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Summary 25 

1. Wildlife disease surveillance is the first line of defence against infectious disease. Fluctuations in 26 

host populations and disease prevalence are a known feature of wildlife disease systems. 27 

However, the impact of such heterogeneities on the performance of surveillance is currently 28 

poorly understood.    29 

2. We present the first systematic exploration of the effects of fluctuations’ prevalence and host 30 

population size on the efficacy of wildlife disease surveillance systems. In this study efficacy is 31 

measured in terms of ability to estimate long-term prevalence and detect disease risk. 32 

3. Our results suggest that for many wildlife disease systems fluctuations in population size and 33 

disease lead to bias in surveillance-based estimates of prevalence and over-confidence in 34 

assessments of both the precision of prevalence estimates and the power to detect disease.  35 

4. Neglecting such ecological effects may lead to poorly designed surveillance and ultimately to 36 

incorrect assessments of the risks posed by disease in wildlife. This will be most problematic in 37 

systems where prevalence fluctuations are large and disease fade-outs occur. Such fluctuations 38 

are determined by the interaction of demography and disease dynamics. Although particularly 39 

likely in highly fluctuating populations typical of fecund short-lived hosts, such fluctuations 40 

cannot be ruled out in more stable populations of longer-lived hosts. 41 

5. Synthesis and applications. Fluctuations in population size and disease prevalence should be 42 

considered in the design and implementation of wildlife disease surveillance and the framework 43 

presented here provides a template for conducting suitable power calculations. Ultimately 44 

understanding the impact of fluctuations in demographic and epidemiological processes will 45 

enable improvements to wildlife disease surveillance systems leading to better characterization 46 

of, and protection against endemic, emerging and re-emerging disease threats. 47 

Key-words: wildlife disease systems, wildlife ecology, disease surveillance, demographic 48 
fluctuations, wildlife populations, disease transmission models, stochastic population models  49 
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Introduction 50 

Surveillance is the first line of defence against disease, whether to monitor endemic cycles of 51 

infection (Ryser-Degiorgis 2013) or to detect incursions of emerging or re-emerging diseases (Kruse, 52 

Kirkemo & Handeland 2004; Lipkin 2013)). Identification and quantification of disease presence and 53 

prevalence is the starting point for developing disease control strategies as well as monitoring their 54 

efficacy (OIE 2013). Knowledge of disease in wildlife is of considerable importance for managing risks 55 

to humans (Daszak, Cunningham & Hyatt 2000; Jones et al. 2008) and livestock (Gortázar et al. 56 

2007), as well as for the conservation of wildlife species themselves (Daszak, Cunningham & Hyatt 57 

2000).  58 

 59 

Recent public health concerns e.g. Highly Pathogenic Avian Influenza (Artois et al. 2009b) , Alveolar 60 

Echinococcosis (Eckert & Deplazes 2004) and West Nile Virus (Brugman et al. 2013) ), have led to a 61 

growing recognition that current approaches need to be improved (Mörner et al. 2002). For 62 

example, there is no agreed wildlife disease surveillance protocol shared among the countries in the 63 

European Union (Kuiken et al. 2011). Furthermore several authors have identified the need for 64 

improvements to the structure, understanding and evaluation of wildlife disease surveillance (Bengis 65 

et al. 2004; Gortázar et al. 2007).     66 

 67 

Much current practice for wildlife disease surveillance (Artois et al. 2009a) is based on ideas 68 

developed for surveillance in livestock, including calculation of sample sizes needed for accurate 69 

prevalence estimation (Grimes & Schulz 1996; Fosgate 2005) and detection of disease within a 70 

population (Dohoo, Martin & Stryhn 2005). A common feature of these methods is that they assume 71 

constant host populations and disease prevalence. These assumptions lead naturally to sample size 72 

calculations (for both disease detection and prevalence estimation) which are based on a binomial 73 

distribution and associated corrections for populations of finite size, such as the hyper-geometric 74 

distribution (Artois et al. 2009a). Fosgate (2009) reviewed current approaches to sample size 75 
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calculations in livestock systems and emphasized the importance of basing analyses on realistic 76 

assumptions about the system under surveillance.   77 

  78 

Although constant population size and prevalence may often be reasonable assumptions for the 79 

analysis of livestock systems, they are considerably less tenable in wildlife disease systems, which 80 

are typically subject to much greater fluctuations in host population density and disease prevalence.  81 

Both sampling practicalities and changes in population density make it much harder to obtain a 82 

random sample of hosts of the desired sample size in wildlife disease surveillance programmes 83 

