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ABSTRACT 6 

The importance of internal structure on the stress-strain behavior of granular materials has 7 

been widely recognized. How to define the fabric tensor and to use it in constitutive modelling 8 

however remains an open question. The definition of fabric tensor requires 1) identifying the 9 

key aspects of structure information and 2) quantifying their impact on material strength and 10 

deformation. This paper addresses these issues by applying the homogenisation theory to 11 

interpret the multi-scale data obtained from the discrete element simulations. Numerical 12 

experiments have been carried out to test granular materials with different particle friction 13 

coefficients. More frictional particles tend to form less but larger void cells, leading to a larger 14 

sample void ratio. Upon shearing, they form more significant structure anisotropy and support 15 

higher force anisotropy, resulting in higher friction angle. Material strength and deformation 16 

have been explored on the local scale with the particle packing described by the void cell system. 17 

Three groups of fabric tensor have been covered in this paper. The first one is based on the 18 

contact vectors, which is the geometrical link between contact forces and material stress. And 19 

their relationship with material strength has been quantified by the Stress-Force-Fabric 20 

relationship. The second group is based on as the statistics of individual void cell characteristics. 21 

Material dilatancy has been interpreted by tracing the void cell statistics during shearing. The 22 
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last group is based on the void vectors, for their direct presence in the micro-structural strain 23 

definition, including those based on the void vector probability density and mean void vector.  24 

Correlations among various fabric quantifications have been explored. The mean void 25 

vector length and the mean void cell area are parameters quantifying the internal structure size, 26 

and strongly correlated with each other. Anisotropy indices defined based on contact normal 27 

density, void vector density, void vector length and void cell orientation are found effective in 28 

characterizing loading-induced anisotropy. They are also closely correlated. In-depth 29 

investigation on structural topology may help establish the correlation among different fabric 30 

descriptors and unify the fabric tensor definition. Deformation bands have been observed to 31 

continuously form, develop and disappear over a length scale of several tens of particle 32 

diameters. Its relation to and impact on material deformation is an area of future investigation.  33 

Keywords: Fabric quantification, Granular statistics, Homogenisation theory, Discrete 34 

Element Method (DEM). 35 

INTRODUCTION 36 

Different from metal, the complexity in the stress-strain behaviour of granular materials is 37 

largely rooted in the packing formation and evolution upon shearing. It is widely acknowledged 38 

that the fabric tensor needs to be introduced into constitutive modelling to capture the main 39 

features of granular material behaviour. A number of fabric definitions have been proposed 40 

(Satake 1982, Oda 1985, Li and Li 2009, Nguyen, Magoariec et al. 2009, Kruyt and Rothenburg 41 

2014). Generally speaking, the appropriateness of fabric definition depends on its application. 42 

Targeting at constitutive modelling, this paper interprets the material strength and deformation 43 

from the local scale in order to shed some light on the important and yet to answer questions, 44 

including 1) what is the most appropriate fabric definition used for modelling the material 45 

stress-strain behaviour and 2) how to effectively incorporate it to reflect the impact of internal 46 
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structure on the material stress-strain responses.  47 

Among many interesting earlier discoveries, (Satake 1978)’s graph-theoretical approach 48 

is instrumental in establishing the correspondence between discrete and continuum 49 

representations and informing the advancement of homogenisation theory. (Satake 1983) 50 

replaced an assembly of grains with graphs and formulated the mathematical expressions of 51 

discrete granular mechanics. The importance of voids has been recognized and emphasized by 52 

introducing dual particles to represent void spaces. In line of Satake’s pioneering work, (Bagi 53 

1996) introduced the concepts of two dual cell systems as the geometric representation of 54 

discrete assemblies, and building upon it, the duality of the stress and strain. (Li and Li 2009) 55 

extended the concept to three dimensional spaces by modifying the Voronoi-Delaunay 56 

tessellation systems with consideration of whether the particles are in real contact or not. In two 57 

dimensional spaces, their dual cell systems are equivalent to Satake’s dual graphs. Interestingly, 58 

the idea of describing the material internal structure with a tessellation system has also been 59 

developed, though separately, in the field of granular statistics by (Blumenfeld and Edwards 60 

2006). Instead of using two dual systems, they represent the granular structure with a set of 61 

grain polygons and void polygons.  62 

With the internal structure described by the dual graphs or its analogues, the continuum 63 

scale stress tensor has been expressed in terms of particle interactions and contact vectors which 64 

are geometrical quantities in the solid cell system connecting contact points and particle centres. 65 

This correspondence has been theoretically established on Newton’s second law of motion 66 

(Christoffersen 1981, Rothenburg and Selvadurai 1981, Bagi 1996, Kruyt and Rothenburg 1996, 67 

Li, Yu et al. 2009). In parallel, the continuum-scale strain tensor has been expressed in terms 68 

of particle relative displacements and geometrical quantities in the void cell systems based on 69 

the compatibility condition (Bagi 1996, Kruyt and Rothenburg 1996, Kuhn 1999, Li, Yu et al. 70 

2009). The importance of internal structure is self-evident with the presence of local 71 
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geometrical quantities in these two discrete expressions. 72 

These theoretical developments in the homogenization theory have also laid down the 73 

groundwork to systematically investigate how the internal structure impacts on the stress-strain 74 

behavior from the local scale.  In this study, numerical experiments have been carried out using 75 

the Discrete Element Method (DEM) (Cundall and Strack 1979) to provide the multi-scale data. 76 

A series of numerical simulations have been carried out on granular assemblies with identical 77 

particle geometries but different friction coefficients. The void cell system has been constructed 78 

to describe particle packing, and the continuum-scale material behavior is considered as the 79 

collective response from all individual void cells. Discussions have been extended to the 80 

definition of fabric tensor, which serves as a necessary state variable in constitutive modelling 81 

(Li and Dafalias 2012). 82 

NUMERICAL SIMULATIONS 83 

Numerical experiments have been carried out using the commercial package, Particle Flow 84 

Code (PFC2D), a two dimensional Discrete Element Method (DEM) software (Itasca 85 

Consulting Group Inc. 1999). The boundary control algorithm introduced in (Li, Yu et al. 2013) 86 

has been used to impose the target loading path. The particles are circular disks uniformly 87 

distributed in number within the range of (0.1mm, 0.3mm). The thickness of particles is set as 88 

