
Learning of Interval and General Type-2 Fuzzy Logic
Systems using Simulated Annealing: Theory and Practice

M. Almaraashia,∗, R. Johnb, A. Hopgoodc, S. Ahmadid

aThe University College in Aljamoum, Umm Al-Qura University, Makkah, Saudi Arabia.
bAutomated Scheduling Optimization and Planning Group (ASAP), University of Nottingham, NG8 1BB,

UK.
cHEC Management School, University of Liege, 4000 Liege, Belgium.

dCenter for Computational Intelligence, School of Computer Science and Informatics, De Montfort
University, Leicester, LE1 9BH, UK.

Abstract

This paper reports the use of simulated annealing to design more efficient fuzzy logic
systems to model problems with associated uncertainties. Simulated annealing is used
within this work as a method for learning the best configurations of interval and gen-
eral type-2 fuzzy logic systems to maximize their modeling ability. The combination
of simulated annealing with these models is presented in the modeling of four bench-
mark problems including real-world problems. The type-2 fuzzy logic system models
are compared in their ability to model uncertainties associated with these problems.
Issues related to this combination between simulated annealing and fuzzy logic sys-
tems, including type-2 fuzzy logic systems, are discussed. The results demonstrate that
learning the third dimension in type-2 fuzzy sets with a deterministic defuzzifier can
add more capability to modeling than interval type-2 fuzzy logic systems. This finding
can be seen as an important advance in type-2 fuzzy logic systems research and should
increase the level of interest in the modeling applications of general type-2 fuzzy logic
systems, despite their greater computational load.

Keywords: simulated annealing, interval type-2 fuzzy logic systems, general type-2
fuzzy logic systems, learning

1. Introduction

Fuzzy logic systems have been applied successfully to a broad range of problems
in different application domains. One such type of application is concerned with using
fuzzy logic for system modeling and approximation where a fuzzy inference system is
used to model human knowledge or to approximate non-linear and dynamic systems.
However, the existence of uncertainties and lack of information in many real-world

∗Corresponding author.
Email address: msmaraashi@uqu.edu.sa (M. Almaraashi)

Preprint submitted to Information Sciences February 9, 2016

problems makes it difficult to model such problems using expert knowledge only. Ex-
amples of such problems include identifying systems with no known rule-base and
systems with only historic data observation. It becomes clear that when designing a
simple fuzzy logic system with few inputs, the experts may be able to provide efficient
rules but, as the complexity of the system grows, suitable rule-base and membership
functions become difficult to acquire. Therefore, some automated tuning and learning
methods are often used to cope with such situations. The objective of these methods
is to get parameterized functions that best model these problems according to cho-
sen criteria. The use of automated methods to design fuzzy logic systems has helped
to model many real-world problems that are difficult to understand by experts and it
is now a well-established methodology for modeling and approximation applications.
The motivation for this research is two-fold:

• Type-2 fuzzy logic systems have numerous parameters that need to be deter-
mined in the design of any system. The determination of these parameters is
an open research question and motivates our approach to learning type-2 fuzzy
systems.

• The growth in interest in type-2 fuzzy logic has not fully manifested itself in real-
world applications using general type-2 fuzzy sets. The emphasis has been on
interval type-2 fuzzy sets, thus not taking advantage of the more general repre-
sentation. By allowing for the learning and optimization of type-2 fuzzy systems
we expect the use of general type-2 fuzzy sets to grow.

So the motivation is clear, and we now elaborate on these points.
Learning and optimization. This research is concerned with the learning of type-

2 fuzzy logic systems, both general and interval. Type-2 fuzzy logic systems are now
well established as both a research topic and an application tool. The motivation for
the use of type-2 fuzzy sets is that type-1 fuzzy logic has problems when faced with
environments that contain uncertainties that are typical in a large number of real-world
applications. These uncertainties in the environment translate into uncertainties about
membership functions [38]. Type-1 fuzzy logic cannot fully handle these uncertain-
ties because it is precise in nature and for many applications it is unable to model
knowledge adequately, while type-2 fuzzy logic offers a higher level of imprecision
modeling [26]. The extra dimension and parameters in type-2 fuzzy sets are supposed
to provide more design freedom and flexibility than type-1 fuzzy sets. The use of
automated learning methods becomes important as complexity grows when designing
type-2 fuzzy logic systems.

Many approaches have been proposed to learn and tune type-1 and type-2 fuzzy
logic systems including search algorithms such as genetic algorithms and particle swarm
algorithms, as well as local search algorithms and classical learning methods. Com-
pared to genetic algorithms, few researchers have studied use of simulated annealing
to learn type-1 fuzzy logic systems such as [16, 12, 49]. So far as we are aware, the
only research reported on the use of simulated annealing to design type-2 fuzzy logic
systems is the authors’ previous work in [3, 4, 5, 6].

Helping develop real-world applications. Another motivation for this research
comes from the lack of applications using general type-2 fuzzy logic systems. Type-2

2

fuzzy logic is a growing research topic with much evidence of successful applications.
However, almost all developments of type-2 fuzzy logic systems have been based on
interval type-2 fuzzy logic [45][27]. The heavy computational load associated with the
generalized form of type-2 sets is the main driver for the lack of applications of general
type-2 fuzzy sets compared with the interval model. This prior work has reinforced
the common concept that interval type-2 fuzzy logic systems can add more modeling
capabilities than type-1 fuzzy logic systems but with extra computational cost. Learn-
ing and optimization of general type-2 fuzzy logic systems are open areas for more
research, as well as the ongoing research on how to reduce the complexity of general
type-2 fuzzy logic systems, especially in the type-reduction phase of the system. The
large number of methods used to design type-1 and interval type-2 fuzzy logic systems
can be seen as potential candidates for general type-2 fuzzy logic systems and some of
them might uncover further possibilities for modeling uncertainty. However, recent ad-
vances in general type-2 fuzzy logic systems research, including new representations,
optimized operations and faster type-reduction methods, indicate an expected growth in
applications. Despite the larger number of computations associated with general type-
2 fuzzy sets, there may well be benefits compared to interval type-2 fuzzy sets. This
ability can be unveiled using automated designing methods rather than being chosen
by the designer manually. Automated methods can fine-tune initial fuzzy logic system
designs due to the lack of a rational basis for choosing secondary membership func-
tions for general type-2 fuzzy sets [36, p.302]. This issue enforces the need for using
automated methods in such problem. The other factor affecting the usage of general
type-2 fuzzy logic systems is the lack of practical parameterization methods to handle
the third dimension in general type-2 fuzzy sets. In general, a general type-2 fuzzy
logic system has the potential to model more uncertainties despite the large amount of
computations associated with it especially when applied to non real-time applications.
In consequence, the question of how much general type-2 fuzzy logic systems can add
to modeling performance over interval type-2 fuzzy logic systems is another issue that
warrants investigation.

