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We examine an Unruh-DeWitt particle detector that is coupled linearly to the scalar density of a massless
Dirac field in Minkowski spacetimes of dimension d ≥ 2 and on the static Minkowski cylinder in spacetime
dimension two, allowing the detector’s motion to remain arbitrary and working to leading order in
perturbation theory. In d-dimensional Minkowski, with the field in the usual Fock vacuum, we show that
the detector’s response is identical to that of a detector coupled linearly to a massless scalar field in
2d-dimensional Minkowski. In the special case of uniform linear acceleration, the detector’s response
hence exhibits the Unruh effect with a Planckian factor in both even and odd dimensions, in contrast to the
Rindler power spectrum of the Dirac field, which has a Planckian factor for odd d but a Fermi-Dirac factor
for even d. On the two-dimensional cylinder, we set the oscillator modes in the usual Fock vacuum but
allow an arbitrary state for the zero mode of the periodic spinor. We show that the detector’s response
distinguishes the periodic and antiperiodic spin structures, and the zero mode of the periodic spinor
contributes to the response by a state-dependent but well-defined amount. Explicit analytic and numerical
results on the cylinder are obtained for inertial and uniformly accelerated trajectories, recovering the d ¼ 2

Minkowski results in the limit of large circumference. The detector’s response has no infrared ambiguity for
d ¼ 2, neither in Minkowski nor on the cylinder.
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I. INTRODUCTION

In quantum field theory, the interaction between a scalar
field and an observer is often studied by modeling the
observer by a spatially pointlike system with discrete
energy levels, an Unruh-DeWitt detector [1,2]. Despite
its mathematical simplicity, this modeling captures the core
features of the dipole interaction by which atomic orbitals
couple to the electromagnetic field [3,4]. In the special case
of a uniformly linearly accelerated observer coupled to a
field in its Minkowski vacuum, detector analyses have
provided significant evidence that the Unruh effect [1], the
thermal response of the observer, occurs whenever the
interaction time is long, the interaction switch-on and
switch-off are sufficiently slow and the backreaction of
the observer on the quantum field remains small [1,2,5–19].
In this paper we consider an Unruh-DeWitt detector

coupled to a Dirac field, taking the interaction Hamiltonian
to be linear in the Dirac field’s scalar density, ψ̄ψ [20–24].
The product of ψ̄ and ψ at the same spacetime point makes
this interaction more singular than the conventional linear
coupling to a scalar field [1,2]. Working in linear pertur-
bation theory for a massive Dirac field, the detector’s
response has a divergent additive term, and although in
stationary situations this term has been viewed as a
formally divergent constant that should be dropped in
the dual limit of long interaction and small coupling
[21], in nonstationary situations the response would need

an additional regularization, perhaps by a spatial profile or
by an appropriate normal ordering [24,25]. In the special
case of Minkowski vacuum, the divergent term is however
proportional to the mass of the field, and for a massless
field a consistent regularization is accomplished by simply
dropping the additive term [22,23]. In this paper we
therefore focus on the massless field.
Our first objective is to evaluate the detector’s response

on an arbitrary trajectory in Minkowski spacetime of
dimension d ≥ 2 when the field is initially prepared in
Minkowski vacuum, working in linear perturbation theory
and allowing the detector to be switched on and off in an
arbitrary smooth way. We show that the response is
identical to that of a detector coupled linearly to a massless
scalar field in 2d spacetime dimensions. In the special case
of uniform linear acceleration, the long time limit of the
detector’s response hence exhibits the Unruh effect with a
Planckian factor for all d. By contrast, the Rindler power
spectrum of the Dirac field is known to have a Planckian
factor for odd d but a Fermi-Dirac factor for even d [21].
These observations are compatible since the detector’s
response is not equal to the Rindler power spectrum but
is given by the convolution of the Rindler power spectrum
with itself [21].
Our second objective is to consider a detector on an

arbitrary worldline on a (1þ 1)-dimensional flat static
cylinder. The main issue here is that the field has two
spin structures, often referred to as the periodic field and the
antiperiodic field, and while the antiperiodic field has a
Minkowski-like Fock vacuum, the zero mode of the
periodic field does not have a Fock vacuum. We evaluate
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the detector’s response, showing that the response distin-
guishes the periodic and antiperiodic spin structures, and
the zero mode of the periodic spinor contributes to the
response by a state-dependent but well-defined way. We
also give a selection of analytic and numerical results for
inertial and uniformly accelerated trajectories, recovering
the d ¼ 2 Minkowski results in the limit of large
circumference.
In two dimensions, our results show that the detector’s

response has no infrared ambiguity, neither in Minkowski
nor on the cylinder. In this respect the massless Dirac field
differs from the massless scalar field, whose response in
two-dimensional Minkowski vacuum is ambiguous due to
the additive ambiguity in the Wightman function [26].
We begin by recalling in Sec. II the definition of the

field-detector model with an interaction Hamiltonian that is
linear in the Dirac field’s scalar density. The response in
Minkowski vacuum in d ≥ 2 dimensions is evaluated in
Sec. III and the response on the (1þ 1)-dimensional flat
static cylinder in Sec. IV. Inertial and uniformly accelerated
trajectories on the cylinder are analyzed in Sec. V.
Section VI gives a summary and brief concluding remarks.
The spinorial conventions and notation are collected in
Appendix A, and a selection of technical calculations are
deferred to Appendices B–D.
We use units in which ℏ ¼ c ¼ 1. The spacetime

signature is mostly minus, ðþ − − � � �Þ. Spacetime points
are denoted by math italic letters. In Minkowski spacetime,
spacetime vectors are denoted by math italic letters and
spatial vectors in a given Lorentz frame are denoted by
boldface letters. An overline on a scalar denotes the
complex conjugate and an overline on a spinor denotes
the Dirac conjugate. oð1Þ denotes a quantity that tends to
zero in the limit under consideration.

II. UNRUH-DEWITT DETECTOR COUPLED
TO THE DIRAC FIELD

In this section we briefly recall relevant properties of an
Unruh-DeWitt detector that is coupled linearly to the scalar
density of a Dirac field.
We consider a pointlike detector that moves in a

(possibly) curved spacetime on the worldline xðτÞ, where
τ is the proper time. The detector is a two-level system,
with the Hilbert space C2, spanned by the orthonormal
basis fjE0i; jE1ig of eigenstates of the Hamiltonian HD:
HDjEii ¼ EijEii, where the eigenenergies E0 and E1 are
real-valued constants.
The detector is coupled to a Dirac field ψ by the

interaction Hamiltonian

Hint ≔ cχðτÞmðτÞψ̄ðxðτÞÞψðxðτÞÞ; ð2:1Þ

where mðτÞ is the detector’s monopole moment operator,
evolving in the interaction picture by

mðτÞ ¼ eiHDτmð0Þe−iHDτ; ð2:2Þ

c is a coupling constant, and the switching function χ is a
smooth real-valued function that specifies how the inter-
action is turned on and off. We assume χ either to have
compact support or to have so rapid falloff that the system
can be treated as uncoupled in the asymptotic past and
future.
Before the interaction begins, the detector occupies the

eigenstate jE0i and the field occupies some Hadamard state
jΨ0i. Working to linear order in c, the probability for the
detector to be found in the state jE1i after the interaction
has ceased, regardless the final state of the field, is

PðΩÞ ¼ jcj2jhE1jmð0ÞjE0ij2F ðΩÞ; ð2:3Þ

whereΩ ¼ E1 − E0, the detector’s response functionF ðΩÞ
is given by

F ðΩÞ ≔
Z

dτdτ0χðτÞχðτ0Þe−iΩðτ−τ0ÞWð2;2̄ÞðxðτÞ; xðτ0ÞÞ;

ð2:4Þ

and

Wð2;2̄Þðx; yÞ ≔ hΨ0jψ̄ðxÞψðxÞψ̄ðyÞψðyÞjΨ0i: ð2:5Þ

The factor jcj2jhE1jmð0ÞjE0ij2 depends only on the inner
working of the detector, and we drop it from now on,
referring to the response function as the probability. Note
that F ðΩÞ gives the probability of an excitation for Ω > 0
and the probability of a deexcitation for Ω < 0.
Although jΨ0i is by assumption Hadamard, formula (2.5)

as it stands does not define Wð2;2̄ÞðxðτÞ; xðτ0ÞÞ as a
distribution on the detector’s worldline because of the
partial coincidence limit in (2.5) [21–24]. To make the
response function (2.4) well defined, it will be necessary to
give formula (2.5) an appropriate distributional interpreta-
tion. We shall address this in Secs. III and IV below.

