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Appendix S1. Model implementation 

 
Model implementation 

The model is implemented as a set of coupled Stochastic Differential Equations, (SDEs) (see e.g. Mao 

1997) and simulated using the Euler-Maruyama algorithm (e.g. see Higham 2001) which is essentially 

a generalisation of the Euler discretisation for Ordinary Differential Equations to SDEs. The model is 

also implemented (for simulation study 2) as a continuous-time discrete-state space Markov process, 

simulated using Gillespie’s algorithm (Gillespie 1976). The Gillespie algorithm is an event-based 

method that makes use of the fact that in the underlying discrete state-space Markov process at any 

point in time the waiting time between events is exponential and parameterised by the total rate of 

all possible events i.e. the sum of all possible events. The Gillespie algorithm proceed from time t by 

drawing a waiting time τ from this distribution, advancing time to t+τ , and then selects the nature 

of the event at random but weighted according to the relative rates of the possible events. The SDE 

implementation has been constructed so that it is the diffusion limit of the Gillespie implementation, 

ensuring that the results are consistent between the two implementations (see below). The Gillespie 

algorithm is computationally more intensive; by contrast, using SDEs is faster and therefore 



facilitates both more accurate estimation of model statistics (i.e. a greater number of surveillance 

bouts can be run) and more extensive exploration of parameter space.  However, the discrete nature 

of the state-space under the Gillespie algorithm is a more direct implementation of the model 

described in Table 1, and provides a more accurate representation of population dynamics especially 

for small populations. 

 

Relationship between discrete and continuous (SDE) state-space model implementations. 
 
In this appendix we describe the relationship between the continuous time discrete state-space 

Markov process and the stochastic differential equation (SDE) implementations of the model 

described in the main text. 

 

Our starting point is the SI model described in Table 1 (main text) implemented as a continuous time 

discrete state-space Markov process in which the number of infected individuals I(t) and total 

population size N(t) = S(t)+I(t), are represented as integer variables.  The Gillespie algorithm exploits 

the fact that the time between events is distributed exponentially with parameter R(t) given by the 

sum of all the event rates in Table 1 and the probability that a given event occurs is given by the 

associated event rate divided by R(t).   

 

However, under this implementation one can also consider the expectation and variance-covariance 

of the change in the state-space variables I(t) and N(t) during a small time interval. For convenience 

denote the state of the system at time t by X(t)={I(t),N(t)}. Then for example, conditional on the state 

of the system at time t, the expected change in the population size associated with birth events from 

time t to t+δt is given by EB[δN(t)|X(t)] = rN(t) (1 – N(t)/k)δt. Similarly, the variance in δN associated 

with birth events is VarB[δN(t)]= rN(t) (1 – N(t)/k)δt + O(δt2), and henceforth we will assume δt is 

sufficiently small to ignore the higher order terms. In the model described in the main text (see 

Table 1 and surrounding text) all individuals are born susceptible and therefore birth does not affect 

the infective population size I(t) i.e. EB[δI(t)|X(t)] = 0, VarB[δI(t)]=0, and CovB [δI(t),δN(t)|X(t)]=0. 

However, migration of infectives affects both I(t) and N(t) and to first order in δt we find that 

EmI[δN(t)|X(t)]= γνδt, VarmI[δN(t)]= γνδt, EmI[δI(t)|X(t)] = γ ν δt, VarmI[δI(t)]= γ ν δt  and CovmI 

[δI(t),δN(t)|X(t)]= γνδt. The full set of first- and second-order statistics describing changes in the 

state-space associated with each event type are given (up to first order in δt) in Table S1.    

 



 

 

Table S1: Expectations and variance-covariances in changes (during the time interval t to t+δt) to the 
state space {I(t),N(t)} associated with each event type in the discrete state-space model described in 
the main text (see Table 1). All such quantities are shown to first order in δt. Note: capture and 
release events are omitted since they affect neither I(t) or N(t). 
 