The research reported here introduces a new method for learning general type-
2 fuzzy systems with a unique combination of learning the footprint of uncertainty
(FOU) followed by learning the secondary membership functions (SMF). In addition,
we show that when using the vertical slice type reducer we have improvement over
other approaches implemented here. Furthermore, interval type-2 fuzzy logic systems
were applied to answer the question of to what extent general type-2 fuzzy sets can add
more abilities and flexibilities to modeling than interval type-2 fuzzy sets. A detailed
analysis is carried out of the learning of general type-2 fuzzy systems on a set of real-
world data with and without added noise and, as such, provides significant insight
into how the future of learning general type-2 fuzzy systems can be carried out. These
methods are applied to four benchmark problems: noise-free Mackey-Glass time series
forecasting [34], noisy Mackey-Glass time series forecasting [34], and two real-world
problems, namely the estimation of the low-voltage electrical line length in rural towns
and the estimation of the medium-voltage electrical line maintenance cost [11].

The rest of this paper starts with a review of the methods and concepts used in this
work in section 2 and issues related to the design of general type-2 fuzzy logic systems
in sections 3 and 3.2. The methodology and the results are detailed in sections 4 and 5

3

and some conclusions are drawn in section 6.

2. Background

2.1. Type-2 fuzzy sets and systems

A type-2 fuzzy set [36, p.83][38], denoted Ã, is characterized by a type-2 member-
ship function µÃ(x, u) where x ∈ X and u ∈ Jx ⊆ [0, 1]. For example :

Ã = {((x, u), µÃ(x, u)) | ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (1)

where 0 ≤ µÃ(x, u) ≤ 1. When all the secondary grades µÃ(x, u) equal 1 then Ã
is an interval type-2 fuzzy set. Interval type-2 fuzzy sets are easier to compute than
general type-2 fuzzy sets. The footprint of uncertainty (FOU) is a 2D representation
of an interval type-2 set and represents the union of all primary memberships and can
be described by a lower and upper membership functions. The ease of computation
and representation of interval type-2 fuzzy sets is the main reason for their wide usage
in real-world applications. The principal membership function [36, p.86] occurs when
there is only one secondary grade equal to 1 at each secondary membership function of
type-2 set. Therefore, the principal membership function is the union of all such points
at which the unity occurs as follows:

µprincipal(x) =

∫
x∈X

u/x where fx(u) = 1 (2)

Using the Zadeh extension principle, union and intersection of type-2 fuzzy sets are
defined (known as join and meet respectively) [29]. Karnik and Mendel [29] has pro-
posed a method to calculate meet and join operations when all secondary membership
functions are normal and convex. Coupland and John [15] has presented an extension
to this formula to allow the use of non-normal secondary membership functions.

There are some representations for type-2 fuzzy sets that have been proposed in
the literature such as vertical-slice representation [36, p.83][38], wavy-slice represen-
tation [38], geometric representation [15], alpha-planes [41], alpha cuts [22] and Z-
slices [45]. The most well-known representations among them are the vertical-slice
and wavy-slice representations. The vertical-slice representation [36, p.83] represent
fuzzy sets by using secondary sets in a vertical-slice manner where :

Ã = {(x, µÃ(x)) | ∀x ∈ X} (3)

µÃ(x) = µÃ(u|x) =
∫
∀u∈Jx⊆[0,1]

fx(u)/u (4)

This representation is very useful for computation. In wavy-slice representation [38],
a type-2 fuzzy set is represented as a union of embedded type-2 fuzzy sets where each
embedded type-2 fuzzy set Ãe has the same domain of type-2 fuzzy set Ã. The type-
2 embedded set Ãe has been defined for discrete universes of discourse X and U ,
an embedded type-2 set Ãe has N elements, where Ãe contains exactly one element

4

from Jx1
, Jx2

, ..., JxN
, namely u1, u2, ..., uN , each with associated secondary grade,

namely fx1(u1), fx2(u2), ..., fxN
(uN) [36, p.83][38]. For example:

Ãe =
N∑
i=1

[fxi(ui)/ui]/xi, ui ∈ Jxi ⊆ U = [0, 1]. (5)

In this definition, the embedded set contains N elements represented using the
primary memberships ui ∈ Jxi that is linked to its secondary membership grades
fxi(ui) in ordered pairs. So type-2 fuzzy set A can be shown as a union of embedded
type-2 fuzzy sets as follows:

Ã =

n∑
j=1

Ãj
e (6)

where the total number of type-2 embedded sets in type-2 fuzzy set A is calculated
using the number of discretised points in the primary domain N and the primary mem-
bership functions M (known as the secondary domain) as follows:

n =

N∏
i=1

Mi (7)

where Ãj
e denotes the j the type-2 embedded fuzzy set in type-2 fuzzy set Ã. The wavy-

slice representation known as the Mendel-John Representation Theorem (RT) has been
proposed by [38]. It is useful for theoretical derivations but not useful for practical use
because of the astronomical number in the union of embedded sets. However, it is very
useful when dealing with interval type-2 fuzzy sets due to the ability of using type-1
fuzzy mathematics which is easy to deal with [39].

Type-2 fuzzy logic systems are rule-based systems that are similar to type-1 fuzzy
logic systems in terms of the structure and components but type-2 FLS has an extra
output process component which is called the type-reducer before defuzzification. The
components of a type-2 Mamdani fuzzy system are fuzzifier, rules, inference engine,
type-reducer and defuzzifier. The type-reducer reduces output type-2 fuzzy sets to
type-1 fuzzy sets then the defuzzifier reduces it to a crisp output. The type-reduction
stage is the most computationally expensive stage in a type-2 fuzzy logic system.