III. RESPONSE IN MINKOWSKI VACUUM

In this section we evaluate the detector’s response to a
massless Dirac field in Minkowski spacetime of dimen-
sion d ≥ 2, with the field in the usual Minkowski vacuum.
We first recall relevant properties of the massive field, and
we then show that the massless limit of the correlation
function Wð2;2̄Þðx; yÞ (2.5) can be interpreted as a dis-
tribution for which the response function (2.4) is well
defined.

A. Quantum Dirac field

We first recall some basic facts and notation about a
massive Dirac field on Minkowski spacetime.
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We denote the spacetime points by x ¼ ðx0;xÞ ¼ ðt;xÞ,
and the Minkowski metric is ημν ¼ diagð1;−1;−1;…Þ.
The action of the Dirac field ψ is

S ¼
Z

ddxψ̄ðxÞðiγμ∂μ −mÞψðxÞ; ð3:1Þ

where m > 0 is the mass and the conventions for the
gamma matrices γμ, μ ¼ 0; 1; 2;…; d − 1, are summarized
in Appendix A. The field equations for ψ and its Dirac
conjugate ψ̄ ¼ ψ†γ0 are

0 ¼ ðiγμ∂μ −mÞψðxÞ; ð3:2aÞ

0 ¼ i∂μψ̄ðxÞγμ þmψ̄ðxÞ: ð3:2bÞ

A complete set of mode solutions to (3.2a) is

uðsÞk ðxÞ ¼ uðsÞðkÞe−ikx; ð3:3aÞ

vðsÞk ðxÞ ¼ vðsÞðkÞeikx; ð3:3bÞ

where k ¼ ðk0;kÞ, k0 ≔ ωk ¼ ðk2 þm2Þ1=2, kx ¼ k0x0−
k · x, and the spinors uðsÞðkÞ and vðsÞðkÞ are as given in
Appendix A, with s being the helicity index. In the Dirac
inner product, given by

hψ ;ϕi ¼
Z

dd−1xψ̄ðt;xÞγ0ϕðt;xÞ; ð3:4Þ

these mode solutions are normalized to

huðsÞk ; uðs
0Þ

k0 i ¼ hvðsÞk ; vðs
0Þ

k0 i ¼ 2ωkð2πÞd−1δss0δd−1ðk − k0Þ;
ð3:5aÞ

huðsÞk ; vðs
0Þ

k0 i ¼ 0: ð3:5bÞ

The quantized field is expanded as

ψðxÞ ¼
Z fdkX

s

�
bsðkÞuðsÞk ðxÞ þ d†sðkÞvðsÞk ðxÞ

�
; ð3:6Þ

where

fdk ≔
dd−1k

2ωkð2πÞd−1
; ð3:7Þ

and the only nonvanishing anticommutators of the operator
coefficients are

fbsðkÞ; b†s0 ðk0Þg ¼ fdsðkÞ; d†s0 ðk0Þg
¼ 2ωkð2πÞd−1δss0δd−1ðk − k0Þ: ð3:8Þ

The field’s equal-time anticommutators are

fψaðt;xÞ;ψbðt;x0Þg ¼ fψ†
aðt;xÞ;ψ†

bðt;x0Þg ¼ 0; ð3:9aÞ

fψaðt;xÞ;ψ†
bðt;x0Þg ¼ δabδ

d−1ðx − x0Þ; ð3:9bÞ

where we have explicitly written out the spinor indices. The
fermionic Fock space is built on the Minkowski vacuum
state j0i which satisfies bsðkÞj0i ¼ dsðkÞj0i ¼ 0.
ψ and ψ̄ may be decomposed into their positive and

negative frequency components as

ψðxÞ ¼ ψþðxÞ þ ψ−ðxÞ; ð3:10aÞ

ψ̄ðxÞ ¼ ψ̄þðxÞ þ ψ̄−ðxÞ; ð3:10bÞ

where

ψþðxÞ ¼
Z fdkX

s

bsðkÞuðsÞk ðxÞ; ð3:11aÞ

ψ−ðxÞ ¼
Z fdkX

s

d†sðkÞvðsÞk ðxÞ; ð3:11bÞ

ψ̄þðxÞ ¼
Z fdkX

s

dsðkÞv̄ðsÞk ðxÞ; ð3:11cÞ

ψ̄−ðxÞ ¼
Z fdkX

s

b†sðkÞūðsÞk ðxÞ: ð3:11dÞ

In the conventions of [21], the Dirac field Wightman
functions S�ðx; yÞ are

Sþabðx; yÞ ≔ h0jψaðxÞψ̄bðyÞj0i ¼ fψþ
a ðxÞ; ψ̄−

b ðyÞg
¼ ðiγμ∂xμ þmÞabGþðx; yÞ; ð3:12aÞ

S−abðx; yÞ ≔ h0jψ̄bðyÞψaðxÞj0i ¼ fψ−
a ðxÞ; ψ̄þ

b ðyÞg
¼ −ðiγμ∂xμ þmÞabGþðy; xÞ; ð3:12bÞ

where Gþ is the Wightman function of a real scalar field of
mass m,

Gþðx; yÞ ¼
Z fdke−ikðx−yÞ; ð3:13Þ

and the distributional sense in (3.13) is that of x0 − y0 →
x0 − y0 − iϵ and the limit ϵ → 0þ. The explicit expression
for Gþðx; yÞ is [21]

Gþðx; yÞ ¼ 1

2π

�
m

2πzðx; yÞ
�

d=2−1
Kd=2−1ðmzðx; yÞÞ;

ð3:14Þ
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where Kd=2−1 is the modified Bessel function of the second
kind [27] and

zðx; yÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − yÞ2 − ðx0 − y0 − iϵÞ2

q
: ð3:15Þ

B. Wð2;2̄Þðx;yÞ
We wish to examine the correlation function

Wð2;2̄Þðx; yÞ (2.5).
We show in Appendix B that

Wð2;2̄Þðx; yÞ ¼ Tr½Sþðx; yÞS−ðy; xÞ�
þ Tr½S−ð0; 0Þ�Tr½S−ð0; 0Þ�: ð3:16Þ

Using TrðγμÞ ¼ 0 and TrðγμγνÞ ¼ Ndη
μν, (3.12) and (3.14)

show that the first term in (3.16) can be written as

Tr½Sþðx; yÞS−ðy; xÞ�

¼ Ndm2

ð2πÞ2
�

m
2πzðx; yÞ

�
d−2

× f½Kd=2ðmzðx; yÞÞ�2 − ½Kd=2−1ðmzðx; yÞÞ�2g; ð3:17Þ

which is a well-defined distribution. In the second term in
(3.16), by contrast, we have, using (3.12b) and TrðγμÞ ¼ 0,