0.2 mm. The particle interactions are of linear stiffness with a slider. The normal and tangential 89 

stiffnesses are set as 1.0×105 N/m. A series of simulations have been carried out with the particle 90 

friction coefficient 
p  being 0.0, 0.1, 0.2, 0.5, 1.0 and 10.0 respectively. The specimens are 91 

hexagonal except for the case of 10.0p  , when the contact sliding is nearly prohibited, 92 

extremely large contact forces have been observed around the corner indicating local strong 93 

arching formation. The dodecagonal sample shape is hence used. The boundary properties are 94 

set as the same as the particle properties. 95 
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 96 

Figure 1 Void ratio prior to shearing vs particle friction coefficient 97 

 98 

The samples are prepared using the deposition method. Particles are generated in a 99 

rectangular region whose height is twice the width. The particles deposit vertically at gravity 100 

2100m/sG   in the low damping environment to form the initial packing, which is then 101 

trimmed by the prescribed boundary and consolidated to 1000kPacp   for shearing. The scaled 102 

gravity is used to reduce computational time. Such prepared samples are expected to be initially 103 

anisotropic, although as shown later, of limited magnitude. For the series of numerical 104 

experiments carried out in this study, the numbers of particles range from 3,443 to 3,938 105 

depending on the particle friction coefficient. The ratio between the sample size and the particle 106 

diameter is around 60, and is believed to be large enough to serve as representative elements. 107 

Due to the difference in particle friction coefficients, different initial structures are formed. Fig. 108 

1 plots the void ratio of the samples, an index of packing density, at their initial (pre-shearing) 109 

states, which is observed to increase with the increase in particle friction coefficient. The 110 

packing with 10.0p   has a similar void ratio to the packing with 1.0p  . This 111 

information is not included in the figure for better illustration of the variation when the friction 112 

coefficient varies between 0 and 1.  113 

In analogy to drained tests, samples are sheared in the vertical direction while the mean 114 

normal pressures  1 2 2p     are kept constant. The boundary control algorithm detailed 115 

in (Li, Yu et al. 2013) has been used to control the displacements of boundary walls 116 

synchronously to impose the strain-controlled boundary, and to monitor the stress boundary 117 

using a servo-controlled mechanism. Local damping has been used to dissipate excess kinetic 118 

energy during shearing. Loading increments are only imposed when both the equilibrium 119 

criteria and the specimen boundary conditions are satisfactorily met. The material responses are 120 
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shown in Fig. 2 by plotting the stress ratio    1 2 1 2/ 2q p         and the volumetric 121 

strain v  against the deviatoric strain q , where 1  and 2  are the major and minor principal 122 

stresses respectively in two dimensional spaces. The stress ratio is related to material frictional 123 

angle as 2sin  .  124 

 125 

Figure 2 Material responses to shearing (a) Stress ratio b) Void ratio  126 

 127 

The deposition method is expected to produce loose specimens. Most of the samples show 128 

strain hardening behavior however strain softening response has been observed in samples with 129 

high particle friction coefficients 1.0p    and 10.0p  . The friction angles are observed to 130 

be low in general because circular particles have been used in the simulations. Similar to the 131 

observations in (Peyneau and Roux 2008), the sample made of frictionless particles ( 0.0p  ) 132 

exhibits a low shear resistance and little volume change. It flows nearly as a fluid, with the 133 

sample friction angle as low as 4.6o. A very low and fluctuating volumetric strain up to 0.2% is 134 

observed. The sample frictional angle increases gradually to 14o when the particle friction 135 

coefficient increases to 0.2. However, further increase in particle friction coefficient doesn’t 136 

further increase the material shear resistance. This is consistent with the laboratory (Skinner 137 

1969) and numerical (Thornton 2000, Antony and Sultan 2007, Huang, Hanley et al. 2014) 138 

observations on 3D granular materials. The volume change exhibits more diversity. When the 139 

particle friction coefficient increases from 0 to 0.2, the sample becomes more contractive with 140 

the volumetric strain with 0.2p   going up to 1%. However, when the particle friction 141 

coefficient increases further to 0.5p  , the sample contracts slightly and then behaves dilative. 142 

Further increase in particle friction coefficient leads to more dilative behavior with the 143 

volumetric strain with 10.0p   as high as 2.8%. It is also observed that although the variation 144 
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in stress ratio occurs mainly in the first 10% deviatoric strain, the change in volumetric strain 145 

continues until much larger strain levels. 146 

FABRIC QUANTIFICATION PERTINENT TO MATERIAL SHEAR RESISTANE 147 

The external loading is transmitted throughout the specimen via the force-bearing structure. 148 

Fig. 3 plots the force chains at the initial states. The heterogeneity in particle interaction is clear 149 

from the figure. It is observed that strong forces appear periodically over every few particle 150 

diameters. Since the chosen sample size is much larger than the dimension exhibited in force 151 

heterogeneity, the samples are considered as representative elements for stress analyses. 152 

Comparing Fig.3(a) & (b), samples of higher particle friction coefficients exhibit a periodicity 153 

over a slightly larger length scale.  154 

 155 

Figure 3 Contact force distribution prior to shearing (a) 0.0g   and (b) 1.0g  . (The 156 

thickness of the black lines is proportional to the magnitude of contact forces)  157 

 158 

The Stress-Force-Fabric Relationship 159 

Granular materials are known for its ability to self-organize their internal structure. 160 

Anisotropy develops as a result of shearing and makes an important contribution to material 161 

shear resistance. This section addresses the fabric quantification pertinent to the shear resistance 162 

of granular material in aid of the Stress-Force-Fabric relationship, which was originally 163 

proposed by (Rothenburg and Bathurst 1989). It was established based on the micro-structural 164 

definition of stress tensor, linking the continuum scale stress tensor ij  with contact forces 165 

c

if  and contact vectors 
c

iv  as: 166 

 
1 c c

ij i j

c V

v f
V




   (1) 167 
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in which V  stands for the volume of interest. Note that a contact point is identified only when 168 

there is non-zero interaction between two entities. At an internal contact point between two 169 

particles, there is always a pair of action and reaction forces corresponding to two contact 170 

vectors pointing from the contact point to each particle centre. They are counted as two contacts. 171 

However, an external contact point between particle and boundary wall is only counted once. 172 