We now show how to construct a continuous time, continuous state-space (diffusion) version of the 

model which is consistent with above implementation in that it preserves the means and variance-

covariance statistics shown in Table S1. To do so we construct a set of stochastic differential 

equations (SDEs) which we later solve numerically in discrete time steps (e.g. see Higham 2001).  The 

following Itô stochastic differential equations represent the change in the system state variables 

during an infinitesimally small time interval dt 

   

𝑑𝑁(𝑡) = (𝑓𝑁,𝐵(𝑋(𝑡)) + 𝑓𝑁,𝐷𝑆(𝑋(𝑡)) + 𝑓𝑁,𝐷𝐼(𝑋(𝑡)) + 𝑓𝑁,𝑚𝑆(𝑋(𝑡)) + 𝑓𝑁,𝑚𝐼(𝑋(𝑡))

+ 𝑓𝑁,1𝑟𝑦(𝑋(𝑡)) + 𝑓𝑁,2𝑟𝑦(𝑋(𝑡))) 𝑑𝑡 

+ 𝑔𝑁,𝐵(𝑋(𝑡))𝑑𝐵𝐵(𝑡) + 𝑔𝑁,𝐷𝑆(𝑋(𝑡))𝑑𝐵𝐷𝑆(𝑡) + 𝑔𝑁,𝐷𝐼(𝑋(𝑡))𝑑𝐵𝐷𝐼(𝑡)

+  𝑔𝑁,𝑚𝑆(𝑋(𝑡))𝑑𝐵𝑚𝑆(𝑡)  + 𝑔𝑁,𝑚𝐼(𝑋(𝑡))𝑑𝐵𝑚𝐼(𝑡)

+ 𝑔𝑁,1𝑟𝑦(𝑋(𝑡))𝑑𝐵1𝑟𝑦(𝑡) + 𝑔𝑁,2𝑟𝑦(𝑋(𝑡))𝑑𝐵2𝑟𝑦(𝑡) 

 

𝑑𝐼(𝑡) = (𝑓𝐼,𝐵(𝑋(𝑡)) + 𝑓𝐼,𝐷𝑆(𝑋(𝑡)) + 𝑓𝐼,𝐷𝐼(𝑋(𝑡)) + 𝑓𝐼,𝑚𝑆(𝑋(𝑡)) + 𝑓𝐼,𝑚𝐼(𝑋(𝑡))

+ 𝑓𝐼,1𝑟𝑦(𝑋(𝑡)) + 𝑓𝐼,2𝑟𝑦(𝑋(𝑡))) 𝑑𝑡 

Etype Event E[δN|X(t)] E[δI|X(t)] Var[δN|X(t)] Var[I|X(t)] Cov[δN,δI|X(t)] 

B Birth 
 

𝑟𝑁(1 − 𝑁/𝑘)𝛿𝑡 0  𝑟𝑁(1 − 𝑁/𝑘)𝛿𝑡 0 0 

DS Death of 
Susceptible 

−𝜇𝑆𝛿𝑡 0 𝜇𝑆𝛿𝑡 0 0 

DI Death of 
Infected 

−𝜇𝐼𝛿𝑡 −𝜇𝐼𝛿𝑡 𝜇𝐼𝛿𝑡 𝜇𝐼𝛿𝑡 𝜇𝐼𝛿𝑡 

mS Susceptible 
Immigration  

(1 − 𝛾)𝜈𝛿𝑡 0 (1 − 𝛾)𝜈𝛿𝑡 0 0 

mI Infected   
Immigration  

𝛾𝜈𝛿𝑡 𝛾𝜈𝛿𝑡 𝛾𝜈𝛿𝑡 𝛾𝜈𝛿𝑡 𝛾𝜈𝛿𝑡 

1ry Primary 
Transmission 

0  𝛽0𝑆𝛿𝑡 0 

 
𝛽0𝑆𝛿𝑡 0 

2ry Secondary 
Transmission 

 0 𝛽𝐼𝑆𝛿𝑡 0 

 
𝛽0𝑆𝛿𝑡 0 



+ 𝑔𝐼,𝐵(𝑋(𝑡))𝑑𝐵𝐵(𝑡) +  𝑔𝐼,𝐷𝑆(𝑋(𝑡))𝑑𝐵𝐷𝑆(𝑡) + 𝑔𝐼,𝐷𝐼(𝑋(𝑡))𝑑𝐵𝐷𝐼(𝑡)

+  𝑔𝐼,𝑚𝑆(𝑋(𝑡))𝑑𝐵𝑚𝑆(𝑡)  + 𝑔𝐼,𝑚𝐼(𝑋(𝑡))𝑑𝐵𝑚𝐼(𝑡)

+ 𝑔𝐼,1𝑟𝑦(𝑋(𝑡))𝑑𝐵1𝑟𝑦(𝑡) + 𝑔𝐼,2𝑟𝑦(𝑋(𝑡))𝑑𝐵2𝑟𝑦(𝑡) 