Tr½S−ðx; yÞ� ¼ −NdmGþðy; xÞ; ð3:18Þ

which diverges as ðx; yÞ → ð0; 0Þ by (3.14). Wð2;2̄Þðx; yÞ is
hence not well defined, due to a divergent additive constant
in the second term in (3.16) [21–24].
Consider however now the limit m → 0. If the second

term in (3.16) is dropped in this limit, we obtain

Wð2;2̄Þðx; yÞ ¼ NdðΓðd=2ÞÞ2
4πdðzðx; yÞÞ2d−2 ; ð3:19Þ

using (3.17) and the small argument form of the modified
Bessel function [27]. We adopt (3.19) as the definition of
Wð2;2̄Þ for the massless field.
We shall not attempt to justify dropping the second term

in (3.16) as m → 0 from some underlying framework that
would provide a definition for the coincidence limit of a
squared distribution, but we can make two consistency
observations.
First, from (3.14), (3.18) and the small argument form of

the modified Bessel function [27] we see that Tr½S−ðx; yÞ�
has a well-defined distributional limit as m → 0, and this
limit is the zero distribution.
Second, recall that the Wightman function of a massless

scalar field is given by [26]

Gþðx; yÞ ¼
8<
:

Γðd
2
−1Þ

4πd=2ðzðx;yÞÞd−2 for d > 2;

−ð2πÞ−1 lnðμzðx; yÞÞ for d ¼ 2;
ð3:20Þ

where μ is an undetermined positive constant of dimension
inverse length. For d > 2, (3.20) is obtained as the m → 0
limit of (3.14). For d ¼ 2, (3.20) is obtained as the m → 0
limit of (3.14) after subtracting an m-dependent constant
that diverges as m → 0, and the arbitrariness (“infrared
ambiguity”) in this subtraction is encoded in the positive
constant μ in (3.20). Substituting (3.20) in (3.12) with
m ¼ 0 gives S�ðx; yÞ such that Tr½S−ðx; yÞ� vanishes as a
distribution, and substituting these S�ðx; yÞ in the first term
in (3.16) and Tr½S−ð0; 0Þ� in the second term in (3.16)
gives (3.19).
Note that Wð2;2̄Þðx; yÞ (3.19) tends to zero in the limit of

large spacelike separation for all d ≥ 2, including d ¼ 2.
For d ¼ 2, Wð2;2̄Þ has no infrared ambiguity, in contrast to
the infrared ambiguity of Gþ (3.20).

C. Detector’s response to a massless field

Collecting (2.4) and (3.19), we see that the detector’s
response to a massless Dirac field is given by

F ðΩÞ ¼ NdðΓðd=2ÞÞ2
4πd

Z
dτdτ0

χðτÞχðτ0Þe−iΩðτ−τ0Þ
½zðxðτÞ; xðτ0ÞÞ�2d−2 ;

ð3:21Þ

where we recall from (3.15) that

zðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − yÞ2 − ðx0 − y0 − iϵÞ2

q
ð3:22Þ

with ϵ → 0þ. This result agrees with the limits, special
cases and alternative forms considered in [21–24].
To set this result in context, recall that the response of an

Unruh-DeWitt detector that is linearly coupled to a scalar
field in its Minkowski vacuum is [5,7,28]

F scðΩÞ ¼
Z

dτdτ0χðτÞχðτ0Þe−iΩðτ−τ0ÞGþðxðτÞ; xðτ0ÞÞ;

ð3:23Þ

where Gþ is the scalar field’s Wightman function. By
(3.20), (3.21) and (3.23), we may hence formalize our
observations as the following theorem:
Theorem 1.—The response function of an Unruh-DeWitt

detector coupled quadratically to a massless Dirac field in
Minkowski vacuum in d ≥ 2 spacetime dimensions equals

NdðΓðd=2ÞÞ2
Γðd − 1Þ ð3:24Þ
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times the response function of an Unruh-DeWitt detector
coupled linearly to a massless scalar field in Minkowski
vacuum in 2d spacetime dimensions.
One consequence of Theorem 1 is that the Dirac field

detector’s response is well defined whenever the detector’s
worldline is smooth, by the corresponding result for the
scalar field detector [29,30].
The special case of a uniformly linearly accelerated

detector deserves a comment. In the limit in which the
detector operates for a long time and the switching effects
are negligible, it is well known [21] that both the response
function of the scalar field detector and the response function
of the Dirac field detector satisfy the detailed balance
condition,

F ð−ΩÞ ¼ eΩ=TUF ðΩÞ; ð3:25Þ

where TU ≔ a=ð2πÞ and a is the magnitude of the detector’s
proper acceleration. This is the celebrated Unruh effect, and
TU is the Unruh temperature [1]. It was observed in [21] that
the response function of the scalar field detector involves a
Planck factor in even spacetimedimensionsbut a Fermi-Dirac
factor in odd spacetime dimensions. Theorem1hence implies
that the response functionof theDirac field detector involves a
Planck factor in all spacetime dimensions.
By contrast, recall that the “Rindler noise” of the Dirac

field, defined as a Fourier transform of the Wightman
function Sþ over the uniformly accelerated trajectory,
involves a Fermi-Dirac factor in even spacetime dimensions
and a Planck factor in odd spacetime dimensions [21]. This
is fully compatible with our observation that the detector’s
response involves a Planck factor in all spacetime dimen-
sions: the response function is not directly the Rindler noise
but rather the self-convolution of the Rindler noise, as shown
in (8.5.13) in [21], and a Fermi-Dirac factor in the Rindler
noise does not imply a Fermi-Dirac factor in the response
function. We have explicitly checked that our Theorem 1
agrees with (8.5.13) in [21] for a Dirac field in spacetime
dimensions 2, 3 and 4. The verbal description of the Fermi-
Dirac versus Planck factors in the Dirac field detector’s
response function given in [21], in the full paragraph
between (8.5.14) and (8.5.15), is hence not accurate.

IV. CYLINDRICAL (1þ 1)-DIMENSIONAL
SPACETIME

In this section we consider a detector coupled to a
massless Dirac field in a flat static cylindrical spacetime in
1þ 1 dimensions. The main new issue is that there are now
two inequivalent spin structures, and one of the spin
structures has a zero mode.

A. Massive Dirac field on the cylindrical spacetime

The spacetime is a flat static (1þ 1)-dimensional cyl-
inder with spatial circumference L > 0. We work in

standard Minkowski coordinates ðt; xÞ in which the metric
reads

ds2 ¼ dt2 − dx2; ð4:1Þ

with the periodic identification ðt; xÞ ∼ ðt; xþ LÞ.
We consider a Dirac field ψ with massm > 0. We use the

Minkowski spacetime notation of Sec. III with the excep-
tion that ψ is now either periodic or antiperiodic as
ðt; xÞ↦ðt; xþ LÞ. The choice of periodicity versus anti-
periodicity implements the choice between the two inequi-
valent spin structures of the field [5]: we refer to these spin
structures as respectively the periodic or untwisted spin
structure and the antiperiodic or twisted spin structure.
We suppress explicit references to the spin structure in the
formulas until the final expressions for the detector’s
response in (4.12) and (4.28).
A complete set of mode solutions for each spin

structure is

unðt; xÞ ¼ ð2LωnÞ−1=2uðknÞe−iðωnt−knxÞ; ð4:2aÞ

vnðt; xÞ ¼ ð2LωnÞ−1=2vðknÞeiðωnt−knxÞ; ð4:2bÞ

where n ∈ Z and

kn ≔
�
2πn=L for untwisted spinors;