(Li and Yu 2013) employed the theory of directional statistics (Kanatani 1984) to 173 

investigate the statistics of particle-scale information, characterised the directional dependence 174 

of particle-scale information with direction tensors and formulated the Stress-Force-Fabric 175 

relationship in the tensorial form. The notations used in (Li and Yu 2013, Li and Yu 2014) are 176 

followed in this paper. Examination of the particle-scale statistics supports the following 177 

simplifications: 178 

1) There is a slight and isotropic statistical dependence between contact forces and 179 

contact vectors which can be approximated by | = | |i j i jv f v f
n n n  where   180 

is a scalar around 1.025 for all the simulations. In this expression, * |
n  denotes the 181 

value of variable * in direction n , and * |
n
 denotes the average value of all terms of 182 

*  sharing the same direction n ; 183 

2) The contact vector length is isotropic; 184 

3) The contact normal probability density can be sufficiently accurately approximated by 185 

up to the 2nd rank polynomial series of unit directional vector n ; 186 

4) The mean contact force |nf  can be sufficiently accurately approximated by up to the 187 

3rd rank polynomial series of unit directional vector n . 188 

Eq. (1) can be converted into integration over direction by grouping the terms with the same 189 

contact normal directions together. Combined with the above observations, the simplified 190 

Stress-Force-Fabric relationship can be written as: 191 
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  0 0

1
1

2 2

p p
f c v

ij ij ji ij ij

N
v f h G D G

V


  

 
     

 
 (2) 192 

where p  is the particle coordination number, 
pN  is the number of particles, 0v  is the 193 

directional average of mean contact vector and 0f  is the directional average of mean contact 194 

force, h  is a scalar accounting for the contribution from the joint products which increases 195 

slightly from 0 to around 0.01 during shearing. In two dimensional spaces, the direction tensor 196 

for contact normal density is 
cos sin

sin cos

c c

c c

ij c c
D d

 

 

 
  

 
, where cd  denotes the magnitude 197 

of directional variation and 2c  indicates the preferred principal direction of contact normal 198 

density.  
cos sin

sin cos

f f

f f

ij f f
G B

 

 

 
  

 
 is the 2nd rank tensor characterizing the directional 199 

dependence of contact forces, where fB  denotes the magnitudes of directional variation, f200 

indicates its preferable principal direction. It is worth pointing that f

ijG  covers the contributions 201 

from both the normal contact force components and the tangential contact force components. 202 

c

ijG  is defined similar to f

ijG  but characterises the statistics of contact vectors. 203 

Approximation using Eq. (2) has been found to give exact matches of the continuum-scale 204 

stress, and provides a valid point to interpret material strength from the particle scale. 205 

Fabric quantification 206 

The micro-structural stress definition given in Eq. (1) shows that the particle-scale 207 

geometrical information linked to the material stress is contact vectors. And the SFF 208 

relationship given as Eq. (2) provides the analytical relationship quantifying the correlation 209 

between the contact vectors and material stress state. Considering the different nature in the 210 

normal and tangential force-displacement relationship, the terms in Eq. (1) has been grouped 211 

based on their contact normal directions, and the deviatoric tensor 
c

ijD  in Eq. (2) reflects the 212 
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anisotropy in contact normal density. The anisotropy in contact vector is a secondary factor 213 

which can be characterized in terms of c

ijG . These two aspects can be combined and quantified 214 

in terms of one fabric tensor. This section summarises their definitions and calculations based 215 

on directional statistical theories.  216 

Fabric quantification for contact normal density 217 

Contact normal based fabric tensor is one of the most widely used index in characterizing 218 

the loading induced anisotropy (Oda, Nemat-Nasser et al. 1985), and appears in Eq. (2) as 219 

cos sin

sin cos

c c

c c

ij c c
D d

 

 

 
  

 

, which is called the fabric tensor of the third kind (Kanatani 1984). 220 

It describes the variation of contact normal density over direction. An equivalent definition is 221 

the fabric tensor of the second kind c

ijF  (Kanatani 1984). With them, the contact normal density 222 

distribution can be approximated as: 223 

  
0 0

1 1
( ) 1c c c

ij i j ij i jE F n n D n n
E E

  n  (3) 224 

where 0 2E d 


    in the two dimensional spaces. c

ijD  and c

ijF  are interchangeable as  225 

 c c

ij ij ijF D    (4) 226 

They can be determined from the fabric tensor of the first kind, also referred to the moment 227 

tensor c

ijN  in (Kanatani 1984, Li and Yu 2013) as 
1

4
4

c c

ij ij ijF N 
 

  
 

 and 
1

4
2

c c

ij ij ijD N 
 

  
 

, 228 

where the moment tensor can be calculated as: 229 

 
1

1 Mc

ij i j i jN n n n n
M

 


    (5) 230 

where 
 1

n , 
 2

n ,  and 
 N

n  being the unit vectors representing contact normals. M  is the 231 

total number of contacts.  232 
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Fabric quantification for contact vector anisotropies 233 

The anisotropy in mean contact vector could be an additional contributor to material stress 234 

ratio as listed in the Stress-Force-Fabric relationship, Eq. (2), for non-spherical particles (Li and 235 

Yu 2014), although its anisotropy magnitude is often found to be secondary compared with that 236 

of contact normal density. The mean contact vector |jv
n

 can be approximated as 237 

 0| c

j j ji iv v n G n 
n

, or equivalently in terms of the fabric tensor  0 1c c

ij ijH v G  , where 0v  238 

is the directional average of mean contact vector.  239 

Fabric quantification combining contact normal and contact vector anisotropies 240 

A combined account for the contribution of material fabric to stress state may include both 241 

contact normal density and contact vector anisotropy, and be defined on the contact vector 242 

based moment tensor as: 243 

 
1

1
( ) |

Mc c

ij i j i j i jL v n v n E v n d
M

 

 
     nn  (6) 244 

Substituting Eq. (3) into Eq.(6) leads to    
1 10

1 1

2 4

c c c c c

ij ij ij ij im jmL v G D D G
 

    
 

 in 2D spaces. 245 

Note c

ijD  and c

ijG  are deviatoric tensors. Neglecting the joint products of higher rank terms for 246 

simplicity and denoting the normalized deviator tensor as 
2

2
c

c c cij
cij ij ij ij
kk

L
C G D

L
    , the 247 

Stress-Force-Fabric relationship can be rewritten as:  248 

  0 0
2

p p
c f

ij ij ij ji

N
v f C G

V


      (7) 249 

where 0

c

iiL v . c

ijC  provides an explicit account of the impact of internal structure on material 250 

strength. 251 

The micromechanical interpretation of material shear resistance 252 

In this study, disk-shaped particles are used. The mean contact vector has been found 253 
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nearly isotropic so that c

ijG =0 and 2c c

ij ijC D . For all the simulations, the principal fabric 254 

directions are the same as the loading direction, and the material anisotropy can be characterized 255 

in terms of the degrees of contact normal anisotropy cd , which is plotted in Fig. 4(a). Even for 256 

frictionless particles, shearing results in structure anisotropy, although of limited magnitude. 257 

