3.8 32 26.2 
Right: Insula, BA13 / Inferior Frontal gyrus 

BA47 
45 11 2 42.8 14.4 − 1.1 

Anterior cingulate / paracingulate gyri, BA 
32 

2 − 19 3 – 

Right Para hippocampal gyrus: BA 34 
/Amygdala 

– -19.2 − 5.3 − 17.1 

Left Insula BA13 – -42.9 − 8.3 8.4 
Right Anterior Cingulate BA25 – 3.9 3.1 − 1.5 
Left: Middle frontal gyrus, BA9 / Inferior 

frontal gyrus BA9 
– -47.4 12.7 33.2  

Table 3 
List of cluster centres (Talairach coordinates) as reported by ALE and ABC. The 
anatomical structures are the main structures reported by the algorithms. BA is 
Brodmann area.  

Structure ALE coordinate ABC coordinate 

Decreases   
Left Insula -40.9 8.7 0.3 -40.2 14.1 − 1.0 
Left Insula, BA13 – -41.1 0.0 9.0 
Left Insula, BA22/13 – -44.1 − 10.5 9.0 
Right Insula 41.1 12.4 − 0.1 41.1 14.2 − 0.4 
Thalamus -2.2 − 18.2 5.1 – 
Parahippocampal Gyrus, BA34 -18 − 5.8 − 18.8 -18.2 − 6.1 − 19.2 
Anterior Cingulate, BA25 0.1 7.1 − 4.7 0.3 6.6 − 4.7 
Middle Frontal Gyrus, BA9 -48.3 13.7 34 -48.4 13.6 34.1 
Anterior cingulate BA25 – -38.9 18.7 − 9.6 
Increases   
Left Putamen -20.6 1.6 9.3 – 
Right Caudate 9.6 2.3 0.8 –  
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because the expected proportion of results that are falsely declared 
significant (the false discovery rate) can be sufficient to produce 
spurious clusters (Eickhoff et al., 2016). 

Using a model-based approach avoids the need to randomise co-
ordinates into an empirical image space, instead needing only the vol-
ume of interest such as the grey matter volume. An advantage of the 
coordinate-wise model-based approach is computational efficiency, 
with typically sized analyses involving a few tens of studies taking just 
seconds. This is particularly so when initial analyses may highlight data 
entry errors that then require repeat analysis, or if sensitivity or sub-
group analyses are performed. By using the local density of studies, the 
requirement for a fixed empirical smoothing kernel is avoided. A pri-
mary aim of CBMA is to filter those results that are study specific, 
perhaps due to use of uncorrected voxel-wise testing for example, 
leaving those that appear consistent across study, which are considered 
more likely to be hypothesis specific. A convenient and interpretable 
threshold must therefore be applied, and ABC thresholds such that the 
expected number of coordinates falsely declared significant (under the 
null hypothesis) is less than a user selected proportion of studies. The 
expert analyst can specify this by consideration of the minimum pro-
portion for the result to be deemed replicable. 

The results from the analysis of VBM studies of Schizophrenia 
highlight how different methods handle the data to produce a range of 

different results; the fact that algorithms produce different results has 
been shown previously by Ferreira and colleagues (Ferreira and Busatto, 
2010). Before conducting an analysis, it is important to understand how 
the algorithms work and how settings can influence the conclusions. It is 
preferable that analysis choices are made up front in a preregistered 
protocol in which the analyst specifies and justifies the methodology 
a-priori (Tahmasian et al., 2019) removing the freedom to choose based 
on the best result, which may be biased by analyst expectations. ABC 
may make this process easier by removing, where possible, difficult to 
interpret empirical features, and by employing an easy to interpret 
threshold that directly relates to the aims of CBMA. 

Requirements for performing and reporting ABC analysis are similar 
to those of meta-analysis and CBMA (Müller et al., 2018). CBMA as-
sumes that studies are independent. It is important that multiple ex-
periments on the same subjects are not considered independent as this 
will produce a known form of bias common to meta-analysis, and 
consequently reduce the quality of evidence. It is also important to 
provide the data analysed along with any publication; typically, multi-
ple experiments are reported per study, and it may be difficult to know 
which experiments have been included, and therefore to interpret the 
results or reproduce the analysis. Provision of data in any meta-analysis 
is a PRISMA (Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses) requirement, and only involves inclusion of small text 

Fig. 3. Clusters resulting from the meta-analysis of the Schizophrenia studies using ALE: decreased GM (top), and increased GM (middle). ABC results from the 
decreased GM data (bottom) are presented for comparison; no increases in GM are detected using ABC. 
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files. 
There are limitations to the ABC algorithm that should be high-

lighted. While some design choices have been made to avoid empirical 
components, the algorithm is not without assumptions, and interpreta-
tion of results is conditional on these. For example, the null assumption 
of independent and identical uniform distribution of results reported by 
the studies is made by several algorithms but may not hold. The brain 
volume that parameterises the algorithm is a course approximation. It is 
also not obvious that the number of studies (k=5) used to determine the 

study density is always valid. Nevertheless, it is hoped that by removing 
some empirical features and attempting to make others more inter-
pretable, the limitations of ABC might be easier to understand than the 
limitation of other methods. 

5. Summary and conclusions 

Meta-analysis is considered very high-level evidence. Its importance 
in neuroimaging is in identifying those published results that are 

Fig. 4. The ABC analysis of all 31 VBM studies 
of Schizophrenia including reports of both 
increased and decreased GM compared to a 
control group. The resulting clusters are shown 
top, while the forest plot of the reported sta-
tistical effects is shown bottom for a single 
example cluster. In the forest plot solid circles 
indicate that a study contributed a coordinate 
to the cluster, while empty circles indicate no 
contribution. The dashed lines indicate plau-
sible confidence intervals for the standardised 
statistical effects. The study by Ohnishi et al. 
has reported increased GM in this cluster, while 
others that contribute report decreased GM.   
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replicable across multiple studies where potential for study specific ef-
fects is high, and where there is potential disparity of results available 
from the multiple neuroimaging analysis packages or scanning pro-
tocols. There are now multiple algorithms for performing CBMA, each 
with different empirical features and producing a range of results. Co-
ordinate based meta-analyses can be improved by preregistration of a 
protocol to justify the chosen methodology and to avoid retrospectively 
selecting results based on personal expectation, which is contrary to the 
philosophy of meta-analysis. ABC was developed specifically to be easy 
to think about prospectively, which has been achieved by eliminating 
some empirical components, and by using a principled method of error 
control that directly relates to replicability of effect. It is hoped this will 
make CBMA using ABC simpler to plan, and the limitations of the results 
easier to consider when interpreting. 
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