 

Here the quantities BB(t), BDS(t), BDI(t), BmS(t), BmI(t), B1ry(t), B2ry(t) are independent Brownian motions 

corresponding to each of the seven event types and the correct interpretation of these equations 

requires consideration of associated stochastic intergrals (Mao, 1997). For small but finite dt the 

quantities dBB(t), dBDS(t), dBDI(t), dBmS(t), dBmI(t), dB1ry(t), dB2ry(t) can be interpreted as independent 

draws from a zero mean Gaussian with variance dt for each event type and each time point 0,dt,2dt, 

... ,Tϵ(0,T).  Thus e.g. E[dBB(t)]=0, E[dBB(t)dBB(t)]=0 and E[dBB(t)dBDS(t)]=0. This discretisation is the 

basis for the numerical simulation of these SDEs used in this paper. 

 

The so-called drift, fN,B(X(t)), fN,DS(X(t)), fN,DI(X(t)), fN,mS(X(t)), fN,mI(X(t)), fN,1ry(X(t)), fN,2ry(X(t)) and 

diffusion, gN,B(X(t)), gN,DS(X(t)), gN,DI(X(t)), gN,mS(X(t)), gN,mI(X(t)), gN,1ry(X(t)), gN,2ry(X(t)), terms 

representing changes in the variable N(t) and the corresponding quantities representing changes in 

I(t) are deterministic functions of the state-space X(t) determined as follows. 

 

Given the nature of the Brownian motions taking the expectation of the above equations yields 

 

𝐸[𝑑𝑁(𝑡)|𝑋(𝑡)] = (𝑓𝑁,𝐵(𝑋(𝑡)) + 𝑓𝑁,𝐷𝑆(𝑋(𝑡)) + 𝑓𝑁,𝐷𝐼(𝑋(𝑡)) + 𝑓𝑁,𝑚𝑆(𝑋(𝑡)) +  𝑓𝑁,𝑚𝐼(𝑋(𝑡))

+ 𝑓𝑁,1𝑟𝑦(𝑋(𝑡)) + 𝑓𝑁,2𝑟𝑦(𝑋(𝑡))) 𝑑𝑡 

𝐸[𝑑𝐼(𝑡)|𝑋(𝑡)] = (𝑓𝐼,𝐵(𝑋(𝑡)) + 𝑓𝐼,𝐷𝑆(𝑋(𝑡)) + 𝑓𝐼,𝐷𝐼(𝑋(𝑡)) + 𝑓𝐼,𝑚𝑆(𝑋(𝑡)) +  𝑓𝐼,𝑚𝐼(𝑋(𝑡))

+ 𝑓𝐼,1𝑟𝑦(𝑋(𝑡)) + 𝑓𝐼,2𝑟𝑦(𝑋(𝑡))) 𝑑𝑡 

 

Which suggests that for each event type Etype fN,Eype(X(t)) and fI,Etype(X(t)) should be interpreted as 

the mean update shown in Table S1 for N(t) and I(t) respectively.  For example, 𝑓𝑁,1𝑟𝑦(𝑋(𝑡)) and 

𝑓𝑁,2𝑟𝑦(𝑋(𝑡)) are both zero since only birth, death and migration change the population size, i.e. 

neither primary nor secondary infection changes the population size. 

 

The variance in the update for N(t) is given by  



 

Var[𝑑𝑁(𝑡)|𝑋(𝑡)] = 𝐸[𝑑𝑁(𝑡)2|𝑋(𝑡)] − 𝐸[𝑑𝑁(𝑡)|𝑋(𝑡)]2 

 

However, we have just shown that E[dN(t)|X(t)] is of order dt and therefore to first order in dt we 

can write 

 

  Var[𝑑𝑁(𝑡)|𝑋(𝑡)] = 𝐸[𝑑𝑁(𝑡)2|𝑋(𝑡)] =  

𝑔𝑁,𝐵(𝑋(𝑡))
2

𝑑𝑡 +  𝑔𝑁,𝐷𝑆(𝑋(𝑡))
2

𝑑𝑡 + 𝑔𝑁,𝐷𝐼(𝑋(𝑡))
2

𝑑𝑡 +  𝑔𝑁,𝑚𝑆(𝑋(𝑡))
2

𝑑𝑡     

+  𝑔𝑁,𝑚𝐼(𝑋(𝑡))
2

𝑑𝑡 + 𝑔𝑁,1𝑟𝑦(𝑋(𝑡))
2

𝑑𝑡 +  𝑔𝑁,2𝑟𝑦(𝑋(𝑡))
2

𝑑𝑡 

 

and  

 