More significant fabric anisotropy develops in more frictional particles. Upon shearing, the 258 

contact normal anisotropy increases mostly monotonically, although in more frictional samples, 259 

its rate of increases is observed to be higher and reaches a stronger anisotropy at the critical 260 

state. When the friction coefficient increases further beyond 0.5p  , the evolutions of contact 261 

normal anisotropy are observed to no longer change. This is similar to the observation made in 262 

(Huang, Hanley et al. 2014) based on 3D DEM simulations. 263 

 264 

Figure 4 The micro-mechanical contributors to material strength (a) Contact normal 265 

anisotropy cd , and (b) Contact force anisotropy fB  266 

 267 

Information on contact force anisotropy fB  is plotted in Fig. 4(b). While particle friction 268 

coefficient increases, both the contact normal anisotropy and the contact force anisotropy 269 

increase. The contact force anisotropy however exhibits a peak before approaching the critical 270 

state, coincident with the occurrences of peak stress ratio followed by strain softening. It is 271 

interesting to point out that no matter what the particle friction coefficient is, the anisotropy in 272 

contact force is of similar magnitude with contact normal anisotropy, which is better shown in 273 

Fig. 5 by plotting the two anisotropies against each other. The reference line indicates when the 274 

two anisotropic degrees are equal to each other. The strong correlation between the contact 275 

normal anisotropy and the contact force anisotropy is evident with most data points falling near 276 

the reference line. Shearing motivates contact force anisotropy slightly faster and higher than 277 
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the developed contact normal anisotropy. For samples made of very rough particles, contact 278 

force anisotropy was observed to be higher than the contact normal anisotropy at the early stage 279 

of shearing. When approaching the critical state, the two anisotropies become equal. 280 

 281 

Figure 5 Correlation between the fabric and contact force anisotropy 282 

 283 

In a summary, SFF relationship supports the effectiveness of c

ijD  and c

ijC  as the fabric 284 

tensor definition to study the material stress and hence strength. The force anisotropy is found 285 

strongly associated with the observed fabric anisotropy, in particular at the critical state. Hence, 286 

material shear strength can be determined from the fabric anisotropy should there be an 287 

established fabric-force correlation.  288 

VOID CELL STATISTICS AND MATERIAL DILATANY 289 

In this section, the relationship between material dilatancy and the evolution of void cell 290 

statistics will be explored by viewing a granular assembly as a collection of void cells. The void 291 

cell system is formed by connecting contact points and particle centres. Particles without 292 

contribution to the global force transmission, including those with few than two contact points, 293 

are excluded during the void cell construction. The number of constitutie particles in void cells 294 

should be no less than 3. Fig. 6 provides an example by presenting the void cell system with 295 

0.5p  . The color scheme is associated with the void cell area. The void cells between 296 

boundary particles and walls have been identified in order to tessellate the whole space enclosed 297 

by the specimen boundaries. 298 

 299 

Figure 6 The void cell system at pre-shearing stage ( 0.5p  ) 300 

 301 
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Void cell characterisation and void cell based fabric tensor 302 

Viewing a granular material as an assembly of void cells, the material fabric tensor can be 303 

defined as the statistical average of individual void cell characteristics. The loop tensors used 304 

in (Nguyen, Magoariec et al. 2009, Kruyt and Rothenburg 2014) are such examples. However, 305 

there is no unique way in doing so. Here, the individual void cell is characterized based on the 306 

area moment of inertia, and the void cell based fabric tensor is proposed as their statistical 307 

average as one example of its kinds.  308 

Characterisation of individual void cells 309 

Void cells may have different and irregular shapes. A single dimension is inadequate to 310 

describe the geometry of individual void cells. Factors of primary interest are the size of the 311 

void cell, its shape and the orientation. The area moment of inertia ij i j
A

I r r dA  , where ir  is 312 

the vector from the location of the area element dA  to the area centre of void cell, contains all 313 

the necessary information and can be potentially used. Based on the area moment of inertia 
ijI , 314 

the tensor ijZ  is used to describe the local cell geometry: 315 

 
4

ij ijZ I
A

  (8) 316 

Its principle direction gives information on the void cell orientation.  317 

 318 

Figure 7  det ijZ  vs. void cell area 319 

 320 

 321 

In the case of an ellipse of semi-major axis of length a   and semi-minor axis of lengthb , 322 

2

2

0

0
ij

a
Z

b

 
  
 

. Note that the area of the ellipse is    det ijab J Z   Z  , where 323 

   det ijJ ZZ  denotes the Jacobian determinant of tensor 
ijZ . This suggests that 324 
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 det ijZ  may serve as an effective estimation of void cell areas. Fig. 7 plots   det ijZ  325 

against the area of void cells for all the void cells shown in Fig. 6. The red line in the figure 326 

plots the reference line y x . Despite their irregular shape, the data have been found lying 327 

closely to, with most data slightly above, the reference line.  328 

The shape of an ellipse can be described by the index    a b a b  . For a circle, the 329 

index is equal to 0 and for an ellipse with infinite aspect ratio, it is 1. In terms of the tensor 330 

defined in Eq.(8), the equivalent expression is the void cell anisotropy index 331 

   1 2 1 21 1v Z Z Z Z    , where 1Z  and 2Z  are the major and minor principal values 332 

of the fabric tensor 
ijZ . Fig. 8 presents information on the shape of void cells by plotting the 333 

probability density function v

v

x
d P d

 
 , where v x

P
 

 represents the probability of void cells 334 

whose shape factor v  is no larger than x  , and v x
d P

 
 represents the probability of void cells 335 

whose shape factor falls within    1 2 1 22 1 1 2v v vx d Z Z Z Z x d          . Fig. 336 