(Nusser et al. 2008), compared with livestock systems.  It is not uncommon for wildlife disease 84 

surveillance to extend over several years and to test only a small fraction of the at-risk population. 85 

For example, McGarry and co-workers report overall prevalence of zoonotic helminths in 42 brown 86 

rats Rattus norvegicus captured in a programme of active surveillance carried out in an urban area in 87 

England between 2008 and 2011 (McGarry et al. 2014). These authors also present comparable 88 

results from several studies in Europe and North America while another of the same host species 89 

conducted over a two year period across a broad area of north-western England captured just 133 90 

individuals (Pounder et al. 2013). A notable example of passive surveillance i.e. the testing of found 91 

dead individuals, is that for zoonotic West Nile Virus (WNV) in wild birds across the whole of Great 92 

Britain during 2002–2009 in which only 2072 individuals representing 240 species were tested 93 

(Brugman et al. 2013).     94 

 95 

The importance of temporal (Renshaw 1991; Wilson & Hassell 1997), spatial (Lloyd & May 1996; 96 

Tilman & Kareiva 1997) and other forms of heterogeneity (Read & Keeling 2003; Vicente et al. 2007; 97 

Davidson, Marion & Hutchings 2008) in population ecology has long been recognized (Anderson 98 

1991; Smith et al. 2005), along with their role in the dynamics and persistence of infectious disease 99 

(Fenton et al. 2015). Detailed field observations have provided valuable insights into the temporal 100 

dynamics of wildlife disease systems.  For example a study (Telfer et al. 2002) of cowpox virus in two 101 
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rodent host species at two sites over a four-year period reveals strong temporal fluctuations in both 102 

population size and disease prevalence including disease fade-out (local extinction and re-103 

emergence). Fade-outs are also observed in wildlife populations of longer lived mammals as shown 104 

by a six-year study (Hawkins et al. 2006) of Devil Facial Tumour Disease in Sarcophilus harrisii 105 

Tasmanian devil.  One of the longest running and most intensive studies of disease in wildlife is the 106 

surveillance from 1982 to the present of TB in badgers at Woodchester Park, England where around 107 

80% of the population is trapped tested and released annually (Delahay et al. 2000). These long-108 

term observations have revealed important insights into the dynamics of TB in badgers e.g. that 109 

infection within social groups is persistent whereas transmission between social groups is limited 110 

(Delahay et al. 2000). Parameter estimates derived from this study are used as a reference point for 111 

the simulation studies conducted below.  112 

 113 

Despite these theoretical and empirical studies of temporal heterogeneities in wildlife disease 114 

systems, such effects have yet to be systematically accounted for, either in the design of surveillance 115 

programmes for wildlife disease systems, or in the analysis of the data obtained from them.  Here 116 

we address this gap by using a non-spatial simulation model of a wildlife host population, subject to 117 

demographic fluctuations and pathogen transmission, in order to explore the impact of stochastic 118 

fluctuations in host demography and disease dynamics on the performance of surveillance. Two 119 

measures of surveillance performance are considered; estimation of long-term prevalence and the 120 

ability (probability) to detect disease. Our results show that temporal fluctuations in wildlife disease 121 

systems limit the ability of surveillance to achieve both. 122 

 123 

Materials and methods 124 

We develop a generic modelling framework that represents key features of surveillance in wildlife 125 

disease systems including essential aspects of demography, disease dynamics and surveillance 126 

design. This framework is described below along with three simulation studies that enable us to 127 
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explore the performance of surveillance across a wide range of scenarios representative of real 128 

world systems.  129 

Stochastic modelling framework  130 

The model represents a host population subject to demographic fluctuations (births, deaths and 131 

immigration) and the transmission of a single pathogen. At each point in time t, the state-space 132 

represents the total population size N(t), with I(t) of these infected and S(t) = N(t) - I(t) 133 

susceptible. The prevalence is then given by p(t) = I(t)/N(t).  134 

Demography. The birth rate of individuals is logistic, rN(1 – N/k), with intrinsic growth rate r and 135 

carrying capacity k, reflecting the assumptions that population growth is resource-limited. 136 

Individuals have a per capita death rate µ and immigration occurs at a constant rate ν. 137 