 Var[𝑑𝐼(𝑡)|𝑋(𝑡)] = 𝐸[𝑑𝐼(𝑡)2|𝑋(𝑡)] =   

𝑔𝐼,𝐵(𝑋(𝑡))
2

𝑑𝑡 +   𝑔𝐼,𝐷𝑆(𝑋(𝑡))
2

𝑑𝑡 +   𝑔𝐼,𝐷𝐼(𝑋(𝑡))
2

𝑑𝑡 + 𝑔𝐼,𝑚𝑆(𝑋(𝑡))
2

𝑑𝑡    

+   𝑔𝐼,𝑚𝐼(𝑋(𝑡))
2

𝑑𝑡 + 𝑔𝐼,1𝑟𝑦(𝑋(𝑡))
2

𝑑𝑡 + 𝑔𝐼,2𝑟𝑦(𝑋(𝑡))
2

𝑑𝑡   

 

Here we have made use of the independent nature of the Brownian motions described above. 

 

These last two equations therefore suggest that for each event type Etype, gN,Etype(X(t))2 and 

gI,Etype(X(t))2 should be interpreted as the variance in update shown in Table S1 for N(t) and I(t) 

respectively.   

 

The above calculations are summarised in Table S2. Comparison with Table S1 allows the functional 

form for each drift and diffusion term to be identified. 

 

Finally, the covariance  

Cov[𝑑𝑁(𝑡)𝑑𝐼(𝑡)|𝑋(𝑡)] = 𝐸[𝑑𝑁(𝑡)𝑑𝐼(𝑡)|𝑋(𝑡)] − 𝐸[𝑑𝑁(𝑡)|𝑋(𝑡)]𝐸[𝑑𝐼(𝑡)|𝑋(𝑡)] 

to first order in dt is given by  



 

Cov[𝑑𝑁(𝑡)𝑑𝐼(𝑡)|𝑋(𝑡)] = 𝐸[𝑑𝑁(𝑡)𝑑𝐼(𝑡)|𝑋(𝑡)] = 

+  𝑔𝑁,𝐷𝐼(𝑋(𝑡))𝑔𝐼,𝐷𝐼(𝑋(𝑡))𝑑𝑡 +   𝑔𝑁,𝑚𝐼(𝑋(𝑡))𝑔𝐼,𝑚𝐼(𝑋(𝑡))𝑑𝑡   

where we have shown only the non-zero terms. Comparison with the functional forms for the 

diffusion terms described above shows that this expression is consistent with the covariance terms 

shown in Table S1. 

 

 

Table S2: Expectation and variance-covariances in changes (during the time interval t to t+dt) to the 
state space {I(t),N(t)} associated with each event type in the SDE model as described in Appendix S1. 
All such quantities are shown to first order in dt.  Comparison with Table S1 enables both drift e.g. 
fN,B(X(t)) and diffusion e.g. gN,B(X(t)) functions to be identified. Note: capture and release events are 
omitted since they affect neither I(t) or N(t). 

 
References 
Higham, D. J. (2001) An Algorithmic Introduction to Numerical Simulation of Stochastic Differential 
Equations. SIAM REVIEW  43(3), 525–546 
 
Mao, X., (1997) Stochastic Differential Equations and Applications. Horwood, New York. 
 
 
 
 

  

Etype E[dN|X(t)] E[dI|X(t)] Var[dN|X(t)] Var[dI|X(t)] Cov[dN,δI|X(t)] 