8(a) plots the probability density function at the initial state while Fig. 8(b) plots the probability 337 

density function after 20% deviatoric strain. It is observed that most void cells are anisotropic 338 

with the highest probability around 0.2v  . For larger friction coefficients, the area fraction 339 

occupied by more anisotropic void cells becomes slightly larger while that by less anisotropic 340 

void cells becomes slightly smaller.  341 

 342 

Figure 8 Probability Density Function v

v

x
d P d

 
  (a) Deviatoric strain 0% (b) Deviatoric 343 

strain 20% 344 

 345 

The fabric tensor for individual void cell v

ijS  is hence defined such that the major principal 346 

fabric as  1 2v vA   , the minor principal fabric as  1 2v vA   and the principal directions 347 
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are the same as those of v

ijZ . Note that the ratio between the major and minor principal fabrics 348 

is 
1 2Z Z .  349 

Anisotropy in void cell orientation 350 

The orientation of void cells can be represented by a unit vector. Similar to contact normal 351 

density, the void cell orientations can be characterised by the direction tensor with the form  352 

 
cos sin

sin cos

S S

S S

ij S S
D d

 

 

 
  

 

 (9) 353 

and calculated from its moment tensor, where Sd  is the anisotropy index and S  the principal 354 

direction. The anisotropy index has been plotted in Fig. 9. The principal direction has been all 355 

around 90o. The figure suggests that material anisotropy has developed as a result of more void 356 

cells orienting towards the loading direction, similar to the observation reported in (Nguyen, 357 

Magoariec et al. 2012).  358 

 359 

 360 

Figure 9 Anisotropy in void cell orientations 361 

 362 

Void cell based fabric quantification 363 

The continuum-scale fabric tensor is defined as the average of void cell fabric tensors as: 364 

 
1S v

ij ijv
v A

F S
N 

   (10) 365 

The fabric tensors of individual void cells have been calculated from the void cell geometries 366 

obtained from DEM simulations, and used to calculate the macro fabric tensor defined in Eq. 367 

(10). The first invariant 
S v

iiF A  is the average void cell area. The deviatoric part of S

ijF  is an 368 

area-weighted measure of void cell shapes. The anisotropy index of void cell-based fabric 369 

tensor, Eq.(10), is defined as    1 2 1 22F S S S Sd F F F F    , where 1

SF  and 2

SF  are the 370 
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principal values of the fabric tensor S

ijF . The principal direction is observed around 90o. Fig. 371 

10 shows the evolution of the anisotropy index Sd  during shearing, whose pattern is observed 372 

in great similarity as that of contact normal density in Fig. 4(a) and that of void cell orientation 373 

in Fig. 9, suggesting a strong correlation among these fabric indices, which will be explored 374 

later in this paper. 375 

 376 

Figure 10 Anisotropy index of S

ijF  377 

 378 

Material dilatancy and void cell statistics 379 

Dilatancy is the change in sample volume or void ratio during shearing. For 2D granular 380 

assemblies, the total area of assembly samA  is equal to the summation of all void cell areas and 381 

can be expressed as:  382 

  
1

vN v v

sam vA A N A


   (11) 383 

where vA  denotes the area of the  -th void cell, vN  the total number of void cells, and vA  384 

the average void cell area. The total particle (solid) area 
1

pN p p

s pA A N A


  , where 

pA  385 

denotes the area of the  -th particle, pN  is the total number of particles and 
pA  is the average 386 

particle area, a constant throughout the test. The void ratio of the granular assembly can hence 387 

be formulated as: 388 

  1 1
vv

sam

p p
s

A AN
e

A N A
     (12) 389 

The total number of contacts can be found by summing up the coordination numbers of all 390 

particles, which however may be slightly different from that summing over all the void cells 391 

since in the void cell system each particle-wall contact is counted twice. Should the sample size 392 

be large enough, the difference is small and negligible, p p v vM N N   , where the void cell 393 
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coordination number 
v  denotes the average number of constitutive particles in void cells. It 394 

should be no less than 3 in two dimensional granulate systems. The material void ratio can 395 

hence be rewritten as: 396 

  1
v p

vp

A
e

A




   (13) 397 

The volume change tendency, i.e., the dilatancy of granular material, can be quantified as the 398 

change in the sample void ratio upon shearing, and studied by tracing the evolution of void cell 399 

statistics, in particular v pA A  and v p   during shearing. 400 

Fig. 11(a) plots the particle coordination number p  and the void cell coordination 401 

number v  for pre-sheared samples with different particle friction coefficients. Fig. 11(b) 402 

provides information of 
p

vA A  and 
v p   at various friction coefficients. The data of 403 

10.0p    are close to those of 1.0p  , and not shown in the figures. Note that the stability 404 

condition of two dimensional infinite granulate system imposes the requirement of the minimal 405 

coordination number being 3. The coordination numbers slightly smaller than 3 have been 406 

observed in this study is partially because non-load bearing particles (rattlers) are present in the 407 

system, but not excluded in particle coordination number. It is also because of the boundary 408 

effect. At each boundary-particle contact point, there are two force components contributing to 409 

the system stability. They are counted twice in void cell construction, but only once when 410 

calculating the particle coordination number. For the same reasons, the relationship between 411 

the particle coordination number p  and the void cell coordination number v  is found to 412 

slightly deviate from the Euler’s relation for planer graphs  2 2v p p     (Satake 1985).  413 

 414 

Figure 11 The internal structure at initial states (a) Coordination number; (b) Void cell 415 

characteristics 416 

 417 
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The figures show clearly that the particle friction coefficient has a significant effect on 418 

void cell characteristics. For frictionless particles, the particle coordination number is only 419 

slightly larger than that of void cells. The average void cell area and the average particle area 420 

are close. When the particles become frictional, the particle coordination number reduces while 421 

the void cell coordination number increases. More frictional particles tend to form fewer but 422 

larger void cells. It is observed that with increasing friction coefficients, the number of void 423 

cells drops, accompanied with an increase in void cell area. As a result, the average void cell 424 

area almost doubles when the particle friction changes from 
p =0 to 

p =10. The increase in 425 

void cell area exceeds the reduction in void cell number, resulting in larger void ratios observed 426 

at higher friction coefficients.  427 

The evolutions of the sample void ratio e  and the void cell characteristics, including 428 

p
vA A , the particle coordination number p  and the void cell coordination number v , have 429 

been plotted in Fig. 12. Eq. (13) reveals that the change in the void ratio e  is resulted from the 430 

competition between 
p

vA A  and v p  . As seen in Fig. 12, when samples are sheared, the 431 

increase in void cell coordination number is observed and accompanied by an increase in the 432 

mean void cell area. When the increase in 
p

vA A  exceeds that in 
v p  , the sample dilates 433 

with an increase in void ratio. Otherwise, the sample contracts with a reduced void ratio.  434 