2πðnþ 1
2
Þ=L for twisted spinors;

ð4:3aÞ

ωn ≔ ðm2 þ k2nÞ1=2; ð4:3bÞ

and the spinors uðknÞ and vðknÞ are the (1þ 1)-
dimensional special case of the spinors introduced in
Appendix A. Note that the spinors carry no spin index.
The Dirac inner product (3.4) is modified to

hψ ;ϕi ¼
Z

L

0

dxψ̄ðt;xÞγ0ϕðt;xÞ; ð4:4Þ

in which the mode solutions (4.2) are normalized to

hun; un0 i ¼ hvn; vn0 i ¼ δnn0 ; ð4:5aÞ

hun; vn0 i ¼ 0: ð4:5bÞ

The quantized field is expanded as

ψðt; xÞ ¼
X
n

ðbnunðt; xÞ þ d†nvnðt; xÞÞ; ð4:6Þ

where the only nonvanishing anticommutators of the
coefficients are
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fbn; b†n0 g ¼ fdn; d†n0 g ¼ δnn0 : ð4:7Þ

The field’s equal-time anticommutators are

fψaðt; xÞ;ψbðt; x0Þg ¼ fψ†
aðt; xÞ;ψ†

bðt; x0Þg ¼ 0; ð4:8aÞ

fψaðt; xÞ;ψ†
bðt; x0Þg ¼ δabδðx; x0Þ; ð4:8bÞ

where δðx; x0Þ denotes Dirac’s delta function on the circle.
The fermionic Fock space is built on the vacuum state j0i
which satisfies bnj0i ¼ dnj0i ¼ 0.
Proceeding as in Sec. III, we have

Sþabðt; x; t0; x0Þ ≔ h0jψaðt; xÞψ̄bðt0; x0Þj0i
¼ ðiγμ∂μ þmÞabGþðt; x; t0; x0Þ; ð4:9aÞ

S−abðt; x; t0; x0Þ ≔ h0jψ̄bðt0; x0Þψaðt; xÞj0i
¼ −ðiγμ∂μ þmÞabGþðt0; x0; t; xÞ; ð4:9bÞ

where

Gþðt; x; t0; x0Þ ¼
X
n

1

2ωnL
exp½−iωnðt − t0 − iϵÞ

þ iknðx − x0Þ�; ð4:10Þ

understood in the sense ϵ → 0þ, and the differentiation in
(4.9) is with respect to the unprimed argument. For the
untwisted spinor, Gþ is the Wightman function of a real
scalar field of mass m. For the twisted spinor, Gþ is the
Wightman function of a scalar field that takes values on a
twisted R=Z2 bundle [5].
The correlation function Wð2;2̄Þ (2.5) is again given by

the ill-defined expression (3.16). We shall give a well-
defined interpretation for this expression in the massless
limit for each of the two spin structures in turn.

B. Twisted massless field

Consider the twisted massless Dirac field. Proceeding as
in Sec. III B, we drop the second term in (3.16) and use in
the first term (4.9) with m ¼ 0, obtaining

Wð2;2̄Þ
t ðt; x; t0; x0Þ ¼ Trf½Sþðt; x; t0; x0Þ�2g

¼ −2½ð∂t − ∂xÞGþðt; x; t0; x0Þ�½ð∂t þ ∂xÞGþðt; x; t0; x0Þ�

¼ 2

L2
e−2πiðΔt−iϵÞ=L

X∞
n;m¼0

e−2πinðΔtþΔx−iϵÞ=Le−2πimðΔt−Δx−iϵÞ=L

¼ −
1

2L2 sin½πðΔtþ Δx − iϵÞ=L� sin½πðΔt − Δx − iϵÞ=L� ; ð4:11Þ

where Δt ≔ t − t0 and Δx ≔ x − x0, and the subscript in Wð2;2̄Þ
t refers to the twisted spin structure.

The response of the detector is obtained from (2.4) with (4.11). Note that the response contains no infrared ambiguities. A
formula that is well suited for numerical evaluation is obtained by using the sum form in (4.11), yielding

F tðΩÞ ¼
2

L2

X∞
n;m¼0

Z
dτdτ0χðτÞχðτ0Þe−iΩðτ−τ0Þexp

�
−
2πifðnþmþ 1Þ½tðτÞ − tðτ0Þ − iϵ� þ ðn −mÞ½ðxðτÞ − xðτ0Þ�g

L

�
:

ð4:12Þ

C. Untwisted massless field

Consider the untwisted massless Dirac field. As the
n ¼ 0 term in (4.6) has vanishing frequency, this mode
does not have a Fock vacuum. We hence split ψ as

ψðt; xÞ ¼ ψoscðt; xÞ þ ψ zmðtÞ; ð4:13Þ

where

ψoscðt; xÞ ¼
X
n≠0

ðbnunðt; xÞ þ d†nvnðt; xÞÞ; ð4:14Þ

and ψ zmðtÞ is spatially constant. We treat ψosc and ψ zm in
turn and then combine the two.

1. Oscillator modes

We quantize the oscillator modes ψosc with the usual
anticommutators (4.7). It follows that the equal-time anti-
commutators of ψosc are

fψosc
a ðt; xÞ;ψosc

b ðt; x0Þg ¼ fψosc†
a ðt; xÞ;ψosc†

b ðt; x0Þg ¼ 0;

ð4:15aÞ
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fψosc
a ðt; xÞ;ψosc†

b ðt; x0Þg ¼ δabδðx; x0Þ − δab=L: ð4:15bÞ

Let j0osci denote the oscillator mode Fock vacuum,
satisfying bnj0osci ¼ dnj0osci ¼ 0 for n ≠ 0. Proceeding
as in (4.9), we find

Soscþab ðt; x; t0; x0Þ ≔ h0oscjψosc
a ðt; xÞψosc

b ðt0; x0Þj0osci
¼ iðγμÞab∂μGoscþðt; x; t0; x0Þ; ð4:16aÞ

Sosc−ab ðt; x; t0; x0Þ ≔ h0oscjψosc
b ðt0; x0Þψosc

a ðt; xÞj0osci
¼ −iðγμÞab∂μGoscþðt0; x0; t; xÞ; ð4:16bÞ

where the differentiation is with respect to the unprimed
argument and

Goscþðt; x; t0; x0Þ

¼
X
n≠0

1

2ωnL
exp½−iωnðt − t0 − iϵÞ þ iknðx − x0Þ�:

ð4:17Þ

Hence

Wð2;2̄Þ
osc ðt; x; t0; x0Þ ≔ Tr½Soscþðt; x; t0; x0ÞSosc−ðt0; x0; t; xÞ�

¼ Trf½Soscþðt; x; t0; x0Þ�2g
¼ −2½ð∂t − ∂xÞGoscþðt; x; t0; x0Þ�½ð∂t þ ∂xÞGoscþðt; x; t0; x0Þ�

¼ 2

L2

X∞
n;m¼1

e−2πinðΔtþΔx−iϵÞ=Le−2πimðΔt−Δx−iϵÞ=L

¼ −
exp½−2πiðΔt − iϵÞ=L�

2L2 sin½πðΔtþ Δx − iϵÞ=L� sin½πðΔt − Δx − iϵÞ=L� : ð4:18Þ

2. Zero mode

We quantize the zero mode ψ zm so that ψ zmðtÞ and
ψ zm†ðtÞ anticommute with ψoscðt; xÞ and ψosc†ðt; x0Þ and
satisfy

fψ zm
a ðtÞ;ψ zm

b ðtÞg ¼ fψ zm†
a ðtÞ;ψ zm†

b ðtÞg ¼ 0; ð4:19aÞ

fψ zm
a ðtÞ;ψ zm†

b ðtÞg ¼ δab=L: ð4:19bÞ

Together with (4.15), this ensures that the full Dirac field
(4.13) satisfies the equal-time anticommutators (4.8).
Inserting (4.13) in the action shows that ψ zm is inde-

pendent of t. To satisfy (4.19), we write (cf. Chapter 20
of [31])

ψ zm ¼ 1ffiffiffiffi
L

p
�
Q1

Q†
2

�
; ð4:20Þ

where Qa are independent of t and satisfy

fQa;Qbg ¼ fQ†
a; Q

†
bg ¼ 0; ð4:21aÞ

fQa;Q
†
bg ¼ δab: ð4:21bÞ

The Hilbert space is built on the normalized state j0zmi
that satisfies Qaj0zmi ¼ 0. The Hilbert space has

dimension four, and an orthonormal basis is fj0zmi;
Q†

1j0zmi; Q†
2j0zmi; Q†

1Q
†
2j0zmig.