Disease dynamics. A proportion γ of immigrants are infected, but otherwise all individuals enter the 138 

population (through birth or immigration) as susceptible, since we assume vertical and pseudo-139 

vertical transmission are negligible. Susceptible individuals become infected at rate β0 S(t) through 140 

primary transmission (contact with infectious environmental sources including individuals outside 141 

the modelled population) and at rate βS(t)I(t) by secondary transmission (contact with already 142 

infected individuals from within the population).  143 

Disease surveillance. During a single period of surveillance (surveillance bout), individuals are 144 

captured at per capita rate α, tested and released, and both the total number, and the number of 145 

infected individuals caught are recoded. Perfect diagnostic tests are assumed although limited 146 

sensitivities and specificities could be accounted for. A surveillance bout continues until a defined 147 

sample size m is obtained or some upper time limit has been reached. Such surveillance is most 148 

naturally considered in the context of active capture campaigns but could also be adapted to 149 

samples obtained from hunting and passive surveillance by accounting for the losses and sources of 150 

bias associated with such surveillance methods (see e.g. McElhinney et al. 2014). 151 

 152 

 153 
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Model implementation. The model framework is summarized in Table 1. Reported results are 154 

temporal averages (e.g. expected mean E[N] and variance Var[N] in population size) based on long 155 

run simulations following a burn-in period to allow the population to reach equilibrium where the 156 

effects of initial conditions are negligible. Within each run repeated surveillance bouts are simulated 157 

and the probability of detection PD is estimated as the proportion of bouts where disease is 158 

detected. The mean E[p̂surv] and variance Var[p̂surv] of the prevalence estimates averaged over 159 

repeated bouts are also recorded. We consider a continuous state-space implementation simulated 160 

by numerically integrating a set of stochastic differential equations (SDEs) and a discrete state-space 161 

implementation using the Gillespie algorithm (see Appendix S1 in Supporting Information for 162 

details). 163 

Simulation studies 164 

Study 1 (results shown in Fig.1 and Fig.3) uses the SDE implementation and is designed to explore a 165 

generic but representative range of wildlife disease systems. Simulations were run for four values 166 

(0.01, 0.04, 0.1, 1.0) of the secondary transmission rate β.  In each case the population death rate µ 167 

was varied over a wide range between 0.1 and 0.5, with the intrinsic growth rate set at r =0.5 so 168 

that, at the upper end of this range, populations are highly unstable. This gives rise to typical 169 

population sizes of 10–40 (see Fig.1a) and a wide range of disease prevalence. Similar results are 170 

obtained from simulations (not shown) where β is varied for a set of fixed values of µ where 171 

mortality rates span the interval (0, r). Simulations not included here show that our results 172 

generalize, holding for transmission rates relative to a recovery rate (governing an additional 173 

transition from I to S) and death rates relative to birth rate, r. Different intensities of surveillance 174 

were simulated using four capture rates α (0.01,0.1,1.0, 10), for a sample size m=10. Full 175 

parameterizations for Fig.1 and Fig. 3 are shown in Tables S3 and S6 respectively. 176 

Study 1a (results shown in Fig. 2) explores the effect of surveillance design using a subset of the 177 

parameter sets considered in study 1, namely (β, µ)=: (1.0, 0.43);  (1.0, 0.4);  and (0.1, 0.43). For 178 

each, a range of capture rates α =0…10 (with m=10) and a range of sample sizes m=1, …, 179 
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10000 (with α =0.1) are considered.  The values of all model parameters used are shown in Tables 180 

S4 and S5. 181 

Relevance to real wildlife disease systems.  The intrinsic annual growth and death rates for badgers 182 

have been estimated as r=0.6 and µ=0.4  (Anderson & Trewhella 1985). Rescaling for r=0.5 as used 183 

in simulation study 1 corresponds to a rescaled µ=0.33.  In addition the secondary transmission rate 184 

for TB in badger populations was been estimated by the same authors to be β=0.06-0.08 assuming 185 

a density of badgers necessary for disease persistence is  ~5 badgers km-2  (Anderson & Trewhella 186 

1985).  The population size considered in simulation study 1 therefore corresponds to a surveillance 187 

area of around 8 km2. The range of parameters considered in study 1 places badgers towards the 188 

stable end of the spectrum. More fecund and shorter-lived species would be expected to be less 189 

stable e.g. have higher mortality and secondary transmission rates.  As noted earlier surveillance of 190 

badgers at Woodchester Park is relatively intensive leading to an annual probability of capture of 191 

around 80% corresponding to capture rates of α=1.6–2.2 (Delahay et al. 2000).  The population of 192 

Sarcophilus harrisii Tasmanian devil discussed earlier consisted of between 20–60 individuals and 193 

was subject to annual capture rates between 0.5 and 1.7 (Hawkins et al. 2006). Estimates of capture 194 

rates are not available for the larger-scale studies referred to in the introduction (Brugman et al. 195 