2.2. Type-2 fuzzy sets and uncertainty modelling

Type-1 fuzzy logic has been used successfully in a wide range of problems such
as control system design, decision making, classification, system modeling and infor-
mation retrieval. However, the type-1 approach is not able to directly model all un-
certainties and minimize their effects [38]. These uncertainties exist in a large number
of real-world applications. They can be a result of uncertainty in inputs, uncertainty
in outputs, uncertainty that is related to the linguistic differences, uncertainty caused
by the change of conditions in the operation, and uncertainty associated with the noisy
data when training the fuzzy logic system [36, p.68]. All these uncertainties translate
into uncertainties about the membership functions of the fuzzy sets [38]. Therefore,
the existence of uncertainties in the majority of real-world applications makes the use

5

of type-1 fuzzy logic inappropriate in many cases especially with problems related to
inefficiency of performance in fuzzy logic control [21]. Problems related to model-
ing uncertainty using membership functions of type-1 fuzzy sets have been recognized
early and [50] introduced higher types of fuzzy sets called type-n fuzzy sets including
type-2 fuzzy sets [37]. Type-2 fuzzy logic systems have many advantages compared
with type-1 fuzzy logic systems, including the ability to handle different types of uncer-
tainties and the ability to model problems with fewer rules [21]. Two factors should be
considered regarding the the widespread perception that a general type-2 fuzzy logic
system should outperform the interval form which also should outperform a type-1
fuzzy logic system [46]. These two factors are the dependence of performance on the
choice of the model parameters as well as on the variability of uncertainty within the
application [46]. Therefore, a good choice of the model’s parameters using automated
methods is desirable to get clearer conclusions regarding this comparison. Despite
these promising indicators of the general type-2 fuzzy logic systems, almost all devel-
opments of type-2 fuzzy logic systems have been based on interval type-2 fuzzy logic
systems. However, new representations allow us to consider general type-2 fuzzy logic
systems. These representations include geometric T2FLS [15], alpha-planes [41], al-
pha cuts [22] and Z-slices [45, 10][47]. There have been a number of developments in
reducing the computations for general type-2 fuzzy logic systems. For type-reduction,
the geometric defuzzifier [15], the sampling defuzzifier [19] followed by importance
sampling defuzzifier [31] and a centroid defuzzifier based on the alpha representation
[32] have been proposed. One attempt to design general type-2 sets based on zSlices
representation was proposed in [10] where survey data and device characteristics were
used to build zSlices automatically. Other work using an alpha-planes representation
has been applied, e.g. as a method for edge-detection [35] and a learning method to
forecast Mackey-Glass time-series [41]. The latter showed a better performance of
general type-2 fuzzy logic systems using a simpler model known as “triangle quasi-
type-2 fuzzy logic system” first presented in [40]. Some other researchers used some
neural network concepts or classification algorithms such as: type 2 Adaptive Network
Based Fuzzy Inference System (ANFIS) [28], general type-2 fuzzy neural network
(GT2FNN) [24] and fuzzy C-means algorithm with a model known as “efficient tri-
angular type-2 fuzzy logic system” [43]. To the best of the authors’ knowledge, no
attempt to employ a learning method to general type-2 fuzzy logic systems using the
vertical-slices representation has been reported. To achieve this objective, apart from
using a practical type-reducer, some kinds of parametrization are needed for general
type-2 sets to allow learning or optimization techniques to deal with these parame-
ters easily rather than having all the secondary grades or membership functions chosen
manually. The parametrization method should preserve most of the freedom associated
with GT2FLS.

Our proposed practical design methodology aims to reduce the computations needed
to get the best footprint of uncertainty (FOU). The proposed parametrization method
was first presented in [6] and [7]. In addition, this paper presents a novel approach for
learning all parameters of general type-2 fuzzy logic systems using simulated annealing
under the vertical-slices representation.

6

2.3. Simulated annealing and type-2 fuzzy logic systems

The simulated annealing algorithm is a simple and general optimization algorithm
for finding global minima [30]. It has been used widely to search for optimal or
nearly optimal solutions in a wide range of optimization problems. In this work, it
acts as a learning algorithm to automatically design fuzzy logic systems by search-
ing for the best configurations of these systems. One of the motivations for using
simulated annealing with fuzzy systems is that it does not require the existence of
mathematical properties such as differentiability in the problem, which allows the pos-
sibility of using all fuzzy structure components including non-differentiable t-norms
and non-differentiable membership functions. Although the combination might have
more complexity and longer search time than local search algorithms, it is more likely
to find the global or near global optima of the configuration of fuzzy logic systems
than local search approaches. This is due to the ability of simulated annealing to avoid
local optima by accepting higher-cost states with some probability in order to explore
the problem space. In addition, simulated annealing can suit high dimensionality prob-
lems as it scales well with the increase of variable numbers, which makes it a good
candidate for the optimization of fuzzy logic systems [16]. Also, it is able to handle
cost functions with different degrees of non-linearities, discontinuities, and stochastic-
ity [23]. The problem of optimizing membership functions of the fuzzy logic system in
order to minimize the objective function is a complex problem due to the large number
of parameters used as well as the the non-differentiable and non-continuous objective
functions [20]. The simulated annealing convergence normally requires an exponential
time which causes the algorithm to be impractical in some cases [1, p.14]. One of the
criticisms of simulated annealing is the difficulty in fine-tuning its parameters, so it can
be time-consuming for developers to find an optimal fit [23]. The formalizations and
configurations for simulated annealing to design fuzzy logic systems can be chosen
from a large number of choices proposed in the literature.

3. Designing and learning of general type-2 fuzzy logic systems

3.1. A practical choice for general type-2 fuzzy set

In order to get an effective and practical form of general type-2 set, the chosen form
should:

• have a low computational burden;

• preserve most of the freedom associated with general type-2 sets.

These two objectives are normally in conflict as more freedom (through parameters)
requires more computations. Therefore, some trade-offs are needed using some pa-
rameterization mechanisms. One way to do this is to have parameterized secondary
membership functions that are asymmetric and convex. For example, consider a trian-
gular secondary membership function with an apex in the area between the lowest and
the highest FOU points (FOUlower and FOUupper) and primary memberships for each
x in the domain. The asymmetry is preferred to allow optimizing the apex location of
the SMF when their primary memberships are fixed. The other preferred property is to

7

have a convex SMF to allow quick meet and join operations when using these sets in
GT2FLS.

The secondary membership function of a general type-2 fuzzy set is itself a type-1
fuzzy set. Our approach is to learn the ‘apex’ of the secondary membership functions
using a location indicator of the apex point called the “apex factor” (AF). The apex
factor for each SMF takes the value in [0, 1] where if it is zero it takes a value at the
SMF and at unity the UMF. This works for any asymmetric and convex shape of SMF
including non-normal. In other words, to allow learning the best location for the apex
for each SMF, a function to determine the SMF’s apex locations in FOU for each x in
the primary domain is needed. The values of the apex locations must be bounded by
the highest and the lowest FOU points (FOUupper and FOUlower) for each x in the
domain. An example of this approach is to have a piecewise linear function or a smooth
piecewise-polynomial function and to use some interpolation methods. However, it
could be possible to ensure this condition of boundaries when designing the first model
of the general type-2 set but this is very difficult to trace and ensure for each x in the
continuous domain when learning SMFapex(x) as the interpolation might define some
apexes domains outside the FOU boundaries. Therefore, a new parametric formula is
proposed here that normalizes the FOU apex locations to be within FOU(x) for each
x in the primary domain. This is done by defining the SMFapex(x) as following [6]:

SMFapex(x) = 1/(FOUlow(x)+g(x)×(FOUup(x)−FOUlow(x))). 0 6 g(x) 6 1
(8)

where g(x) is a parameter called “apex factor” that is used as an apex location indicator
for each x. This parameter can be used to change the apex location without the need
to check for boundary conditions. For example when g(x) = 0.5, the location of the
apex is in the middle between FOUupper(x) and FOUlower(x) and the resulting SMF
is symmetrical. Therefore, this parameter is acting as a variable representing the apex
locations when doing some optimization or learning for the general type-2 set. An ex-
ample of the use of this parameter is to use a piecewise linear function to determine this
parameter for all x in the primary domain. For example, suppose that k1, k2,, kn
are ordered points in the x domain and g(k1), g(k2),, g(kn) are their apex factors
which both define the piecewise linear function, then:

g(x) =

0.5, x < k1

g(ki) +
x−ki

ki+1−x × (g(ki+1)− g(ki)), ki 6 x 6 ki+1

0.5, x > kn

(9)

Therefore, each point in the primary domain is linked with one apex factor g(x). An-
other similar function to determine the height of the apexes when non-normal SMFs
are used can be designed the same way. For example:

h(x) =

1, x < k1
h(ki) +

x−ki

ki+1−x × (h(ki+1)− h(ki)), ki 6 x 6 ki+1

1, x > kn

(10)

This form is not identical to the principal function described in [36, p.86] or the fuzzy
truth numbers proposed in [43] because for each x value, the SMF can be non-normal.

8

The lowest and highest FOU points (FOUlower and FOUupper) for each x can be
defined by another function such as trapezoidal, Gaussian or triangular functions or
any other functions used to define interval type-2 sets. An example of the proposed
method is shown in figure 1 and an example of learning the secondary membership
functions is shown in figure 2. The chosen form is based on the latest general type-
2 literature using the vertical-slice representation and the novel method we proposed
here to determine the apex locations and heights of SMFs. Although, this is not a new
representation and can not be generalized for all forms of general type-2 sets, the aim
of this method is to have general type-2 fuzzy sets simplified for practical usage.

Figure 1: General type-2 fuzzy set defined by its FOU and SMF. The FOU is defined by two Gaussian func-
tions while the SMF is a triangular shaped defined by linear interpolation of two piecewise linear functions.
The green dotted line is the apex factor which has different values between 0 and 1.

3.2. The choice for the defuzzification method

The bottleneck part of the general type-2 fuzzy logic system is the defuzzification
phase. This is due to the high computational burden associated with the type-reduction
process. Therefore, special attention should be given to the choice of such methods.
The aim of this subsection is to highlight this issue and its effects on the learning pro-
cess. When using representation methods other than the vertical-slices representation,
there are few proposed methods that have been used for this purpose. An example is
a type-reducer proposed by [43] using triangular type-2 fuzzy sets which uses fuzzy

9

Figure 2: An example of learning a triangular SMF by adapting the apex location.

Se
co

nd
ar
y
G
ra
de

0

0.2

0.4

0.6

0.8

1

Secondary Domain

0 0.2 0.4 0.6 0.8 1

truth numbers where all the secondary membership functions are normal and convex
for a unique entity in the secondary domain (primary membership functions). This
type-reducer uses the iterative KM algorithm and some interpolation operations to get
an approximate centroid for triangular type-2 fuzzy sets. Methods that use other rep-
resentations include the one proposed in [32] which uses the iterative KM algorithm
under the alpha-plane representation and the one based on z-slices in [44]. Based on
our choice for the representation of general type-2 fuzzy sets using vertical-slices, the
available defuzzifications options are :

1. The exhaustive brute-force highly expensive type-reduction method presented in
[36, p.248-254] which computes the union of all the centroids of all the embed-
ded type-2 fuzzy sets involved in the general type-2 fuzzy set. This method is
impractical to use for our purpose. In practice, the number of embedded sets is
normally astronomical and above the current data structure. For instance, for a
general type-2 fuzzy sets discretized into our choice of 101 x-domain points and
each vertical slice into 9 points, the number of embedded sets is 2.39 × 1096

which is far above the current data structure. In our chosen language (C++), the
longest data structure size can be allocated is unsigned integer = 2, 14 × 109.
This number of embedded sets are unioned to get one sample output in one fuzzy
logic system evaluation in one iteration of the optimization process. Table 1
shows how type-reduction complexity evolves in our problem with some rea-
sonable choices of fuzzy logic system input samples and reasonable number of
simulated annealing iterations. Note that table 1 is for the type-reduction op-
erations only (i.e. does not include fuzzification and other fuzzy logic system
operations). Therefore, this choice is impractical for our work.

2. The recursive algorithm introduced by [17], which includes some interesting
ideas to reduce these computations but whose complexity is still very high.

3. The vertical slice centroid type-reducer (VSCTR) which was initially proposed

10

Table 1: The number of centroid operations needed to type-reduce general type-2 fuzzy sets optimized by
simulated annealing (SA).

X domain
points

Y domain
points

Number of
embedded
sets

FLS training
samples
number

SA iterations Number of cen-
troid operations
needed

25 5 3e+17 200 10,000 6e+23
25 9 7.2e+23 200 10,000 1.44e+30
50 9 5.2e+47 200 10,000 1.04e+54
101 9 2.4e+96 200 10,000 4.8e+102

by [25] then detailed by [33]. It does not calculate the union for all the embedded
sets involved in the general type-2 fuzzy sets. Although this method does not
depend on the concept of embedded sets, it is a good approach for practical
usage. This method works as follows:

• For each vertical slice, the centroid of each vertical slice is calculated ex-
actly as type-1 set centroid calculation.

• The type-reduced set domain is the same as the vertical slices values. The
membership grades of the type-reduced set are the centroids of these verti-
cal slices in the type-reduced set.

When optimizing the FOU’s and SMF’s parameters using the non-deterministic sam-
pling defuzzifier, the learning process is affected, to some degree, by the random errors
and the fluctuations of the evaluation of the objective function. The effects come from
the fact that the evaluation of one state will differ each time the sampling method ap-
proximates the type-reduced sets. Consequently, the outputs of the fuzzy logic system
will be changed causing the objective function to get different energy values for the
same state each time the evaluation is carried out. Whatever the objective function is,
the outputs from the fuzzy logic system will affect that objective function. In fact, these
random errors are small compared to the scale of the fuzzy logic system outputs and the
scale of the objective function, but they nevertheless affect the learning performance as
will be shown later in this paper. These effects can be ignored in the first exploration
stages of the search when moves from state to state can bring relatively large differ-
ences, but this noise can deteriorate the search at the last stages when small effects of
the objective function can be affected by this noise. In optimization, noise associated
with the objective function has some effects on the quality of the solution.