With zero and low particle frictions, the particle and void cell coordination numbers 435 

remain almost constant during shearing. However, for highly frictional particles, shearing 436 

causes significant reduction in particle coordination number and increase in void cell 437 

coordination number at the early stage of shearing, but this effect is overtaken by the increase 438 

in 
p

vA A . Samples show significant dilative responses. These changes during shearing are 439 

associated with the development of void cell anisotropies presented in Figs. 8, 9 & 10. 440 

 441 
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Figure 12 Evolution of void cell statistics to shearing (a) Void ratio e , (b) 
p

vA A , (c) 442 

Particle coordination number p  and (d) Void cell coordination number v  443 

 444 

The void cell coordination number 445 

Frictional particles tend to form larger void cells with higher coordination number. 446 

Grouping the void cells according to their coordination number, the total sample area can be 447 

expressed as: 448 

  
3 3

v v v

sam val i val i
val i val ii i

A H A N h A
 

  

    (14) 449 

where val iH   is the number of void cells whose coordination number is i, v

val ival i
h H N

  450 

represents its probability and v

val i

A


 the average area of such void cells. The sample void hence 451 

becomes: 452 

   
3

1 1
v

pvsam

p val i
val iis

A N
e h A A

A N 


     (15) 453 

where 
vN  stands for the total number of void cells. 454 

Fig. 13 gives the probability and the average area of void cells with different coordination 455 

numbers at the initial and sheared states. It shows clearly that there is a close correlation 456 

between the average void cell area and the coordination number. The correlation can be roughly 457 

approximated by the polynomial function of power 2, and is found independent of particle 458 

friction coefficients. Particles with higher friction coefficients are more likely to form void cells 459 

with more constitutive particles, hence the probability of void cells with a larger coordination 460 

number is higher. Shearing alters the correlation between 
p

vA A  and the cell coordination 461 

number v  slightly. Data at 20% deviatoric strain are shown in Fig. 13(b). At the same 462 
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coordination number, 
p

vA A  is smaller at the sheared states than that in the initial state, 463 

indicating the dependence of average void cell area on void cell anisotropy. 464 

 465 

Figure 13 Void cell statistics at different coordination number (
p =0.5) (a) Deviatoric strain 466 

0%;  (b) Deviatoric strain 20%. 467 

 468 

VOID VECTOR BASED FABRIC QUANTIFICATION AND MATERIAL STRAIN 469 

Using the void cell system, the strain of a granular assembly can be considered as the 470 

volume weighted average of void cell strains. The micro-structural strain definition expresses 471 

the continuum-scale material strain in terms of particle relative displacements and void vectors 472 

(Bagi 1996, Kruyt and Rothenburg 1996, Kuhn 1999, Li, Yu et al. 2009), and inspired the 473 

definition of void vector fabric tensors. 474 

The micro-structural strain tensor 475 

Following the sign convention defined in (Li, Yu et al. 2009), the compressive strain is 476 

positive. ( )n x  denotes the normal direction on the boundary surface at point x , positive when 477 

pointing inwards. In two dimensional spaces, the displacement gradient tensor averaged over 478 

the sample area A  could be evaluated as: 479 

 
,

1 1
di j j i

A B

e u A dL
A A

     u n  (16) 480 

where ,j iu  denotes the displacement gradient and L  is the boundary of the area of interest A481 

. The line integral on the right hand side follows the counter-clockwise integration paths over 482 

the boundary of the area A . With ij  represents the two dimensional permutation tensor 483 

0 1

1 0
ij

 
  

 
 , i ij jn dL dx . Eq. (16) becomes: 484 
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jk jk

ij i k k i

B B

e u dx x du
A A

 
     (17) 485 

With the material internal structure represented by the void cell system, Eq. (17) can be 486 

discretized into: 487 

 
v v

jk jk

ij k i k i

v A v AL L

e x u u
A A

 


 

        (18) 488 

where i  is the vector starting from the contact point to the void cell centre, referred to as the 489 

void vector. Eq. (18) is a double summation. The inner summation *
vL

  runs over the boundary 490 

vL  of void cell v  and *
v A

  is a summation over all the void cells within the sample area A . For 491 

granular materials, no matter how the sample is divided into sub-domains; the weighted sum of 492 

local displacement gradient tensors is always the same (Bagi 1993). Denoting 493 

 
v

jkv

ij k iv

L

e u
A


    (19) 494 

as the local displacement gradient tensor defined on the void cell v , the sample displacement 495 

gradient tensor can be written as the area-weighted average over all the void cells: 496 

  
1 v v

ij i j

v A

e A e
A 

   (20) 497 

It is verified that such estimated sample displacement gradient is in good agreement with the 498 

value obtained from sample boundary. 499 

Void vector based fabric quantification 500 

The micro-structural strain definition given in Eq. (18) shows that the key geometrical 501 

information bridging-up the continuum scale strain and the particle-scale relative displacements 502 

is void vector, which connects the contact point to the void cell centre. This inspired the void 503 

vector based fabric tensor definitions (Li and Li 2009). The mathematical treatment has been 504 

detailed in (Li and Yu 2011) and applied to analyze the contact vectors in the previous session.  505 
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Fabric quantification based on void vector probability density 506 

To describe the directional dependence of void vectors, it is of interest to know in each 507 

direction 1) their probability density and 2) their representative (or mean) value. The directional 508 

probability density of void vectors can be quantified in terms of a second rank deviatoric tensor  509 

 
cos sin

sin cos

v v

v v

ij v v
D d

 

 

 
  

 

 (21) 510 

following the similar procedure to process information on contact normal and void cell 511 

orientations.  512 

Fabric quantification based on void vector length 513 

As a description of void cell shape in average, the directional dependence of mean void 514 

vector has been characterized in terms of the second rank deviatoric tensor 515 

cos sin

sin cos

v v

v v

ij v v
G B

 

 

 
  

 

 so that the mean void vector in direction n   can be approximated 516 

as  517 

    0 1 cos 2v vB      
 

n   (22) 518 

where in two dimensional spaces, the unit direction vector is equivalently expressed as 519 

 cos ,sin n . Based on the mean void vector length, (Li and Li 2009) proposed the void 520 

vector based fabric tensor as: 521 

  0

v v

ij ij ijH G    (23) 522 

The void vector based moment tensor 523 

The void vector based moment tensor can be considered as a combined account of the 524 

anisotropies in void vector density and mean void vector length. It has been used in (Fu and 525 