2013; Pounder et al. 2013; McGarry et al. 2014), but given the sample sizes obtained and the 196 

temporal and geographic scales involved it seems reasonable to assume that they are considerably 197 

lower.  Simulation study 1 encompasses a wide range of real world wildlife disease surveillance. 198 

Study 2 (results shown in Fig. 4) is designed to test the robustness of study 1 by exploring a wider 199 

range of scenarios: with intrinsic growth rates in the range (0,23); mortality rates in the range 200 

(0.25,14), carrying capacities in the range (0,36) and secondary contact rates in the range (0.01,5).  201 

Focussed on disease detection, results are conditioned on the presence of disease and simulations 202 

based on the Gillespie implementation, which explicitly handles the discrete nature of small 203 

populations.  The values of all model parameters used in Fig. 4 are shown in Table S7.    204 
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Results 205 

Estimating prevalence 206 

In order to develop an understanding of the properties of wildlife disease surveillance using the 207 

above model, we developed expressions describing prevalence estimates obtained by continuous 208 

surveillance, i.e. continuously deployed effort resulting in per capita capture rate α. 209 

 210 

Consider the interval [0,T] during which the population history is ℋ[0,T ] = {(N(t ),p(t )): t Є [0,T]}, 211 

where N(t) and p(t) represent the population size and disease prevalence at time t Є [0,T] 212 

respectively (see above). Let nT represent the total number, and iT the number of infected 213 

individuals sampled during this time interval. Conditional on the history ℋ[0,T ], the expectations of 214 

these quantities are: 215 

 216 

E[𝑛𝑇| ℋ[0, 𝑇]] =  ∫ 𝛼𝑁(𝑡) 𝑑𝑡
𝑇

0
   and    E[𝑖𝑇| ℋ[0, 𝑇]] =  ∫ 𝛼𝑁(𝑡)𝑝(𝑡) 𝑑𝑡

𝑇

0
. 217 

 218 

The surveillance estimate of disease prevalence is simply the ratio p̂surv(T ) = iT/nT.   Since 219 

immigration prevents extinction of the population and disease then the long time limit of this 220 

estimate can be equated with its expectation over all histories as follows:  221 

lim
𝑇→∞

�̂�𝑠𝑢𝑟𝑣(𝑇) = E[�̂�𝑠𝑢𝑟𝑣] = lim
𝑇→∞

 
1

𝑇
∫ 𝑁(𝑡)𝑝(𝑡) 𝑑𝑡

𝑇

0
1

𝑇
∫ 𝑁(𝑡) 𝑑𝑡

𝑇

0

=
E[𝑁(𝑡)𝑝(𝑡)]

E[𝑁(𝑡)]
. 222 

 223 

This can be re-expressed in the more suggestive form: 224 

 225 

E[�̂�𝑆𝑢𝑟𝑣] =  E[𝑝(𝑡)] +  
𝐶𝑜𝑣[𝑁(𝑡), 𝑝(𝑡)]

E[𝑁(𝑡)]
    (eqn 1) 226 

 227 

Thus, when the covariance Cov[N(t),p(t )] = E[N(t )p(t )] - E[N(t )]E[p(t )] between the 228 

population size and the prevalence is non-zero, the surveillance estimate of prevalence is a biased 229 
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estimate of the true prevalence, E[p(t)]. Since Cov[N(t),p(t)] will be zero when either N(t) or p(t) 230 

are constant, we conclude that demographic fluctuations and stochasticity in disease dynamics 231 

undermine the efficacy of surveillance.                  232 

Effect of host demography and disease dynamics 233 

Fig. 1 is based on simulation study 1 (see Materials and methods) and illustrates how population 234 

fluctuations and disease dynamics in the host–pathogen system affect the bias and variance of 235 

estimated prevalence. These results are generated by simulating the system, in each case until it 236 

reaches equilibrium, for a range of values of the death rate µ, with other parameters fixed. As the 237 

death rate increases, the equilibrium-expected population size decreases and the relative size of the 238 

population fluctuations increase as measured by the coefficient of variation. For a given rate of 239 

disease transmission β, increasing the death rate reduces expected prevalence, and therefore 240 

simulating for different values of µ generates the range of prevalence values shown.  The resulting 241 

relationship between demography and expected prevalence for particular disease characteristics 242 

(here a fixed transmission rate, β) is illustrated in Figs 1a & 1b. These figures show increasing 243 

population size and lower demographic fluctuations as expected prevalence increases (i.e. as µ 244 

decreases).     245 

 246 

Fig. 1c shows the bias in the surveillance estimate of prevalence E[p̂surv] - E[p(t )] obtained from the 247 

same set of simulations. Results shown are based on 106 surveillance bouts with sample size m = 248 