In the simulated annealing literature, many papers have tackled the problem of
noisy objective functions. All solutions proposed in the simulated annealing literature
fall under these three categories [8]:

1. Solutions that adapt the convergence properties to allow better handling of noisy
objective functions. These methods rely on storing all visited states and their
evaluations or increasing the number of iterations according to a known schedule.
This type of solution adds extra computations and needs larger memories to be
executed.

2. Solutions that rely on revisiting each state a number of times to improve the
approximation to the true objective function values, then using some statistical

11

approaches to calculate approximated objective functions. Again, this is compu-
tationally expensive, depending on the number of evaluations n needed for each
state. Hence, the computations will be multiplied by n.

3. Solutions that adapt the acceptance function to maintain an adequate thermody-
namic equilibrium.

Unfortunately, the three solutions require more computations and do not guarantee the
exact objective functions. In general, when dealing with noisy objective functions, we
are not interested in the exact best solutions. Rather, we are interested in alternatives to
the best energy value that are nearly equally good [42, p.64]. The use of these methods
adds another computational burden and does not lead to more accurate solutions. In
order to get a fair comparison with interval type-2 fuzzy logic system, the use of such
methods is not the best choice for our purpose. Therefore, a solution can be sought
from the general type-2 fuzzy logic system side. A deterministic approach can be used
to get the type-reduced set such as the vertical slice centroid type-reducer (VSCTR).

3.3. The Proposed Method of Learning

Our research proposal is to solve a two-stage optimization problem where in the
first stage we search for possible configurations of FOU which can be used as bounds
for the secondary domain of a general type-2 fuzzy set. The second stage is associated
with the search through all the apex factors representing apex locations of the secondary
membership function of a general type-2 fuzzy set. Using the proposed form of general
type-2 set presented in section 3, we can design GT2FLS using the following two-stage
procedure:

• The first step is to design the FOU of the general type-2 set while fixing the
secondary membership function. This is done by defining FOU using any func-
tion used to define interval type-2 fuzzy sets. The lower and upper membership
functions that bound the FOU in interval type-2 fuzzy sets can bound the FOU
in general type-2 fuzzy sets. To get a good FOU, expert opinions or automated
learning can be applied exactly as the case when designing IT2FLS.

• The second step involves learning the secondary membership functions of gen-
eral type-2 sets. By fixing the optimal FOU, the secondary membership func-
tions can be optimized. This is done by adapting the apex location indicators by
a suitable value.

This two stage-method seems to be logical as the definition of the uncertainty bound-
aries (primary memberships) should precede the definition for how much secondary
membership grades (uncertainty distribution) will be given to each primary member-
ship.

The complexity of this problem stems from the size of the solution space, the nature
of the functions to be optimized and the size of the rule base. The size of the solution
space arises from the product of the possible apex factor domains and the number of
possible partitions of the continuous domain for discretization of the apex factors. A
solution is an array of apex factors which reside within FOU and minimizes the total
error of modeling of the data into a general type-2 fuzzy logic system. Mathematically

12

if n observed/input values of x1, x2, xn and output/target value of x∗ are given, for any
given step size of tk and any possible partition of xk1, xk2,xkn. k = 1, 2, ., n, our
search process finds all apex factors gki(x), ki = 1, 2, , n which identify the secondary
membership functions to generate a new output of the fuzzy logic system. Our aim is to
minimize the objective function of the optimized problem. For example, an objective
function that measures the total error of the output of the proposed method from given
actual values for observed data.

4. Methodology

The experiments are divided into two main stages as described in subsection 3.3.
In each stage the experiment is carried out in four steps: preparing data, constructing
the initial interval and general type-2 fuzzy systems, learning the FOU parameters
and learning the secondary membership functions. Hence, the optimization processes
in the flowchart are repeated twice; one for IT2FLS and the second for GT2FLS. The
flowchart of all stages stage is illustrated in Figure 3.

4.1. Data
4.1.1. Mackey-Glass time-series

The Mackey-Glass Time Series is a chaotic time series proposed in [34]. It is
obtained from this non-linear equation :

dx(t)

dt
=

a ∗ x(t− τ)

1 + xn(t− τ)
− b ∗ x(t)

where a, b and n are constant real numbers, t is the current time and τ is the difference
between the current time and the previous time t − τ . To obtain the simulated data,
the equation can be discretized using the Fourth-Order Runge-Kutta method. In the
case where τ > 17, it is known to exhibit chaos and has become one of the benchmark
problems in soft computing [36, p.116]. To get the time series, firstly, the noise-free
time series is generated with the following parameters : a = 0.2 , b = 0.1 , τ = 17
and n = 10. The Runge-Kutta method is used to obtain the values of x(t) at each
time point with a time step of 0.1 and the initial condition x(0) = 1.2 where x(t) = 0
for t < 0. The input-output samples are extracted in the form x(t − 18), x(t − 12),
x(t − 6) and x(t) from t = 118 to t = 417 using a step size of 6. Then the generated
data are divided into 200 data points for training and the remaining 200 data points for
testing. Using a step size of 6, the input values to the fuzzy system are the previous
points x(t− 18), x(t− 12), x(t− 6) and x(t) while the output from the fuzzy system
is the predicted value x(t + 6). Four initial input values x(114), x(115), x(116) and
x(117) are used to predict the first four training outputs. We have chosen 200 training
samples only to complete the learning process in an acceptable time.

Adding some noise to the time series produces more challenges to the prediction
task. In this experiment, a noisy time series will be used to test our models. The noisy
Mackey-Glass time series will be generated by adding noise to Mackey-Glass time
series that are generated as described above. The amount of noise will be 20db added
to all inputs and outputs. The noise is measured by signal-to-noise ratio (SNR). Again,
the number of training samples used here is 200.

13

��

���

Start

Generate Time
Series (Training)

Start SA
Set initial SA
parameters

Calculate SA
initial temperature

Move to
a neighbour state

Update FLS
parameters

Calculate objective
function

Fuzzification

Defuzzification

Inferencing

Is new
State
Better
than

current
state ?

Accept
new
state

Is it
accepte
d with

probabili
ty ?

Is
Markov
chain
length
reache

d ?

Start Markov chains

Is the
stopping
criteria

reached
?

Update temperature
and Markov chains

End

Evaluate testing
samples

Keep current state

���

���

���

���

��

��

��

��

Figure 3: A flowchart of the method of using simulated annealing to optimize IT2FLS or GT2FLS.