Dafalias 2015) in structural characterization. The moment tensor can be found as 526 
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1

1 Mv

ij i j i jL n n
M

 


 


   . Similar to previous discussions on contact vectors, v

ijL  can be 527 

determined from v

ijD  and v

ijH . In two dimensional spaces, 528 

   
1 10

1 1

2 4

v v v v v

ij ij ij ij im jmL G D D G 
 

    
 

. 529 

Internal structure size during shearing 530 

As shearing continues, anisotropy in void vectors develops and is quantified with the two 531 

anisotropy indices vd , vB . Both anisotropies are observed to be significant. For all the 532 

simulations in this study, both anisotropies align in the loading direction. And similarity is 533 

observed between their evolutions and those in contact normal density and void cell orientation. 534 

The directional average of void vector length 0  is regarded as a measure of the void cell size, 535 

and plotted in Fig. 14. It is shown that samples with larger particle friction coefficients have a 536 

larger void vector length, corresponding to larger void cells.  537 

 538 

Figure 14 Directional average of void vector length 539 

 540 

CORRELATION BETWEEN DIFFERENT FABRIC QUANTIFICATIONS 541 

So far, a number of fabric quantifications have been listed in this paper and defined as the 542 

statistical characterisatics of contacts, void cells and void vectors, respectively. They are chosen 543 

because of their relevance to material strength and deformation, and formulated based on the 544 

directional statistical theory (Kanatani 1984, Li and Yu 2011). The development of constitutive 545 

model however requires minimizing the number of variable and parameters. It is hence 546 

important to explore the correlations among various fabric quantifications (Fu and Dafalias 547 

2015). The similarities observed in their evolution pattern is encouraging. In this session, the 548 
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void cell based fabric tensor S

ijF  has been used as a reference to discuss the correlaton among 549 

different fabric quantifications. 550 

Among all the fabric tensors, two of them contains informaton reflecting void cell size. 551 

They are the fabric tensor based on void vector length v

ijH , Eq. (23) and the void cell based 552 

fabric tensor S

ijF , Eq. (10). The directional averaged void vector length 0  in V

ijH  and the 553 

mean void cell area 
S v

iiF A  in S

ijF  are plotted against each other in Fig. 15, showing a strong 554 

correlation in between. It confirms that 0  can be considered as an effective descriptor of 555 

material internal structure size. The correlation is independnt of particle friction coefficient. 556 

 557 

Figure 15 Correlations between internal structure size descriptors 558 

 559 

 560 

All the fabric tensors contains material anisotropy information. The anisotropy developed 561 

in contact vector length c

jiG  is not elaborated here because its effect is secondary. The 562 

anisotropy index  Fd  in the void cell based fabric quantification S

ijF , Eq. (10) is shown 563 

correlated with other anisotropy indices, including cd  in contact normal density, Eq. (3), Sd  564 

in void cell orientation, Eq. (9), vd  in the void vector orientation, Eq. (21) and vB  in the mean 565 

void vector length, Eq. (23) in Fig. 16. The strong correlation among these anisotropy confirms 566 

the observations made in (Li, Yu et al. 2009, Fu and Dafalias 2015). The anisotropy indices 567 

associated with void vectors are expected to be closely related that in void cells, as confirmed 568 

in Fig. 16(c) & (d). In-depth investigation into structural topology may help to establish the 569 

correlation analytically and to unify the fabric tensor definitions. 570 

 571 

Figure 16 Correlations between the void cell-based anisotropy and other anisotropy indices 572 

(a) Contact normal probability density; (b) Void cell orientation; (c) Void vector probability 573 
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density and (d) Mean void vector length 574 

 575 

DISCUSSION ON STRAIN HETEROGENITY 576 

Observation of deformation pattern 577 

Strain heterogeneity is another important feature of granular materials. The deformation 578 

descriptor in Eq. (19) is defined for each individual void cell and offers a view of spatial 579 

distribution of material deformation. Take the configuration when the void cell system is 580 

constructed as the reference undeformed configuration. The relative displacements occurring 581 

during the subsequent 0.5% deviatoric strain increments are extracted from the DEM 582 

simulations and used to calculate the displacement gradient tensor of each void cell as per Eq. 583 

(19).  584 

Fig. 17 shows the local displacement gradients of each void cell when the sample was 585 

sheared from 15% to 15.5% deviatoric strain. The four components of non-affine displacement 586 

gradient tensor, defined as the deviation of the local strain from the sample average 587 

displacement gradient tensor, for the sample with 0.5g   are plotted in the separate sub-588 

figures. It is observed that there are localized banding structures where the strain is much more 589 

significant than the remaining of areas. This is similar to the observation made in (Kuhn 1999) 590 

that slip deformation was most intense within thin obliquely micro bands. Different from the 591 

periodic boundaries used in (Kuhn 1999), the sample boundaries are rigid walls which impose 592 

uniform displacement gradient field. These banding structures do not persist during shearing. 593 

Subsequent loading continuously destroys the existing banding structures and promotes the 594 

formation of new bands in other locations. It is interesting to note that although certain banding 595 

features are commonly observed in the four plots; the patterns for the two shear strain 596 

components are observed to be different from those for the two normal strain components. 597 



27 

 

Furthermore, bands of component 
12

we  tend to propagate in the vertical direction while the 598 

pattern shown by component 
21

we  extends in the horizontal direction.  599 

 600 

Figure 17 Patterns of non-affined deformation gradient observed from deviatoric strain 601 

15%q   to 15.5%q   ( 0.5g  ) (a) 
11  (b) 

12  (c) 
21  and (d) 

22  602 

 603 

The distance between deformation bands is in the order of tens of particle diameters. It is 604 

several times larger than the internal scale in force chain heterogeneity. Shearing brings about 605 

continuous formation, development and dissolution of deformation bands, causing 606 

synchronized swing in the material shear stresses as seen in Fig. 2(a). The developments of the 607 

force chain heterogeneity and the deformation bands are believed to be critical to the 608 

deformation and failure of granular systems. It is an area of future research. Considering the 609 

heterogeneity in material deformation, the sample size may need to be further enlarged to serve 610 

as a representative element.  611 

Probability distributions 612 

The sample deformation gradient tensor given in Eq. (20) can be interpreted as an integral 613 

over all the possible local deformation gradient values as 614 

 
ij

i j i je ije W e de   (24) 615 

in which 
 2, 2

0

1
lim

v
ij ij ij ij ij

ij ij

v

e e e e e

e e
ij

A

W
A e

  