10. The bias predicted by continuous sampling theory (which does not account for sample size) is 249 

also shown, and in this case accurately predicts simulated bias. Fig. 1c shows the bias in surveillance 250 

estimates of prevalence for four different transmission rates. For a given prevalence, populations 251 

associated with higher transmission rate (β) are more variable than those with lower transmission 252 

rate and therefore Fig. 1c shows that such variability increases the bias of surveillance estimates of 253 

disease prevalence. Fig. 1d shows the standard deviation in surveillance estimates of prevalence 254 

obtained from the same set of simulations. Comparison with the variability in prevalence estimates 255 
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expected under the zero fluctuation assumption reveals that fluctuations in our simulated wildlife 256 

disease system reduce the precision (increase the variance) of estimates obtained by surveillance. 257 

The variability of these estimates also increases with demographic fluctuations. Thus, in terms of 258 

prevalence estimation, the dynamics of the host–pathogen interaction are integral in determining 259 

the efficacy of surveillance. Assessment for a given system would require parameterization of 260 

demography and disease dynamic, but the bias and variance in prevalence estimates shown in Fig. 1 261 

are representative of a wide range of wildlife disease systems (see Materials and methods). 262 

 263 

Additional studies shown in Appendix S2 confirm the qualitative impact of fluctuations in population 264 

and prevalence seen in Fig. 1 are robust to sample and population size and mode of secondary 265 

transmission. Fig. S1 shows analogous results with sample size 100, where environmental variability 266 

drives fluctuations in a population around 100 times larger than considered above.  Fig. S3 shows 267 

results for simulation study 1 but where secondary transmission is frequency- (as opposed to 268 

density) dependent. Fig. S5 and Fig. S6 show results from simulation study 1 with sample sizes 20 269 

and 50 respectively. 270 

 271 

Surveillance design 272 

Based on simulation study 1a, Fig. 2 shows how the bias and variance of the estimate of prevalence 273 

changes as the intensity of surveillance (measured by the capture rate α) increases for fixed sample 274 

size (Figs 2a & 2c), and as the sample size, m, increases for a fixed capture rate (Figs 2b & 2d). For 275 

low capture rates, as α→0 (and based on a fixed sample size), the continuous sampling estimate 276 

given in eqn 1 provides an accurate prediction for the level of prevalence estimated from 277 

surveillance. As shown above, this is a biased estimate of the true prevalence E[p(t)]. However, 278 

increasing the capture rate reduces bias, and as α increases, this bias tends to zero. In addition, for 279 

large capture rates, the precision of the surveillance estimate of prevalence matches the variability 280 

of the underlying wildlife disease system (see Fig. 2c). Thus for low capture rates, the bias in 281 



12 
 

surveillance estimates of prevalence is well described by continuous sampling theory (eqn 1). 282 

However, for larger capture rates, the properties of the surveillance estimate of prevalence 283 

increasingly reflect both the expected true prevalence (i.e. bias reduces), and the variability in the 284 

prevalence of the underlying disease system. In contrast, increasing sample size improves precision, 285 

but not bias (Fig. 2b). In comparison to the predictions from the standard binomial approach (which 286 

neglects fluctuations), these have lower precision, and improve less quickly with increasing sample 287 

size (see Fig. 2d). Additional simulation results (not shown) indicate that as the sample size 288 

increases, the capture rate required to obtain unbiased estimates increases.  However, even for 289 

large sample sizes, when sampling is instantaneous (i.e. α→∞), the bias is zero and the standard 290 

deviation in the surveillance estimate of prevalence corresponds to that of the underlying wildlife 291 

disease system as shown above. 292 

 293 

We previously noted that capture rates for relatively intensely monitored populations (Delahay et al. 294 

2000; Hawkins et al. 2006) were between 0.5 and 2.2 with those of larger-scale studies (Brugman et 295 

al. 2013; Pounder et al. 2013; McGarry et al. 2014) lower still. Therefore, the results of Fig. 2 suggest 296 

fluctuations will lead to bias in surveillance-based estimates of prevalence for a wide range of 297 

wildlife disease systems. However, the size of these effects will be dependent on the details of host 298 

species demography and disease dynamics. 299 

 300 

The probability of detection  301 

If prevalence is assumed constant and equal to the long-term average prevalence E[p] of the wildlife 302 

disease system, then the probability that disease is detected in a sample of size m is given by: 303 

 304 

                   𝑃𝐷𝐵𝑖𝑛 = 𝑓(E[𝑝], 𝑚) =  1 − (1 − E[𝑝])𝑚                                   (eqn 2) 305 