B 𝑓𝑁,𝐵(𝑋(𝑡))𝑑𝑡 𝑓𝐼,𝐵(𝑋(𝑡))𝑑𝑡  𝑔𝑁,𝐵(𝑋(𝑡))
2

𝑑𝑡  𝑔𝐼,𝐵(𝑋(𝑡))
2

𝑑𝑡 0 

DS 𝑓𝑁,𝐷𝑆(𝑋(𝑡))𝑑𝑡 𝑓𝐼,𝐷𝑆(𝑋(𝑡))𝑑𝑡  𝑔𝑁,𝐷𝑆(𝑋(𝑡))
2

𝑑𝑡  𝑔𝐼,𝐷𝑆(𝑋(𝑡))
2

𝑑𝑡 0 

DI 𝑓𝑁,𝐷𝐼(𝑋(𝑡))𝑑𝑡 𝑓𝑁,𝐷𝐼(𝑋(𝑡))𝑑𝑡  𝑔𝑁,𝐷𝐼(𝑋(𝑡))
2

𝑑𝑡  𝑔𝐼,𝐷𝐼(𝑋(𝑡))
2

𝑑𝑡 𝑔𝑁,𝐷𝐼(𝑋(𝑡))𝑔𝐼,𝐷𝐼(𝑋(𝑡))𝑑𝑡 

mS 𝑓𝑁,𝑚𝑆(𝑋(𝑡))𝑑𝑡 𝑓𝐼,𝑚𝑆(𝑋(𝑡))𝑑𝑡  𝑔𝑁,𝑚𝑆(𝑋(𝑡))
2

𝑑𝑡  𝑔𝐼,𝑚𝑆(𝑋(𝑡))
2

𝑑𝑡 0 

mI 𝑓𝑁,𝑚𝐼(𝑋(𝑡))𝑑𝑡 𝑓𝐼,𝑚𝐼(𝑋(𝑡))𝑑𝑡  𝑔𝑁,𝑚𝐼(𝑋(𝑡))
2

𝑑𝑡  𝑔𝐼,𝑚𝐼(𝑋(𝑡))
2

𝑑𝑡 𝑔𝑁,𝑚𝐼(𝑋(𝑡))𝑔𝐼,𝑚𝐼(𝑋(𝑡))𝑑𝑡 

1ry 𝑓𝑁,1𝑟𝑦(𝑋(𝑡))𝑑𝑡  𝑓𝐼,1𝑟𝑦(𝑋(𝑡))𝑑𝑡   𝑔𝑁,1𝑟𝑦(𝑋(𝑡))
2

𝑑𝑡  𝑔𝐼,1𝑟𝑦(𝑋(𝑡))
2

𝑑𝑡 0 

2ry  𝑓𝑁,2𝑟𝑦(𝑋(𝑡))dt  𝑓𝐼,2𝑟𝑦(𝑋(𝑡))𝑑𝑡  𝑔𝑁,2𝑟𝑦(𝑋(𝑡))
2

𝑑𝑡  𝑔𝐼,2𝑟𝑦(𝑋(𝑡))
2

𝑑𝑡 0 



Appendix S2. Parameterisations used. 
This section of the appendix describes in detail the parameter combinations used to produce the 

graphs in the main text. Values of the form: a,b,c,d etc refer to discrete values used for different 

lines shown on the Figures. Values of the form a;b;c refer to smallest value; largest value; step size 

describing the range of values (e.g. of the death rate) simulated to produce the Figures. Values of 

the form a – b refer to the range of values covered with a non-constant step size. All other 

parameters with single values are held constant in simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S3: Parameter values are shown for Figure 1 in the main text which demonstrates the effect of 
the death rate and transmission rate on the bias and variance of the prevalence estimate as well as 
the effect of the death rate on the population size and variance. 106 surveillance bouts are run of 
each combination and terminate when the sample target is reached, i.e. there is no time limit 
imposed. These parameters were implemented using the SDE version of the model.    
  

Rate Name Rate Value 

Secondary Transmission Rate β 1.0, 0.1, 0.04, 0.01 
Carrying Capacity k 120 
Growth Rate r 0.5 
Death Rate  µ 0.1;0.5;0.1 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0 
Susceptible Active Capture α 0.1 
Infected Active Capture α 0.1 
Sample Target m 10.0 



 

 

 

 

 

 

 

 

 

 

 

 

 

Table S4: Parameter values are shown for Figure 2 in the main text which demonstrates the effect of 
the capture rate on the bias and variance of the prevalence estimate. 106 surveillance bouts are run 
of each combination and terminate when the sample target is reached, i.e. there is no time limit 
imposed. These parameters were implemented using the SDE version of the model.    
 

 

 

 

 

 

 

 

 

 

 

 

 

Table S5: Parameter values are shown for Figure 2 in the main text which demonstrates the effect of 
the sample size on the bias and variance of the prevalence estimate. 106 surveillance bouts are run 
of each combination and terminate when the sample target is reached, i.e. there is no time limit 
imposed. These parameters were implemented using the SDE version of the model. 
 