4.1.2. Estimation of the low voltage electrical line length and maintenance costs in
rural towns

Two problems concerning electrical distribution were proposed in [11] and serve as
benchmark real-world problems in the fuzzy logic community. The first is concerned
with finding a model that estimates the total length of low-voltage line installed in a
rural town using some available information. The data consist of 495 samples in which
the real data were measured by a company. Each sample has two inputs which are the
number of inhabitants in the town and the mean of the distances from the center of the
town to the three furthest clients in it while the output is the estimated length of low-
voltage line. The data set has been taken from [9]. The data samples were divided into
two sets labeled training and testing sets which are randomly selected from the whole
sample as reported in [13] and [14]. As with other authors, 396 samples are used for

14

training while the other 99 samples are used for testing. The number of training sam-
ples was chosen to be the same as the others without a reduction due to the smaller
number of inputs involved in this problem (2 instead of 4) which reduces the compu-
tational burden. The second related problem is to estimate the minimum maintenance
costs of the medium-voltage electrical line based on a model of the optimal electrical
network for some Spanish towns [11]. The problem has four input variables: sum of
the lengths of all streets in the town, total area of the town, area that is occupied by
buildings, and energy supply to the town while the output is the minimum maintenance
cost. The data set consists of 1056 samples and has been taken from [9]. The data
samples were randomly divided into two sets labeled training and testing sets which
are randomly selected from the whole sample as reported in [13] and [14]. In order to
reduce the training computations and time, the number of samples has been reduced
from the one used by other authors. 400 data samples from the whole set were divided
into two sets labeled training and testing sets with 200 samples for each set. Therefore,
400 samples have been used instead of 1056 samples.

4.2. The initial fuzzy logic systems
First we consider the interval case. The fuzzy model consists of a number of inde-

pendent input fuzzy sets and one independent output fuzzy set for each rule. There are
four rules while each rule is characterized by a number of fuzzy sets equal to the num-
ber of inputs (i.e. four antecedent fuzzy sets and one consequent fuzzy set). The system
is built from scratch rather than using the optimized type-1 sets to initialize the interval
type-2 fuzzy sets. Each type-2 fuzzy set is described by Gaussian primary membership
functions with uncertain means represented by two means and one standard deviation
as follow [36, p.91]:

f̃(x) = exp−(x−m
2σ)2 m ∈ [m1,m2] (11)

Therefore the upper µÃ(x) and lower µ
Ã
(x) membership functions are defined by

following mathematical functions [36, p.91]:

µÃ(x) =

exp−(

x−m1
2σ)2 if x < m1

1 if m1 ≤ x ≤ m2

exp−(
x−m2

2σ)2 if x > m2

(12)

µ
Ã
(x) =

{
exp−(

x−m2
2σ)2 if x ≤ m1+m2

2

exp−(
x−m1

2σ)2 if x > m1+m2

2

(13)

where the upper µÃ(x) and lower µ
Ã
(x) membership functions in this equation are

used to define FOUlower and FOUupper. All the means and standard deviations are
initialized for all the input fuzzy sets by partitioning each input space into the chosen
number of fuzzy sets and enabling enough overlapping between them while the output
fuzzy sets are initialized randomly around the average value of training outputs. The
fuzzification process is based on the minimum t-norm while the center-of-area has been
chosen for type-reduction. The collapsing method proposed by [18] has been used to
calculate the centroids of the interval type-2 sets needed to compute the center-of-area.
This is done by using the composite outward right-left variant of the collapsing method

15

as it is described in [18]. The training procedure aims to learn the parameters of the
antecedent parts and the consequent parts of the fuzzy system rules. The parameters
found are then used to predict the next testing data points. Only the FOU’s parameters
are optimized in interval type-2 fuzzy sets. The initial general type-2 fuzzy logic
system is built by using the proposed parameterization method described in section
3. The fuzzy model consists of a number of independent input fuzzy sets and one
independent output fuzzy set for each rule. There are four rules while each rule is
characterized by a number of antecedent fuzzy sets equal to the number of inputs (four
antecedent fuzzy sets and one consequent fuzzy set). However, the number of rules
was chosen heuristically and any number of rules can be chosen but we are interested
in reducing the system’s complexity and saving computations and time. The system
is built from scratch rather than using optimized type-1 or interval type-2 fuzzy sets
to initialize general type-2 fuzzy sets. The general type-2 sets are defined using their
FOU ′s and SMF ′s functions as follows:

• FOU : The same membership functions used to define interval type-2 fuzzy
sets in previous subsection (4.2) are used to define FOU parameters. The up-
per µÃ(x) and lower µ

Ã
(x) membership functions in this equation are used to

define FOUlower and FOUupper. All the means and standard deviations are
initialized for all the input fuzzy sets by partitioning each input space into the
chosen number of fuzzy sets and enabling enough overlapping between them
while the output fuzzy sets are initialized randomly around the average value of
training outputs.

• SMF : Our choice for the SMFs in this work is to use a triangular SMF with
a normal apex initialized in the middle between (FOUlower and FOUupper) for
k1, k2, ...kn points (n = 9) by choosing their apex factors g(k1) = g(k2) =
...... = g(kn) = 0.5 and then calculating the apex locations for other x points
using the linear interpolation function proposed in section 3. This method to
parametrize the general type-2 set is shown in figure 1.

The configurations of IT2FLS and GT2FLS used in this experiment are detailed in
Table 2. The initial general type-2 fuzzy logic system stages will be as follows:

• Fuzzification The fuzzification process will fuzzify each x value into a type-1
fuzzy set (SMF) which is a triangular function as described above. The fuzzified
SMF is described by its FOUupper and FOUlower which are derived from the
two Gaussian functions for x and its apex location indicator. The output from
each fuzzification process is a triangular SMF.

• Combination of antecedents The combination between all antecedent fuzzified
values is done using the meet operation proposed by [15]. The output from this
phase is a convex SMF that might be non-normal.

• Implication To do the implication phase, firstly, the consequent sets space is
discretized into n = 101 points y1, y2, ..., yn in Y domain. Then the implication
is done using the same meet operation proposed by [15]. The third step is to do
a join between all secondary membership grades for each y ∈ Y using the join
operation proposed in [15].

16

• Type-Reduction Two methods for type-reduction have been used: the embed-
ded sets based sampling method and VSCTR method. In the sampling method,
we used 100 samples of the embedded sets. The rationale for using two type-
reduction methods is to test the true effects of learning SMF in general type-2
fuzzy sets without been distracted by the stochastic evaluation using sampling.
The output from this phase is a type-1 fuzzy set.

• Defuzzification The center of area (centroid) defuzzification has been used in
this part.