 306 
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This formula, based on simple binomial arguments, and variants that also assume constant 307 

prevalence, are the standard basis for sample size calculations (see e.g. Fosgate 2009). However, if 308 

prevalence fluctuates PDBin is a misleading estimate of the probability of detection.  309 

 310 

When conducting surveillance prevalence will vary between the times when each of the m samples 311 

are collected, but we assume prevalence within a given surveillance bout is constant, and denote p. 312 

Fig. 3a indicates that accounting only for fluctuations between surveillance bouts is an accurate 313 

approximation.  Therefore, the expected probability of detection for sample size m is defined as     314 

 315 

                𝑃𝐷 = E[𝑓(𝑝, 𝑚)] =  E[1 − (1 − 𝑝)𝑚]                                (eqn 3) 316 

 317 

where the expectation is over the between-bout prevalence distribution P(p) which accounts only 318 

for prevalence fluctuations between surveillance bouts.  For a single sample  m = 1, eqn 3 reduces 319 

to a linear form, so that PD = PDBin = E[p]. However, if m > 1, then eqn 3 is non-linear, and 320 

therefore PD ≠ PDBin.   Further analysis of eqn 3 e.g. suggesting PD < PDBin, is shown in Appendix 321 

S4. 322 

 323 

Effect of host demography and transmission dynamics 324 

The results shown in Fig. 3 demonstrate the effect of host demography, transmission dynamics and 325 

surveillance design on the probability of detection. These results are obtained from the simulations 326 

described in Fig. 1, except for those in Fig. 3d where these simulations are rerun for different values 327 

of the capture rate (see study 1a in Materials and methods).  328 

 329 

Fig. 3b illustrates an analytic calculation of PD  based on approximating the between-bout 330 

prevalence distribution P(p) as a gamma distribution (see Appendix S4). Although, not completely 331 

successful, this does provide a more accurate prediction than PDBin. This approach could be used to 332 
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improve sample size calculations in situations where simulation is not possible, but information 333 

about prevalence fluctuations is available. Moreover, the results of Fig. 3a show that such 334 

approximations could be improved by assuming a more accurate representation of the prevalence 335 

distribution P(p). Crucially, these calculations support the conclusion that the true probability of 336 

detection is less than that obtained when ignoring fluctuations i.e. less than PDBin.  Fig. 3b also 337 

shows the impact of biased prevalence estimation on disease detection for the case β = 0.1. Fig. 1 338 

demonstrates that in this case, surveillance results in inflated estimates of prevalence E[p̂surv] > 339 

E[p(t)]. Ignoring the effect of fluctuations would therefore lead to an estimated detection 340 

probability greater than PDBin, which is based on the true average prevalence E[p]. 341 

 342 

Fig. 3c shows the effect of interactions between disease dynamics and demography. As in the case of 343 

prevalence estimation, conditioned on a given expected prevalence, larger contact rates β are 344 

associated with greater fluctuations in the underlying wildlife disease system (i.e. greater 345 

transmission rates are needed to sustain a given prevalence). Here larger fluctuations translate into 346 

reduced probability of detection. In Fig. 3c, for β = 1.0, the probability of detection is only a little 347 

above the line PD = E[p] ; this corresponds to a single sample m = 1.  Thus, in contrast to the zero 348 

fluctuation approximation PDBin, fluctuations reduce the effective sample size, for the β = 1.0 case 349 

from m = 10 to close to m = 1.  Results not shown indicate that the reduction in effective sample 350 

size increases with sample size (and see Fig. 4). Fig. 3d shows the effect of capture rate on the 351 

probability of detection; counterintuitively, more intense surveillance effort actually reduces the 352 

probability of detection. This is consistent with the above observations regarding β; less intense 353 

effort means that the required sample size takes longer to gather, which reduces between-bout 354 

fluctuations in prevalence.   355 

 356 

 357 

 358 
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Limits to disease detection in wildlife disease systems 359 

The nature of host demography and disease dynamics in wildlife disease systems will often be poorly 360 

understood especially in cases of emerging disease.  Fig. 4 is based on simulation study 2 (see 361 