  

Rate Name Rate Value 

Secondary Transmission Rate β 1.0, 0.1 
Carrying Capacity k 120 
Growth Rate r 0.5 
Death Rate  µ 0.4, 0.43 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0 
Susceptible Active Capture α 0 - 10 
Infected Active Capture α 0 - 10 
Sample Target m 10.0 

Rate Name Rate Value 

Secondary Transmission Rate β 1.0, 0.1 
Carrying Capacity k 120 
Growth Rate r 0.5 
Death Rate  µ 0.4, 0.43 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0 
Susceptible Active Capture α 0.1 
Infected Active Capture α 0.1 
Sample Target m 1 - 10000 



 

 

 

 

 

 

 

 

 

  

 

 

 

Table S6: Parameter values are shown for Figure 3 in the main text which demonstrates the effect of 
the death rate and transmission rate, as well as the sample size and capture rate, on the probability 
of detecting disease. 106 surveillance bouts are run of each combination and terminate when the 
sample target is reached, i.e. there is no time limit imposed. These parameters were implemented 
using the SDE version of the model. 
 

 

 

 

 

 

 

 

 

  

 

 

 

 

Table S7: Parameter values are shown for Figure 4 in the main text which demonstrates the effect of 
the transmission, death rate, birth rate, carrying capacity, as well as the sample size, on the 
probability of detecting disease. 1000 simulations were run per parameter combination with a time 
limit of 45. If the simulation did not reach the sample target within the time limit, the run is 
discarded and not used in the statistical calculations. If out of 1000 realisations a parameter 
combination ceases to reach the sample target at least 15 times, that parameter combination is 
discarded totally as the results are deemed to be unreliable. Increasing the time limit bears little to 
no effect on the amount simulations which reach the target sample, so the precise value of the time 
limit does not affect the results obtained from the model. These parameters were implemented 
using the Gillespie version of the model.  
 

 

  

Rate Name Rate Value 

Secondary Transmission Rate β 1.0, 0.1, 0.04, 0.01 
Carrying Capacity k 120 
Growth Rate r 0.5 
Death Rate  µ 0.1;0.5;0.01 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0 
Susceptible Active Capture α 10, 1.0, 0.1, 0.01 
Infected Active Capture Α 10, 1.0, 0.1, 0.01 
Sample Target M 10 

Rate Name Rate Value 

Secondary Transmission Rate Β 0.01,0.05,0.09,0.2,0.6, 
1.0,2.0,5.0 

Carrying Capacity K 1;36.0;3.5 
Growth Rate R 0.5;23;2.5 
Death Rate  µ 0.25;14.0;1.25 
Immigration  Ν 1.0 
Infected Immigration Proportion Γ 0.01 
Primary Transmission Rate β0 0.01 
Susceptible Active Capture Α 0.5 
Infected Active Capture Α 0.5 
Sample Target M 10.0, 20.0 



Appendix S3. Additional scenarios. 
This appendix shows results for a set of scenarios complimentary to those in the main text. It is 

shown that the effects described in the main text are robust to three factors: population size; mode 

of secondary transmission and sample size.  

 

Population size 
The simulations in the main text are based on relatively small populations where fluctuations are 

driven only by demographic stochasticity. Here we simulate disease dynamics and surveillance in a 

population driven by environmental stochasticity (see below for details). This enables consideration 

of fluctuations in a much larger population since demographic fluctuations reduce with population 

size whereas environmental fluctuations do not. We show that in a population larger by a factor of 

approximately 10-100 compared with that described in the main text (Fig. 1 and Fig 3.), and using a 

sample size that is 10 times larger, the effects described are if anything greater. When compared 

with calculations based on assuming constant prevalence we see that the probability of detecting 

disease is reduced and estimates of prevalence are both biased and less precise (see Fig. S1 and Fig. 

S2). 