For concreteness, we may work in a representation in
which γ0 ¼ ð0

1
1
0
Þ and γ1 ¼ ð 0

−1
1
0
Þ. We then have

ψ zmψ zm ¼ L−1ðQ2Q1 þQ†
1Q

†
2Þ: ð4:22Þ

If the zero mode is in the normalized state

jZMi ≔ ða0 þ a1Q
†
1 þ a2Q

†
2 þ a3Q

†
1Q

†
2Þj0zmiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ja0j2 þ ja1j2 þ ja2j2 þ ja3j2
p ; ð4:23Þ

where the four ai are complex numbers, not all of them
vanishing, we find

Wð2;2̄Þ
zm ≔ hZMjψ zmψ zmψ zmψ zmjZMi ¼ θL−2; ð4:24Þ

where θ ¼ ðja0j2 þ ja3j2Þðja0j2 þ ja1j2 þ ja2j2 þ ja3j2Þ−1.
Note that θ ∈ ½0; 1�, and when jZMi ¼ j0zmi, we
have θ ¼ 1.

3. Full field

Consider now the full field (4.13), consisting of both
the oscillator modes and the zero mode. We put the field in
the state
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jgZMi ≔ jZMi ⊗ j0osci ¼ ða0 þ a1Q
†
1 þ a2Q

†
2 þ a3Q

†
1Q

†
2Þðj0zmi ⊗ j0osciÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ja0j2 þ ja1j2 þ ja2j2 þ ja3j2
p :

ð4:25Þ

We show in Appendix C that

Wð2;2̄Þ
u ðt; x; t0; x0Þ≔ hgZMjψ̄ðt; xÞψðt; xÞψ̄ðt0; x0Þψðt0; x0ÞjgZMi ¼Wð2;2̄Þ

osc ðt; x; t0; x0Þ þWð2;2̄Þ
mix ðt; x; t0; x0Þ þWð2;2̄Þ

zm ; ð4:26Þ

where Wð2;2̄Þ
osc is given by (4.18), Wð2;2̄Þ

zm is given by (4.24),

Wð2;2̄Þ
mix ¼ L−2

X∞
n¼1

ðe−2πinðΔtþΔx−iϵÞ=L þ e−2πinðΔt−Δx−iϵÞ=LÞ ¼ L−2
�

1

e2πiðΔtþΔx−iϵÞ=L − 1
þ 1

e2πiðΔt−Δx−iϵÞ=L − 1

�
; ð4:27Þ

and the subscript in Wð2;2̄Þ
u refers to the untwisted spin structure.

The response of the detector is obtained from (2.4) with (4.26). Note that the response again contains no infrared
ambiguities. We may break the response as

F uðΩÞ ¼ F osc
u ðΩÞ þ Fmix

u ðΩÞ þ F zm
u ðΩÞ; ð4:28Þ

where numerically efficient formulas for F osc
u and Fmix

u are obtained from the sums in (4.18) and (4.27),

F osc
u ðΩÞ ¼ 2

L2

X∞
n;m¼1

Z
dτdτ0χðτÞχðτ0Þe−iΩðτ−τ0Þexp

�
−
2πifðnþmÞ½tðτÞ − tðτ0Þ − iϵ� þ ðn −mÞ½ðxðτÞ − xðτ0Þ�g

L

�
;

ð4:29aÞ

Fmix
u ðΩÞ ¼ 2

L2

X∞
n¼1

Z
dτdτ0χðτÞχðτ0Þe−iΩðτ−τ0Þexp

�
−
2πin½tðτÞ − tðτ0Þ − iϵ�

L

�
cos

�
2πn½xðτÞ − xðτ0Þ�

L

�
; ð4:29bÞ

while

F zm
u ðΩÞ ¼ θ

L2

Z
dτdτ0χðτÞχðτ0Þe−iΩðτ−τ0Þ ¼ θ

L2
jχ̂ðΩÞj2;

ð4:30Þ

where the hat denotes the Fourier transform, χ̂ðΩÞ ≔R∞
−∞ dτχðτÞe−iΩτ.

D. L → ∞ limit

In the limit L → ∞, the final expressions in (4.11),

(4.18), (4.24) and (4.27) show that both Wð2;2̄Þ
t ðt; x; t0; x0Þ

and Wð2;2̄Þ
u ðt; x; t0; x0Þ approach the same limit,

Wð2;2̄Þ
t;u ðt; x; t0; x0Þ⟶

L→∞

1

2π2½ðx − x0Þ2 − ðt − t0 − iϵÞ2� ;

ð4:31Þ

which by (3.19) is equal to Wð2;2̄Þðt; x; t0; x0Þ in the
Minkowski vacuum in two-dimensional Minkowski

spacetime. This is as expected: in the limit of large spatial
circumference, the detector’s response for either spin
structure reduces to that in the Minkowski vacuum in
Minkowski spacetime.

V. INERTIAL AND UNIFORMLY ACCELERATED
TRAJECTORIES ON THE

CYLINDRICAL SPACETIME

In this section we consider inertial and uniformly accel-
erated detectors on the cylindrical spacetime of Sec. IV.

A. Inertial detector

Consider a detector on the inertial worldline

t ¼ τ cosh β; x ¼ τ sinh β; ð5:1Þ

where β ∈ R is the rapidity with respect to the worldlines of
constant x. We take the switching function to be Gaussian,

χðτÞ ¼ 1

π1=4σ1=2
e−τ

2=ð2σ2Þ; ð5:2Þ
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where the positive parameter σ is the effective duration
of the interaction. The normalization is such thatR∞
−∞ χ2ðτÞdτ ¼ 1, and

χ̂ðΩÞ ¼ π1=4ð2σÞ1=2e−σ2Ω2=2: ð5:3Þ

For the twisted field, (4.12) gives

F tðΩÞ¼
4π1=2σ

L2

X∞
n;m¼0

exp

�
−σ2

×

�
Ωþ2πððnþ 1

2
Þeβþðmþ 1

2
Þe−βÞ

L

�
2
�
: ð5:4Þ

For the untwisted field, (4.28), (4.29) and (4.30) give

F uðΩÞ ¼
4π1=2σ

L2

X∞
n;m¼1

exp

�
−σ2

�
Ωþ 2πðneβ þme−βÞ

L

�
2
�

þ 2π1=2σ

L2

X∞
n¼1

�
exp

�
−σ2

�
Ωþ 2πneβ

L

�
2
�

þ exp

�
−σ2

�
Ωþ 2πne−β

L

�
2
��

þ 2π1=2σθ

L2
e−σ

2Ω2

: ð5:5Þ

Three comments are in order.
First, consider the limit of long detection, σ → ∞, with

the other parameters fixed. In this limit, F t and F u each
reduce to a series of delta peaks,