Materials and methods) and shows the probability of detection associated with surveillance subject 362 

to demographic and disease fluctuations and  the zero fluctuation approximation PDBin. This is done 363 

for two different sampling levels, and across a broader range of wildlife disease systems than 364 

considered above, each represented by one of the points on the graph.  Depending on the level of 365 

fluctuations in the system, the effective sample size can range from the actual number of samples 366 

taken to m ≈ 1. These results suggest that, when designing surveillance, ignoring the effect of 367 

fluctuations could lead to studies that are underpowered in their ability to detect disease. These 368 

results are consistent with those of Fig. 3 based on the SDE implementation. 369 

 370 

Discussion 371 

This paper represents the first systematic exploration of the impact of pathogen transmission 372 

dynamics and demographic aspects of host ecology on wildlife disease surveillance efficacy. We have 373 

introduced a framework within which surveillance design is characterized by the capture rate (α), in 374 

addition to the standard sample size (m).  In this extended framework, the performance of 375 

surveillance is assessed in light of the ecology of the wildlife disease system of interest i.e. for 376 

particular population and disease parameters.  The framework introduced here can thus serve as a 377 

template for performing power calculations that account for fluctuations in populations and disease 378 

prevalence for specific hosts and pathogens. 379 

 380 

Our results show that surveillance design (choice of m and α) can have a large impact on bias and 381 

precision of prevalence estimation, and on the power to detect disease. With more unstable 382 

populations and greater fluctuations in disease, bias in prevalence estimates increases, and the 383 

precision of such estimates decreases. Such bias can be reduced by increasing capture rate, but for 384 
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fixed sample size this also reduces the ability to detect disease. However, results suggest that even 385 

in the most intensive wildlife disease surveillance programs (Delahay et al. 2000; Hawkins et al. 386 

2006) typical capture rates are not sufficient to eliminate bias. In contrast, increasing sample size 387 

does not affect bias, but does improve statistical power in terms of both precision of prevalence 388 

estimates and disease detection.  However, as sample size increases, such improvements in power 389 

are not as fast as would be expected if fluctuations were ignored, as they are in current surveillance 390 

design and analysis (Grimes & Schulz 1996; Dohoo, Martin & Stryhn 2005). 391 

 392 

Surveillance is a critical prerequisite for defining and controlling wildlife disease risks, and our results 393 

suggest that ignoring significant temporal fluctuations in the design of wildlife disease surveillance 394 

generates inadequate assessments of risk. Moreover, the ecology of many wildlife species and the 395 

pathogens to which they are exposed lead to significant temporal fluctuations in both population 396 

size and disease prevalence (Anderson & May 1979; Anderson 1991; Renshaw 1991; Wilson & 397 

Hassell 1997; Telfer et al. 2002; Hawkins et al. 2006).  The studies reported here were designed to 398 

explore these effects in a wide range of scenarios representative of actual surveillance in wildlife 399 

disease systems (see Materials and methods), and suggest that such issues are likely to be 400 

widespread.  A key aspect not accounted for in the work presented here is disease-induced mortality 401 

which preliminary results (not shown) suggest is likely to accentuate the effects shown here. 402 

Moreover, frequency-dependent transmission and fluctuations driven by environmental variation, 403 

studied only briefly here, also reduced the efficacy of surveillance. The framework presented could 404 

also be extended to account for known extrinsic sources of bias, such as imperfect disease 405 

diagnostics, variation in habitat quality (Nusser et al. 2008; Walsh & Miller 2010) and biased capture 406 

rates (Tuyttens et al. 1999) including aspects associated with passive surveillance.  407 

  408 

There is much current interest in quantifying risks from wildlife disease (Daszak, Cunningham & 409 

Hyatt 2000; Jones et al. 2008), and this is stimulating debate on the need to improve wildlife disease 410 
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surveillance (Bengis et al. 2004; Butler 2006; Gortázar et al. 2007; Béneult, Ciliberti & Artois 2014). 411 

This paper will help to further inform this debate, highlighting the need to consider the ecology of 412 

wildlife disease systems when designing or analysing surveillance programs (Béneult, Ciliberti & 413 

Artois 2014). This assessment emphasizes the importance of accounting for temporal 414 

heterogeneities induced by population fluctuations and disease dynamics. Further research is 415 

needed to assess the impacts of ecology on wildlife disease surveillance including alternative and 416 

complimentary heterogeneities such as intrinsic and extrinsic forms of spatial heterogeneity, and 417 

other population structures. There is a wealth of literature describing the effects of such 418 

heterogeneity in ecology and epidemiology (Lloyd & May 1996; Tilman & Kareiva 1997; Keeling, 419 