 

The model used is as described in the main text but here the death rate is subjected to a correlated 

random walk based on a mean reverting Ornstein-Uhlenbeck process. With finite time step 𝑑𝑡 this is 

represented as 

𝜇(𝑡 + 𝑑𝑡) =  𝜇(𝑡) +   (𝜇0 − 𝜇(𝑡)) 𝑏𝜇 𝑑𝑡 + 𝜎𝜇 𝑑𝐵𝜇(𝑡)   

 
where 𝑑𝐵𝜇(𝑑𝑡), 𝑑𝐵𝜇(2𝑑𝑡), …   are independent identically distributed Gaussian random variables 

with zero mean and variance 𝑑𝑡.  The above equation is integrated along with the equations 

described in Appendix S1. After a burn-in period the equilibrium dynamics of this equation fluctuate 

around the mean 𝜇0. The parameter 𝑏𝜇 controls the correlation in time of 𝜇(𝑡) and in the long run 

the variance in 𝜇(𝑡) is given by 𝜎𝜇 2 𝑏𝜇⁄ .  The resulting fluctuations in mortality rate represent a 

range of environmental conditions from harsh to mild which drive fluctuations in the population 

size. The results shown in Fig. S1 and Fig. S2 are based on this model and the parameter values 

shown in Table S8. They show qualitatively the same effects seen in Fig. 1 and Fig. 3 in the main text.   

 
 
 
 
 
 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 
Table S8: Parameter values are shown for Figures S1 and S2. 106 surveillance bouts are run of each 
combination and terminate when the sample target is reached, i.e. there is no time limit imposed. 
These parameters were implemented using the SDE version of the model incorporating the 
stochastic variation in the death rate described above.  
  

  
 
 
 
 

  

Rate Name Rate Value 

Secondary Transmission Rate Β 1.0, 0.1, 0.04, 0.01 
Carrying Capacity K 6000 
Growth Rate R 1.0 
Death Rate  µ0 0.025;1.0;0.025 
Immigration  Ν 0.1 
Infected Immigration Proportion Γ 0.1 
Primary Transmission Rate β0 0 
Susceptible Active Capture Α 0.001 
Infected Active Capture Α 0.001 
Sample Target M 100.0 
 bµ 0.4 
 σµ 0.5 



 
Figure S1: This figure is the counterpart to Fig. 1 in the main text but for the large 
population simulations with fluctuating death rate described above. The typical population 
sizes range from around 500-3000 and the sample size used is 100. 
 

  

Figure S2 Probability of disease detection. This plot is the counterpart to Fig 3c in the main 
text but for the large population described above. 
 
 



 
Frequency dependent transmission 
The scenario simulated here is identical to that shown in Figs 1 and 3 in the main text except that 

here disease transmission is frequency dependent such that secondary infections occur at rate 

�̃�
𝑆(𝑡) 𝐼(𝑡)

𝑁(𝑡)
 

Recall that the total population size at time 𝑡 is 𝑁(𝑡) and is made up of 𝑆(𝑡) susceptible and 𝐼(𝑡) 

invectives. Contrasting the above formulation with the density dependent transmission rate 

𝛽𝑆(𝑡) 𝐼(𝑡) it is clear that to ensure comparable rates of transmission we require �̃� ≈ 𝛽𝑁. Therefore 

to ensure comparability between the simulations of frequency and density dependent transmission 

the  contact rate �̃� is given by  

�̃� = 𝛽 𝐾
(𝑟 − 𝜇)

𝑟
 

where 𝛽 is the density dependent transmission rate and 𝐾 (𝑟 − 𝜇) 𝑟⁄  is the equilibrium population 

size derived from the deterministic version of the model. 

 

The results shown in Fig. S3 and Fig S4 show that the effects described in the main text are just as 

evident in the case of frequency dependent transmission as they are for density dependent 

transmission. 



  

 

Figure S3: Equivalent to Fig 1 in the main text but for the frequency dependent transmission 
described above described above. 

  
Figure S4 Probability of disease detection. This plot is the counterpart to Fig 3c in the main 
text but for the frequency dependent transmission described above described above. 

 
  



Sample size: 
Here we show results from a scenario identical to that shown in Figures 1 and 3 of the main 
text except that the sample size is increased from 10 to 20 and 50. In this scenario the 
population is typically between 10 and 40 individuals so although these sample sizes may 
seem low they represent a large fraction of the population. The figures below demonstrate 
that sample size has little effect on the degradation in the performance of surveillance. Thus 
these results support the conclusion drawn from Fig. 2 in the main text. 

 
 

 
Figure S1: This figure depicts the scenario shown in Figure 1 of the main text but with 
sample size 20. 

 
 
 
 



 

Figure S2: This figure depicts the scenarios shown in Figure 1 of the main text but with 
sample size 50. 

 
Figure S3: Probability of detection. This plot is the counterpart to Fig 3c in the main text but 
for increased sample sizes. The plot on the right shows sample size 20 and that the right 50 
whereas Fig 3c is based on sample size 10. 