F tðΩÞ ¼
4π

L2

X∞
n;m¼0

δ

�
Ωþ 2πððnþ 1

2
Þeβ þ ðmþ 1

2
Þe−βÞ

L

�
;

ð5:6aÞ

F uðΩÞ ¼
4π

L2

X∞
n;m¼1

δ

�
Ωþ 2πðneβ þme−βÞ

L

�

þ 2π

L2

X∞
n¼1

�
δ

�
Ωþ 2πneβ

L

�
þ δ

�
Ωþ 2πne−β

L

��

þ 2πθ

L2
δðΩÞ; ð5:6bÞ

where δ is Dirac’s delta function. The Doppler shift factors
e�β show that the peaks in F t correspond to the creation of
a pair of field excitations, one left-moving and the other
right-moving. The peaks in F u are similar but also contain
the special cases where one or both of the field excitations
are in the zero mode, with vanishing energy. That the
excitations occur in pairs is a consequence of the quadratic
interaction Hamiltonian Hint (2.1). By contrast, the peaks
for a detector coupled linearly to a scalar field [32]
correspond to emission of just single field quanta.

Second, consider the ultrarelativistic velocity limit,
jβj → ∞, with the other parameters fixed. F t vanishes in
this limit, exponentially in ejβj: the physical reason is that
the detector would need to excite field quanta in pairs and
one member of each pair is necessarily highly blueshifted
in the detector’s local rest frame. For F u, however, one of
the single sums in (5.5) does not vanish in this limit, and
estimating the sum by an integral gives

F uðΩÞ ¼
ejβj

2L
½erfcðσΩÞ þ oð1Þ� as jβj → ∞; ð5:7Þ

where erfc is the error complement function [27]. The
physical interpretation is that at ultrarelativistic velocities
the detector has an exponentially large probability to
generate field excitation pairs in which one excitation is
highly redshifted with respect to the detector’s local rest
frame and the other excitation is a zero mode. This
phenomenon has no counterpart for a detector coupled
linearly to a scalar field [32].
Third, consider the large circumference limit, L → ∞,

with the other parameters fixed. As noted in Sec. IV D,
in this limit both F t and F u approach the response of
an inertial detector in Minkowski vacuum in (1þ 1)-
dimensional Minkowski spacetime, evaluated in
Appendix D, with the result

F t;uðΩÞ⟶
L→∞

1

2πσ

�
e−σ

2Ω2

π1=2
− σΩ erfcðσΩÞ

�
: ð5:8Þ

In the limit σ → ∞, (5.8) reduces to

F ðΩÞ ¼ −
ΩΘð−ΩÞ

π
; ð5:9Þ

where Θ is the Heaviside function. Formula (5.9) equals
twice the response of an inertial Unruh-DeWitt detector
coupled linearly to a scalar field in four-dimensional
Minkowski space in the long interaction limit [5], as must
be the case by Theorem 1.
Plots of LF t and LF u as a function of the dimensionless

variables σΩ and σ=L are shown in Figs. 1 and 2.

B. Uniformly accelerated detector

Consider a detector on the uniformly accelerated
worldline

t ¼ a−1 sinhðaτÞ; x ¼ a−1 coshðaτÞ; ð5:10Þ

where the positive parameter a is the proper acceleration.
As this trajectory is not stationary on the cylinder, we now
consider the Gaussian switching function

χτ0ðτÞ ¼
1

π1=4σ1=2
e−ðτ−τ0Þ2=ð2σ2Þ; ð5:11Þ
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where the new real-valued parameter τ0 specifies the
moment about which χτ0 is peaked.
For the twisted field, (4.12) gives

F tðΩÞ ¼
2

π1=2ðaLÞ2σ
X∞
n;m¼0

jItnmj2; ð5:12Þ

where

Itnm ¼
Z

∞

0

dy
y
exp

�
−
ðln y − aτ0Þ2

2σ2a2
−
iΩ ln y

a

−
2πi
aL

��
nþ 1

2

�
y −

�
mþ 1

2

�
y−1

��
: ð5:13Þ

For the untwisted field, (4.28), (4.29) and (4.30) give

F uðΩÞ¼
2

π1=2ðaLÞ2σ
X∞
n;m¼1

jIunmj2

þ 1

π1=2ðaLÞ2σ
X∞
n¼1

ðjJþn j2þjJ−n j2Þþ
2π1=2σθ

L2
e−σ

2Ω2

;

ð5:14Þ

where

Iunm¼
Z

∞

0

dy
y
exp

�
−
ðlny−aτ0Þ2

2σ2a2
−
iΩlny
a

−
2πi
aL

ðny−my−1Þ
�
;

ð5:15aÞ

FIG. 1. Perspective plots of LF t and LF u for the inertial detector in terms of the dimensionless variables σΩ and σ=L, for β ¼ 0 and
β ¼ 1. In LF u we have set θ ¼ 1. Λ in the axis labels stands for L.
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Jþn ¼
Z

∞

0

dy
y
exp

�
−
ðln y − aτ0Þ2

2σ2a2
−
iΩ ln y

a
−
2πni
aL

y

�
;

ð5:15bÞ

J−n ¼
Z

∞

0

dy
y
exp

�
−
ðln y − aτ0Þ2

2σ2a2
−
iΩ ln y

a
þ 2πni

aL
y−1

�
:

ð5:15cÞ

As the detector’s worldline is not stationary, analytic
investigation of F t and F u in the limit of large σ and in
the limit of large τ0 is not straightforward. In the limit of

large circumference, however, we recall from Sec. IV D
that both F t and F u approach the response in Minkowski
vacuum, evaluated in Appendix D, with the result

F t;uðΩÞ⟶
L→∞

ae−πΩ=a

4π2

Z
∞

−∞

dr
cosh2r

× exp
�
−
ðr − iπ=2Þ2

σ2a2
−
2iΩr
a

�
: ð5:16Þ

In the limit σ → ∞, (5.16) reduces by formula 3.982.1 in
[33] to the Planckian distribution in the Unruh temperature
a=ð2πÞ,

FIG. 2. As in Fig. 1 but with β ¼ 0.5, showing also cross sections at σ=L ¼ 1 which reveal finer detail.
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F ðΩÞ ¼ Ω
πðe2πΩ=a − 1Þ : ð5:17Þ

Formula (5.17) equals twice the response of a uniformly
accelerated Unruh-DeWitt detector coupled linearly to a
scalar field in four-dimensional Minkowski space in the
long interaction limit [5], as must be the case by Theorem 1.
Plots of a−1F tðΩÞ and a−1F uðΩÞ as a function of the

dimensionless variables aL and Ω=a are shown in Fig. 3.