Wilson & Pacala 2000; Read & Keeling 2003; Keeling 2005; Vicente et al. 2007), and our results 420 

suggest that these are likely to have important, but as yet unexplored, impacts on the efficacy of 421 

wildlife disease surveillance.  422 
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Table 1: Model structure. Event, Rate and Effect on the State Space of the model. Conceptually the 546 

effect of each event affects an individual and this is reflected in the discrete nature of the 547 

corresponding changes in the state space. However, given this underlying conception of the model 548 

there are a number of different implementations which can be considered including via the Gillespie 549 

algorithm and stochastic differential equations (see text for details). 550 

551 Event Rate Effect 

Birth 𝑟𝑁(1 − 𝑁/𝑘) 𝑆 → 𝑆 + 1 
Death of Susceptible 𝜇𝑆 𝑆 → 𝑆 − 1 
Death of Infected 𝜇𝐼 𝐼 → 𝐼 − 1 
Susceptible Immigration  (1 − 𝛾) 𝜈 𝑆 → 𝑆 + 1 
Infected Immigration  𝛾𝜈 𝐼 → 𝐼 + 1 
Primary Transmission 𝛽0𝑆 𝑆 → 𝑆 − 1 

                 𝐼 → 𝐼 + 1 
Secondary Transmission 𝛽𝐼𝑆 𝑆 → 𝑆 − 1 

𝐼 → 𝐼 + 1 
Susceptible Active 
Capture and Release 

𝛼𝑆 𝑆 → 𝑆 

Infected Active Capture 
and Release 

𝛼𝐼   𝐼 → 𝐼 
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 573 

 574 
Figure 1: Effect of host demography and disease transmission. Data are shown for a range of values 575 

of the death rate µ which controls the stability and size of the population, and thus determines 576 

disease prevalence for a given transmission rate, β. For β=1 plot (a) shows that expected population 577 

size increases with expected prevalence E[p(t)] (i.e. as µ decreases) whilst (b) shows that the 578 

coefficient of variation of the population size decreases.  For the four values of β  indicated and 579 

fixed sample size m=10, (c) shows the bias E[p̂surv] - E[p(t )], and (d) the standard deviation in 580 

surveillance estimates of prevalence, versus the expected value of true disease prevalence in the 581 

system, E[p(t)]. Results shown are based on 106 surveillance bouts using the stochastic differential 582 

equation implementation of the model using the set of parameter values described in Appendix S2.   583 
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 607 
Figure 2: Effect of surveillance design. In all plots results are shown for three wildlife disease 608 

systems with (β, µ): (1, 0.43) solid lines; (1, 0.4) dashed; and (0.1, 0.43) dot-dashed. (a) and (b) 609 

show expected values of the surveillance estimate of prevalence (purple), the true prevalence (blue) 610 

and the continuous sampling theory prediction (black). (c) and (d) show the expected standard 611 

deviation (denoted, σp) in both the true (blue) and the surveillance estimated (purple) prevalence. 612 

(a) and (c) are plotted against a range of values of the capture rate α, for m = 10, and (b) and (d) 613 

versus a range of sample sizes m for α = 0.1. (d) also shows the constant prevalence estimate of the 614 

standard deviation based on the binomial (green). Parameter values used are as described in Table 615 

S3.  616 
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 638 

Figure 3: Effect of host–pathogen and surveillance dynamics on probability of detection.  Results 639 

based on simulations used for Figure 1 (for details see Table S4, Appendix S2). (d) estimated PD 640 

versus approximations based on modifcations of eqn 3 accounting for fluctuations in prevalance (i) 641 

within and between bouts and (ii) between bouts only. (c) shows PDBin based on both E[p] (green) 642 

and E[p̂surv] (black) and (for β = 0.1) PD and the approximation (eqn 4) based on an assumed 643 

gamma distribution.  (a) shows PDBin (green) and PD for various values of β  (as shown yellow (β = 644 

0.01); orange (β = 0.04); red (β = 0.1); purple (β = 1.0)) versus actual prevalence E[p]. (b) shows 645 

PDBin (green) and PD for β = 0.1 and the three capture rates α = 0.01, 1.0, 10.  In (a), (b) and (c) 646 

the black line indicates PD = E[p(t )].  647 
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Figure 4: Fluctuations reduce power to detect disease.   The two panels show the probability that 661 

disease is detected (conditional on non-zero prevalence) for target sample sizes 10 and 20. Each 662 

coloured dot represents the average of 100–1000 realizations of the model implemented using the 663 

Gillespie algorithm that met the sample target for a particular combination of parameters 664 

representing a distinct host–pathogen system (for details see Table S5, Appendix S2). The green 665 

dashed line in both graphs represents PDBin the probability of detection assuming constant 666 

prevalence (see eqn 2). It can be seen that PDBin generally overestimates the power of the sample in 667 

that it predicts a larger probability of detection than is realized in the stochastic simulations. 668 
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