Table 2: The configurations of IT2FLS and GT2FLS used in this experiment

Stage IT2FLS GT2FLS
Membership Function Gaussian Gaussian + triangular SMF
Number of parameters (with four inputs) 60 60+180=240
fuzzification singleton singleton
Antecedent combination t-norm minimum minimum using Coupland’s meet
Implication t-norm minimum minimum using Coupland’s meet
Join t-conorm maximum maximum using Coupland’s join
SMF discretized points none 9
Type-reduction method centroid by collapsing method centroid by sampling and VSCTR
Defuzzification method centroid centroid
Y Descritization points 101 101

4.3. Learning of the FOU parameters

The training procedure aims to get the best parameters of the antecedent parts and
the consequent parts of the fuzzy system rules. Then, the found parameters are used to
predict the next testing data points. The total number of FOU parameters is 4 rules ∗4
antecedent fuzzy sets ∗3 parameters +4 rules ∗3 consequent set parameters = 60 in all
problems except the line length problem where it is 4 ∗ 2 ∗ 3 + 4 ∗ 3 = 36 parameters.
The learning process is done using the simulated annealing algorithm that searches for
the best configuration of the parameters by trying to modify one parameter each time
and evaluate the cost of the new state. The cost function that is used to measure the
cost of the new state is the Root Mean Square Error (RMSE), defined as follows:

RMSE =

√√√√ 1

n

n∑
k=1

[f(k)− f(k∗)]2 (14)

From an optimization perspective, the only constraint to the variables of the optimiza-
tion problem is that all standard deviations of all fuzzy sets must be ≥ 0. The simulated
annealing algorithm is initialized with a temperature equal to the standard deviation of
the mean RMSE for 1000 runs for the training samples as proposed by [48]. The
cooling schedule is based on a static cooling rate of 0.9 updated for each Markov chain
where this number is chosen from typical range to allow a fair exploration of the search
space. Each Markov chain has a length related to the number of variables in the search

17

space as recommended by [2] which equals 5 times the number of variables. The
search ends after 40 Markov chains which is enough to allow good convergence. The
new states for a current state are chosen from neighboring states randomly by adding
a small number (step size) to one of the antecedent parameters or the consequent pa-
rameters. The step size value is related to the maximum and minimum value for each
input space and equal to max-min/25 so that the search space is divided into 25 dis-
cretized points for each value which allow a fair exploration with the available number
of search iterations. The direction of the search is chosen randomly from right or left.
After that, the new state is evaluated by examining the 200 output data points. Then,
the average and the minimum of the cost function of the training and testing results
have been calculated.

4.4. Learning of the SMF parameters
The learning process in this stage aims to get the optimal locations of apexes for

all the SMF’s parameters where the other two points for each triangular SMF are fixed.
The optimized parameters in this case are the apex location factors g(k1), g(k2),, g(kn)
for each general type-2 set involved in the system. The learning is done using simulated
annealing algorithm with the same configuration used above apart from the following :

1. The constraints for each variable (apex factors g(ki) for each ki) are defined by
their (FOUlower(ki) and FOUupper(ki)) points which constitute the primary
memberships (secondary domain) boundaries for each ki.

2. The step size is the value that changes the apex location indicator. The new
value must be between [0, 1] and the step size should be large enough to make a
difference in the cost function as small values might not change the outputs when
it does not overcome the next discretization step in the primary memberships
(secondary domain). The chosen step size is 0.225.

3. The length of each Markov chain is equal to 5 times the number of variables in
the search space. The search ends after 10 Markov chains. These choices are
made to reduce the experiment’s time. The choices of simulated annealing al-
gorithm and Markov chains configurations are limited by the high computations
and impracticality as justified in section 3.2.

The number of all parameters being optimized in this stage for each fuzzy set is n =
9. Therefore, the total number of all parameters being optimized in the system in
this stage is (the number of fuzzy sets ∗ n) parameters. That is 4 rules ∗5 sets ∗9 =
180 parameters in problems with 4 inputs and 4 ∗ 3 ∗ 9 = 108 parameters in the
length line problem. Therefore, the total number of parameters optimized in general
type-2 fuzzy logic system is the sum of FOU and SMF optimized parameters. The
experiment has been carried out 20 times and the average and the minimum of the
cost function of the testing data results have been calculated. In addition, due to space
limitation, we included only a sample of the data for the maintenance cost estimation
problem for more clarification in Table 6 and samples of representative parameters for
the maintenance cost estimation problem using VSCTR method as follows:

• Fuzzy sets parameters before FOU optimization in all rules for one run (Table
3).

18

• Fuzzy sets parameters after FOU optimization in all rules for one run (Table 4).

• SMF parameters after SMF optimization using VSCTR for the first rule only
(Table 5).

Table 3: Interval type-2 fuzzy sets parameters before FOU optimization using SA in all rules for one run for
the maintenance cost estimation problem.

Initial Gaussian first mean
Rule fsmean−1 fsmean−2 fsmean−3 fsmean−4 fsconsequent−mean

1 3.125 2.25 36.855 36.375 2318.478
2 5.75 4.35 72.07 71.75 2119.751
3 8.375 6.45 107.285 107.125 2086.63
4 11 8.55 142.5 142.5 2163.913

Initial Gaussian second mean
Rule fsmean−1 fsmean−2 fsmean−3 fsmean−4 fsconsequent−mean

1 3.25625 2.355 38.61575 38.14375 2689.434
2 5.88125 4.455 73.83075 73.51875 2490.707
3 8.50625 6.555 109.0458 108.8937 2457.586
4 11.13125 8.655 144.2608 144.2688 2534.869

Initial Gaussian standard deviations
Rule fsstd−1 fsstd−2 fsstd−3 fsstd−4 fsconsequent−std

1 2.625 2.1 35.215 35.375 370.9564
2 2.625 2.1 35.215 35.375 370.9564
3 2.625 2.1 35.215 35.375 370.9564
4 2.625 2.1 35.215 35.375 370.9564

5. Results and Discussion

The experiments were developed using the C++ language and have been carried out
20 times on a number of PCs with an equal CPU speed of 3 GHz and a memory of 4GB.
The results are shown for each problem below and are summarized for all problems in
tables 12 and 11. Extra insights into the convergence behaviors and acceptance ratios
in both stages will be discussed to explain some new results. The acceptance ratio is
the proportion of moves that are accepted. In typical implementations of simulated
annealing, acceptance ratios start close to 1 and decrease towards zero.

5.1. Mackey-Glass time series results

The results of learning Mackey-Glass time series are detailed in table 7 where the
average RMSEs curves and the acceptance ratios during search are depicted in figures
4 and 5 respectively. The main observations are :

1. The best average RMSE in testing samples was obtained by a general type-2
fuzzy logic system with VSCTR defuzzification (GT2FLS-VSCTR) followed
by interval type-2 fuzzy logic system (IT2FLS).