VI. CONCLUSIONS

We have analyzed the response of a spatially pointlike
Unruh-DeWitt detector coupled linearly to the scalar
density of a massless Dirac field in Minkowki spacetimes
in dimension d ≥ 2 and on the (1þ 1)-dimensional flat
static cylinder, allowing the detector’s motion to remain
arbitrary and allowing the detector to be switched on and
off in an arbitrary smooth way. Working within first-order
perturbation theory, we regularized the interaction by

FIG. 3. Perspective plots of a−1F t and a−1F u for the uniformly accelerated detector in terms of the dimensionless variables aL and
Ω=a, for τ0 ¼ 0, and cross sections at aL ¼ 1. In a−1F u we have set θ ¼ 1. K, Λ and α in the axis labels stand respectively for a−1F , L
and a.
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dropping an additive term that is technically ill-defined but
formally proportional to the field’s mass [22,23].
In d-dimensional Minkowski, with the field in its Fock

vacuum, we found that the response is identical to that of a
detector coupled linearly to a massless scalar field in 2d
spacetime dimensions. For a uniformly linearly accelerated
detector, this implies that the long time limit of the response
exhibits the Unruh effect with a Planckian frequency depend-
ence factor, for all d.While theRindler power spectrumof the
Dirac field is known to have a Planckian factor for oddd but a
Fermi-Dirac factor for even d [21], the detector’s response is
Planckian for all d because the response is not proportional to
the Rindler power spectrum but to the convolution of the
Rindler power spectrum with itself.
In the special case of two-dimensional Minkowski, we

saw that the detector’s response has no infrared ambiguity.
In this respect our detector differs from the detector coupled
linearly to a massless scalar field, where in two dimensions
the response is ambiguous due to the infrared ambiguity of
the Wightman function [26].
On the (1þ 1)-dimensional flat static cylinder, we found

that the response distinguishes the Fock vacua of the field’s
oscillator modes for periodic and antiperiodic spin struc-
tures, and the zero mode that occurs for the periodic spin
structure contributes to the response in a way that depends
on zero mode’s initial state. We also provided a selection of
analytic and numerical results for inertial and uniformly
accelerated trajectories on the cylinder, recovering the d ¼
2 Minkowski results in the limit of large circumference.
While we have focused the present paper on static flat

spacetimes and to quantum states that are invariant under
translations in the Killing time, there would be scope for
examining the detector coupled to the Dirac field in more
general spacetimes and for more general quantum states,
includingcollapsingstarspacetimes[34]andtheir flat“moving
mirror” counterparts [5,18], or spatially homogeneous cos-
mologies, where Dirac’s equation can be solved by separation
of variables [35]. For example, if a cosmological spacetimehas
a de Sitter era, exactly or approximately, howdoes the detector
register the associated Gibbons-Hawking temperature [36]?
We leave these questions subject to future work.
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APPENDIX A: GAMMA MATRICES
AND BASIS SPINORS

In this Appendix we record relevant properties of the
gamma matrices and the massive basis spinors in spacetime
dimension d ≥ 2. More detail can be found in [37].

The gammamatrices γμ, μ ¼ 0; 1;…; d − 1, areNd × Nd
matrices with

Nd ¼
�
2d=2 for d even;

2ðd−1Þ=2 for d odd;
ðA1Þ

satisfying

fγμ; γνg ¼ 2ημν; ðA2Þ

where on the right-hand side we have suppressed the
identity matrix INd×Nd

. γ0 is Hermitian, γ1;…; γd−1 are
anti-Hermitian, TrðγμÞ ¼ 0, and TrðγμγνÞ ¼ Ndη

μν.
Let uðsÞð0Þ and vðsÞð0Þ be eigenspinors of γ0 such that

γ0uðsÞð0Þ ¼ uðsÞð0Þ; ðA3aÞ

γ0vðsÞð0Þ ¼ −vðsÞð0Þ; ðA3bÞ

with the orthonormality conditions

uðsÞ†ð0Þuðs0Þð0Þ ¼ vðsÞ†ð0Þvðs0Þð0Þ ¼ 2mδss
0
; ðA4aÞ

uðsÞ†ð0Þvðs0Þð0Þ ¼ 0; ðA4bÞ

where the helicity index s takes the values s ¼ 1;…; Nd=2.
The spinors uðsÞðkÞ and vðsÞðkÞ are defined by

uðsÞðkÞ ¼ γμkμ þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðk0 þmÞ

p uðsÞð0Þ; ðA5aÞ

vðsÞðkÞ ¼ −γμkμ þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðk0 þmÞ

p vðsÞð0Þ; ðA5bÞ

where k0 ¼ ðk2 þm2Þ1=2, and they satisfy

ðγμkμ −mÞuðsÞðkÞ ¼ 0; ðA6aÞ

ðγμkμ þmÞvðsÞðkÞ ¼ 0: ðA6bÞ

The orthonormality conditions are

uðsÞ†ðkÞuðs0ÞðkÞ ¼ vðsÞ†ðkÞvðs0ÞðkÞ ¼ 2k0δss
0
; ðA7aÞ

ūðsÞðkÞuðs0ÞðkÞ ¼ −v̄ðsÞðkÞvðs0ÞðkÞ ¼ 2mδss
0
; ðA7bÞ

ūðsÞðkÞvðs0ÞðkÞ ¼ 0; ðA7cÞ

and the completeness identities are
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X
s

uðsÞa ðkÞūðsÞb ðkÞ ¼ ðγμkμ þmÞab; ðA8aÞ

X
s

vðsÞa ðkÞv̄ðsÞb ðkÞ ¼ ðγμkμ −mÞab: ðA8bÞ

APPENDIX B: Wð2;2̄Þ IN MINKOWSKI VACUUM

In this Appendix we write out the correlation function
Wð2;2̄Þðx; yÞ (2.5) in Minkowski spacetime in the
Minkowski vacuum j0i in terms of the Wightman functions
S�ðx; yÞ (3.12). We treat the singular expression S−ðx; xÞ
here as a formal algebraic symbol but will address its
interpretation in the main text.
Setting jΨ0i ¼ j0i, (2.5) gives

Wð2;2̄Þðx; yÞ ¼ h0jψ̄ðxÞψðxÞψ̄ðyÞψðyÞj0i
¼ h0jψ̄aðxÞψaðxÞψ̄bðyÞψbðyÞj0i; ðB1Þ

where each repeated spinor index is summed over.
We use the decomposition

ψ̄ðxÞψðxÞ ¼ N½ψ̄ðxÞψðxÞ� þ fψ̄þ
a ðxÞ;ψ−

a ðxÞg
¼ N½ψ̄ðxÞψðxÞ� − Tr½S−ðx; xÞ�; ðB2Þ

where N stands for the Wick normal product of a fermionic
field,

N½ψ̄ðxÞψðxÞ� ≔ ψ̄þ
a ðxÞψþ

a ðxÞ þ ψ̄−
a ðxÞψ−

a ðxÞ
þ ψ̄−

a ðxÞψþ
a ðxÞ − ψ−

a ðxÞψ̄þ
a ðxÞ; ðB3Þ

and the last step in (B2) uses (3.12). From (3.11) we
have

ψþj0i ¼ 0 ¼ h0jψ−; ðB4aÞ

ψ̄þj0i ¼ 0 ¼ h0jψ̄−; ðB4bÞ

which shows that h0jN½ψ̄ðxÞψðxÞ�j0i ¼ 0. As Tr½S−ðx; xÞ�
is proportional to the identity operator in the Fock space,
we hence have

Wð2;2̄Þðx; yÞ ¼ h0jN½ψ̄ðxÞψðxÞ�N½ψ̄ðyÞψðyÞ�j0i
þ Tr½S−ðx; xÞ�Tr½S−ðy; yÞ�: ðB5Þ

For the first term in (B5), we obtain

h0jN½ψ̄ðxÞψðxÞ�N½ψ̄ðyÞψðyÞ�j0i
¼ h0jψ̄þ

a ðxÞψþ
a ðxÞψ̄−

b ðyÞψ−
b ðyÞj0i

¼ h0jψ̄þ
a ðxÞψ−

b ðyÞψþ
a ðxÞψ̄−

b ðyÞj0i
¼ h0jfψ̄þ

a ðxÞ;ψ−
b ðyÞgfψþ

a ðxÞ; ψ̄−
b ðyÞgj0i

¼ S−baðy; xÞSþabðx; yÞ
¼ Tr½Sþðx; yÞS−ðy; xÞ�; ðB6Þ

first using (B4), then anticommuting ψ−
b ðyÞ past ψ̄−

b ðyÞ and
ψþ
a ðxÞ, then using again (B4) to replace ψ̄þ

a ðxÞψ−
b ðyÞ and

ψþ
a ðxÞψ̄−

b ðyÞ by anticommutators, and finally using the
definition (3.12) of the Wightman functions S� and
cyclicity of the trace.
Collecting, we have

Wð2;2̄Þðx; yÞ ¼ Tr½Sþðx; yÞS−ðy; xÞ�
þ Tr½S−ðx; xÞ�Tr½S−ðy; yÞ�; ðB7Þ

from which (3.16) follows using the translational invari-
ance of S−ðx; yÞ.