 





 is the area fraction density function. It is the 616 

area fraction of void cells whose displacement gradient component v

i je  falls within the range 617 

2, 2
v
ij ij ij ij ije e e e e

 
 
 
 

    normalized by the deformation increment 
ije .  Eq. (24) deals with 618 

the four components of displacement gradient tensor separately. The Einstein summation over 619 
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the repeated subscripts doesn’t apply here.  620 

 621 

Figure 18 Area fraction density of the four displacement gradient components ( 0.5g  , 622 

from 15%q   to 15.5%q  ) (a) normal components and (b) shear components 623 

 624 

Fig. 18 plots the area fraction density function for the four components of displacement 625 

gradient tensor. The data are again taken from the sample with 0.5g   when sheared from 626 

15%q   to 15.5%q   as shown in Fig. 17. For all the simulations in this study, the highest 627 

area fraction occurs at zero or near zero deformation. The area fraction decreases quickly as the 628 

magnitude of strain component increases. However, it is worth noting that there exists a large 629 

area fraction where local deformation is much more prominent than the continuum scale 630 

average 0.5%. Although the samples are loaded in the biaxial mode, significant shear strains 631 

are observed, indicating rigid body rotation or deformation deviated away from the vertical 632 

direction are important deformation mechanisms in local void cells. The continuum-scale 633 

deformation is of small magnitudes because there are significant portions of positive as well as 634 

negative strain components which compensate each other.  635 

Particle friction coefficient has a significant influence on deformation distribution. 636 

Samples of smooth particles show more dispersed but more significant void cell deformations. 637 

Fig. 19 presents the probability distribution of void cell deformations by plotting the area 638 

fraction of positive and negative normal strains and the averages of positive and negative shear 639 

strain components respectively. The shape of function 
ije

W  for the two shear components is 640 

symmetric with respect to 0x  , corresponding to the observation that the area fractions for the 641 

positive and negative shear components are around 50%, although not plotted here.  642 

 643 
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Figure 19 Development of void cell strains  (a) 0.0p   (b) 0.5p   and (c) 10.0p   644 

 645 

With increase in particle friction coefficient, the area fraction with positive 22e  and 646 

negative 11e  increase as shown in Fig. 19. For frictionless particles 0.0g  , there are 647 

extensive and significant deformations observed in all void cells. Around 55% of sample area 648 

goes through positive 22e  or negative 11e  which is only slightly larger than the area fraction 45% 649 

for negative 22e  or positive 11e . The average magnitudes of normal strain components are 650 

around 2%, and of shear strain components around 4%. However, with larger particle friction 651 

coefficient, for example, in the case 0.5g  , there is nearly 70% percent of area with positive 652 

22e  or negative 11e . The average magnitudes of normal strain components are around 1% with 653 

a slightly larger value for shear strain components. The average magnitudes are observed to 654 

increase slightly at the extremely high particle friction coefficient 10.0g   indicating the 655 

deformation distribution gets slightly dispersed. Differences have also been observed in 656 

deformation at small strain levels. For higher particle friction coefficients, the local void cell 657 

deformation is more uniform and close to the continuum-scale average deformation, i.e., 658 

smaller non-affine deformation. And it takes a larger strain level to develop into the deformation 659 

patterns at the critical states. 660 

There is however not yet a clear conclusion on what fabric information affects strain 661 

heterogeneity and the consequent impact on material deformation. The relative displacement 662 

between particles may result from different combinations of contact sliding and rolling 663 

(Iwashita and Oda 1998, Kuhn and Bagi 2004). More research in studying local particle 664 

rearrangement and contact movement (Nguyen, Magoariec et al. 2012) is needed. 665 
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CONCLUDING REMARKS 666 

This paper studies the behavior of granular material as the collective response of void cells 667 

based on the multi-scale data obtained from a series of numerical simulations with different 668 

particle friction coefficients. More anisotropic structures have been formed in more frictional 669 

materials, and they can support larger contact force anisotropies. The difference in particle 670 

friction coefficient also causes significant difference in internal structure size. More frictional 671 

particles tend to form less but larger void cells, leading to a larger sample void ratio. 672 

The definition of fabric tensor requires 1) identifying the key aspect of material internal 673 

structure and 2) understanding its influence on the stress-strain responses. Three groups of 674 

fabric tensor have been covered in this paper. The first one is based on contact vectors. Fabric 675 

tensors based on contact normal density and the contact vector moment tensors are identified 676 

as effective indices associated with material strength, and their impact on material stress 677 

quantified by the SFF relationship. The second group is defined on void cell characteristics. 678 

The fabric tensor based on the area moment of inertia v

ijS  has been proposed to characterize 679 

the individual void cell geometry and their statistical average as material fabric tensor, Eq. (10). 680 

Fabric tensors have been defined based on the void cell orientation and as the statistical average 681 

of void cell characteristics. Material dilatancy can be interpreted by tracing the void cell 682 

statistics during shearing. For frictionless particles, shearing doesn’t change the void cell size 683 

much. However, for high friction particles, shearing will form larger void cells, causing dilative 684 

material responses. The micro-structural strain definition given in Eq. (18) suggests the void 685 

vector based fabric tensor definitions could be potential candidates when studying material 686 

deformation, including those based on void vector probability density and the directional 687 

distribution of mean void vectors.  688 

Correlations among various fabric quantifications have been explored. The mean void 689 

vector length and the mean void cell area are parameters quantifying the internal structure size, 690 
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and strongly correlated with each other. Anisotropy indices defined based on contact normal 691 

density, void vector density, void vector length and void cell orientation are found effective in 692 

characterizing loading-induced anisotropy. They are also closely correlated. The fabric tensor 693 

definitions, such as the fabric tensors defined on the void vector length and that based on 694 

individual void cell characteristics, are advantageous for reflecting both the internal structure 695 

size and material anisotropy. In-depth investigation on structural topology may help establish 696 

the correlation among different fabric descriptors and unify the fabric tensor definition. 697 

Deformation of granular materials is highly heterogeneous. The deformation of individual 698 

void cells has been calculated and the local deformation is shown to be much more significant 699 

than the continuum-scale average strain. Deformation bands have been observed. With sample 700 

boundaries formed by rigid planar walls, shearing continuously destroys the existing banding 701 

structures and promotes the formation of new bands in other locations. The distance between 702 

these deformation bands is in the scale of tens of particle diameters. Its relation to and impact 703 

on material deformation is an area of future investigation.  704 
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