  



Appendix S4. Analysis of disease detection probability 
 
In many cases the primary goal of wildlife disease surveillance is detection of disease rather than 

quantification of prevalence.  This is true, for example, for emerging or re-emerging disease, where 

detection is a precursor to further action, which would include heightened surveillance. If prevalence 

is assumed constant and equal to the long term average prevalence E[p] of the wildlife disease 

system, then the probability that disease is detected in a sample of size m is given by: 

 

                   𝑃𝐷𝐵𝑖𝑛 = 𝑓(E[𝑝], 𝑚) =  1 − (1 − E[𝑝])𝑚                                   

 

This formula, based on simple binomial arguments, and variants that also assume constant 

prevalence, are the standard basis for sample size calculations (see e.g. Fosgate 2009). However, if 

prevalence fluctuates PDBin is a misleading estimate of the probability of detection. 

 

In real systems, prevalence varies with time; therefore, when conducting surveillance, the 

prevalence values will vary at the times when each of the m samples are collected. Nonetheless, for 

simplicity here we assume that the prevalence during a given surveillance bout (i.e. the collection of 

m consecutive samples) is constant, and denoted p. Fig. 3a (see main text) compares the probability 

of detection measured from simulations with two approximations. The first approximation accounts 

for fluctuations both within and between surveillance bouts and the second only that between 

surveillance bouts.  These results indicate that accounting only for fluctuations between surveillance 

bouts is an accurate approximation.  Therefore, the expected probability of detection for sample size 

m is defined as     

 

                𝑃𝐷 = E[𝑓(𝑝, 𝑚)] =  E[1 − (1 − 𝑝)𝑚]                                

 



where the expectation is over the between bout prevalence distribution P(p) which accounts only 

for prevalence fluctuations between surveillance bouts.  For a single sample   m = 1, the above 

equation for PD reduces to a linear form, so that PD = PDBin = E[p]. However, if m > 1, then the 

equation for PD  is non-linear, and therefore PD ≠ PDBin.    

To illustrate this, we Taylor expanded PD by assuming that the difference between the bout 

prevalence (p) and the long term average prevalence is small i.e. p = E[p ] + Δp. Then, noting that 

E[Δp] = 0 and var[p ] = E[Δp2 ] and ignoring terms containing higher powers of Δp, this yields 

 

𝑃𝐷 ≅ 𝑃𝐷𝐵𝑖𝑛 +
1

2
𝑣𝑎𝑟[𝑝]

𝜕2𝑓(𝑝, 𝑚)

𝜕𝑝2
|

𝑝=𝐸[𝑝]

 

 

This suggests (to leading order in the expansion) that the true probability oction will be lower than 

PDBin, since the second derivative ∂2f(p,m)/∂p2 = -m(m - 1)(1 - p)m –2 is negative for sample size m 

> 1 and p = E[p]. In addition, the size of this deviation depends on the sample size and the variance 

in prevalence.  Although these conclusions are broadly correct, when compared with simulation 

results, the above Taylor expansion does not provide an accurate approximation of the probability of 

detection. However, analytic progress can be made, with the following alternative approach. The 

approximation (1 - p)m ≈ e-pm  holds for m large (and is already accurate even for m = 10) and 

enables us to write the probability of detection as:  

 

𝑃𝐷 = 1 − E𝑝[(1 − 𝑝)𝑚] ≅ 1 − E[𝑒−𝑝𝑚] = 1 − 𝑀𝑝(𝑚)                                      

 

where Mp(m) ≡ E[e -pm] is the moment generating function associated with the between bout 

prevalence distribution P(p). This suggests that if we could parameterise a suitable distribution to 

approximate P(p) then we could use the corresponding moment generating function to calculate 

the probability of detection.  



 

Fig. 3a (main text) suggests that a moment-generating function approximation (see last equation 

above) based on the actual distribution of prevalence between surveillance bouts would be an 

accurate approximation. Fig. 3b illustrates this approximation using an assumed gamma distribution, 

parameterised with the mean and variance of P(p). Although the gamma approximation is not 

completely successful, it does provide a more accurate prediction of PD than PDBin. This could be 

used to improve sample size calculations in situations where simulation is not possible, but 

information about prevalence fluctuations is available. Moreover, the results of Fig. 3a show that 

such approximations could be improved by assuming a more accurate representation of the 

prevalence distribution P(p). 