APPENDIX C: Wð2;2̄Þ OF THE UNTWISTED
MASSLESS DIRAC FIELD

In this Appendix we justify formula (4.26) for
Wð2;2̄Þ of the untwisted massless Dirac field on the (1þ 1)-
dimensional cylinder.
Starting with (4.26), inserting the split (4.13) and noting

that terms with an unequal number of ψoscs and ψoscs
vanish, we obtain

Wð2;2̄Þðt; x; t0; x0Þ
¼ hgZMjψ̄aðt; xÞψaðt; xÞψ̄bðt0; x0Þψbðt0; x0ÞjgZMi
¼ Ξ1 þ Ξ2 þ Ξ3 þ Ξ4 þ Ξ5 þ Ξ6; ðC1Þ

where

Ξ1 ¼ hgZMjψosc
a ðt; xÞψosc

a ðt; xÞψosc
b ðt0; x0Þψosc

b ðt0; x0ÞjgZMi;
ðC2aÞ

Ξ2 ¼ hgZMjψosc
a ðt; xÞψosc

a ðt; xÞψ zm
b ψ zm

b jgZMi; ðC2bÞ

Ξ3 ¼ hgZMjψosc
a ðt; xÞψ zm

a ψ zm
b ψosc

b ðt0; x0ÞjgZMi; ðC2cÞ

Ξ4 ¼ hgZMjψ zm
a ψosc

a ðt; xÞψosc
b ðt0; x0Þψ zm

b jgZMi; ðC2dÞ

Ξ5 ¼ hgZMjψ zm
a ψ zm

a ψosc
b ðt0; x0Þψosc

b ðt0; x0ÞjgZMi; ðC2eÞ
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Ξ6 ¼ hgZMjψ zm
a ψ zm

a ψ zm
b ψ zm

b jgZMi; ðC2fÞ

and each repeated spinor index is summed over.
For Ξ1, we may proceed as in the derivation of

formula (B7) in Appendix B. Dropping the ill-defined
second term in the counterpart of (B7), Ξ1 reduces to

Wð2;2̄Þ
osc ðt; x; t0; x0Þ as evaluated in Sec. IV C 1, with the result

given in (4.18).

Ξ6 reduces toW
ð2;2̄Þ
zm as evaluated in Sec. IV C 2, with the

result (4.24).
Ξ2 is proportional to Tr½Sosc−ab ðt; x; t; xÞ�, where Sosc−ab is

given by (4.16b). This expression is not well defined
because of the coincidence limit, but we interpret the
expression as zero by the tracelessness of the gamma
matrices. Similarly, we interpret Ξ5 as zero.
For Ξ3 and Ξ4 we have

Ξ3 þ Ξ4 ¼ hgZMjψosc
a ðt; xÞψosc

b ðt0; x0Þψ zm
a ψ zm

b jgZMi þ hgZMjψosc
a ðt; xÞψosc

b ðt0; x0Þψ zm
a ψ zm

b jgZMi
¼ h0oscjψosc

a ðt; xÞψosc
b ðt0; x0Þj0oscihZMjψ zm

a ψ zm
b jZMi þ h0oscjψosc

a ðt; xÞψosc
b ðt0; x0Þj0oscihZMjψ zm

a ψ zm
b jZMi

¼ i∂μGoscþðt; x; t0; x0ÞfðγμÞbahZMjψ zm
a ψ zm

b jZMi þ ðγμÞabhZMjψ zm
a ψ zm

b jZMig
¼ i∂μGoscþðt; x; t0; x0ÞðγμÞabhZMjfψ zm

a ;ψ zm
b gjZMi

¼ i∂μGoscþðt; x; t0; x0ÞTrðγ0γμÞ=L
¼ ð2i=LÞ∂tGoscþðt; x; t0; x0Þ

¼ L−2
X∞
n¼1

ðe−2πinðΔtþΔx−iϵÞ=L þ e−2πinðΔt−Δx−iϵÞ=LÞ

¼ L−2
�

1

e2πiðΔtþΔx−iϵÞ=L − 1
þ 1

e2πiðΔt−Δx−iϵÞ=L − 1

�
; ðC3Þ

using (4.16), (4.17) and (4.19).
Collecting these results yields (4.26).

APPENDIX D: STATIONARY DETECTOR
IN (1þ 1) MINKOWSKI VACUUM WITH

GAUSSIAN SWITCHING

In this Appendix we evaluate the response of an inertial
detector and a uniformly accelerated detector in (1þ 1)
Minkowski vacuum with a Gaussian switching.

1. Inertial detector

Inserting the inertial worldline (5.1) and the Gaussian
switching (5.2) in (3.21) with d ¼ 2, we may change
variables by τ − τ0 ¼ σz and τ þ τ0 ¼ σw and perform
the Gaussian integral over w, with the result

F ðΩÞ ¼ −
1

2π2σ
HðσΩÞ; ðD1Þ

where the function H of a real variable is defined by

HðαÞ ≔
Z
C
dz

expð−iαz − z2=4Þ
z2

; ðD2Þ

where the contour C follows the real axis from −∞ to ∞
except for dipping into the lower half-plane near z ¼ 0.
Differentiating (D2) twice and evaluating the Gaussian
integral gives H00ðαÞ ¼ −2π1=2e−α2 , and integrating this
twice gives

HðαÞ ¼ π

�
α erfc α −

e−α
2

π1=2

�
þ Aαþ B; ðD3Þ

where erfc is the error complement function [27] and A and
B are constants.
To determine A and B, we deform the contour C

in (D2) to z ¼ u − i with u ∈ R, which gives the
estimate

jHðαÞj ≤ e−αþ1=4

Z
∞

−∞
du

expð−u2=4Þ
u2 þ 1

; ðD4Þ

which shows that HðαÞ → 0 as α → ∞. The falloff
of erfc at large positive argument then shows that
A ¼ B ¼ 0 in (D3).
Collecting,

F ðΩÞ ¼ 1

2πσ

�
e−σ

2Ω2

π1=2
− σΩ erfcðσΩÞ

�
: ðD5Þ

2. Uniformly accelerated detector

Substituting the uniformly accelerated trajectory (5.10)
and the Gaussian switching (5.11) in (3.21) with d ¼ 2, we
change variables by aðτ − τ0Þ ¼ 2z and aðτ þ τ0 − 2τ0Þ ¼
2w and perform the Gaussian integral over w, with the
result
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F ðΩÞ ¼ −
a
4π2

Z
∞

−∞

dz
sinh2ðz − iϵÞ exp

�
−

z2

σ2a2
−
2iΩz
a

�

¼ ae−πΩ=a

4π2

Z
∞

−∞

dz
cosh2r

exp

�
−
ðr − iπ=2Þ2

σ2a2
−
2iΩr
a

�
; ðD6Þ

where in the last equality we have deformed the contour to z ¼ r − iπ=2 with r ∈ R.
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