2. The best average RMSE in training samples was obtained by a general type-2
fuzzy logic system with VSCTR defuzzification followed by IT2FLS.

19

Table 4: Interval type-2 fuzzy sets parameters after FOU optimization using SA in all rules for one run for
the maintenance cost estimation problem.

Optimized Gaussian first mean
Rule fsmean−1 fsmean−2 fsmean−3 fsmean−4 fsconsequent−mean

1 2.705 4.602 70.6614 -31.545 -56.3592
2 4.49 6.702 128.414 54.77 7887.21
3 7.535 3.762 180.532 39.205 7854.09
4 11 12.918 181.941 216.08 -5978.39

Optimized Gaussian second mean
Rule fsmean−1 fsmean−2 fsmean−3 fsmean−4 fsconsequent−mean

1 4.93625 1.011 72.4222 55.1237 -363.928
2 4.62125 5.463 62.562 39.5588 7918.91
3 7.66625 2.523 86.5082 193.794 -595.775
4 4.41125 14.703 211.874 161.249 2195.61

Optimized Gaussian standard deviations
Rule fsstd−1 fsstd−2 fsstd−3 fsstd−4 fsconsequent−std

1 4.305 9.156 29.5806 29.715 1049.48
2 4.305 1.764 18.3118 205.175 1728.01
3 3.045 0.084 23.9462 58.015 2067.27
4 8.505 2.772 181.709 7.075 710.219

3. The average RMSEs curves when learning FOUs (training samples) have exhib-
ited similar performances by the three models. However, IT2FLS obtained the
best average RMSEs in testing phase followed by GT2FLS-VSCTR which was
the best in training phase followed by IT2FLS.

4. The learning of SMFs using GT2FLS-VSCTR adds about 11.7% to the average
testing RMSEs and about 17.7% to the average training RMSEs over the FOU’s
learning best results. The learning of SMFs using GT2FLS-Sampling adds about
0.86% to the training RMSEs but worsened the testing RMSEs by about −0.059.

5. The learning curves of SMFs showed a clear difference in performance between
GT2FLS-VSCTR and GT2FLS-Sampling models. GT2FLS-VSCTR shows con-
tinuous improvements compared to very small improvements obtained by GT2FLS-
Sampling.

6. The acceptance ratio curves when learning FOUs show similar behaviors be-
tween GT2FLS-VSCTR and IT2FLS better than the narrower acceptance behav-
ior obtained by GT2FLS-Sampling. The last one shows poor performance where
it converges to values close to 0% quickly in less than 30 Markov chains which
means no improvements were observed in the rest of iterations.

7. The acceptance ratio curves when learning SMFs show a clear difference in be-
haviors between GT2FLS-VSCTR and GT2FLS-Sampling models. The GT2FLS-
Sampling shows undesirable very wide acceptance behavior compared to a nar-
rower one by GT2FLS-VSCTR. Interestingly, the acceptance ratios curves of
GT2FLS-Sampling model show a different behavior when learning FOUs from
its behavior with SMF. However, as mentioned above, the initial temperatures
were set separately in each stage to be proportional to the objective function dif-
ferences brought by these moves in the two parameters groups (FOU and SMF).
This is important to avoid starting with very large or very small initial tempera-

20

Table 5: A sample of general type-2 fuzzy sets parameters after SMF optimization in the first rule for one run
for the maintenance cost estimation problem. The K points are n=9 points for each fuzzy set and associated
with values that are distributed equally in the the primary domain. The apex factor values (AF) are shown
before and after optimization.

Rule Fuzzy set K point # K value SMF lower Initial AF optimized AF SMF upper
1 1 1 -10.21 0.00205148 0.5 0.725 0.011109
1 1 2 -6.70234 0.0258751 0.5 0.05 0.0918518
1 1 3 -3.19469 0.168027 0.5 0.95 0.391005
1 1 4 0.312969 0.561768 0.5 0.275 0.856957
1 1 5 3.82063 0.966979 0.5 0.275 1
1 1 6 7.32828 0.561768 0.5 0.5 0.856957
1 1 7 10.8359 0.168027 0.5 0.275 0.391005
1 1 8 14.3436 0.0258751 0.5 0.275 0.0918518
1 1 9 17.8513 0.00205148 0.5 0.275 0.011109
1 2 1 -26.457 0.00317161 0.5 0.05 0.011109
1 2 2 -19.1411 0.0346561 0.5 0.275 0.0887311
1 2 3 -11.8253 0.19999 0.5 0.95 0.374287
1 2 4 -4.50938 0.609487 0.5 0.5 0.833802
1 2 5 2.8065 0.980956 0.5 0.05 1
1 2 6 10.1224 0.609487 0.5 0.275 0.833802
1 2 7 17.4383 0.19999 0.5 0.5 0.374287
1 2 8 24.7541 0.0346561 0.5 0.5 0.0887311
1 2 9 32.07 0.00317161 0.5 0.95 0.011109
1 3 1 -18.0804 0.00927583 0.5 0.725 0.011109
1 3 2 4.32514 0.0706658 0.5 0.95 0.0809004
1 3 3 26.7307 0.303322 0.5 0.95 0.331944
1 3 4 49.1362 0.733562 0.5 0.275 0.767392
1 3 5 71.5418 0.999557 0.5 0.275 1
1 3 6 93.9473 0.733562 0.5 0.275 0.767392
1 3 7 116.353 0.303322 0.5 0.725 0.331944
1 3 8 138.758 0.0706658 0.5 0.275 0.0809004
1 3 9 161.164 0.00927583 0.5 0.95 0.011109

tures and to have acceptable curves of best results and acceptance ratios. In other
words, the observed acceptance behaviors for the GT2FLS-Sampling model are
not related to the settings of simulated annealing. This behavior can be easily ex-
plained by the effects of the defuzzification method which is the only difference
between the two models of GT2FLS. As explained in section 3.2, the effects of
the stochastic objective function when using sampling method can be ignored
when moves from state to state can bring relatively large differences compared
to the random noise but this noise can deteriorate the search when moves bring
improvements comparable to that noise. In other words, when learning FOU,
the differences brought by moves are large enough to accept very small errors of
approximated objective functions due to the larger contributions of the FOU’s pa-
rameters on the objective functions compared to the SMF contributions. Hence,
we do not expect large contribution from learning SMF’s parameters compared
to FOU’s learning due to the fact that SMF is dependent on FOU and bounded by
its endpoints. This behavior of acceptance ratios when using GT2FLS-Sampling
have been observed with all problems and this explanation is applied to them.

21

Table 6: A sample of the data used for the maintenance cost estimation problem.
Input 1 Input 2 Input 3 Input 4 Output
11 3.3 54.959999 55 4329.330078
4 1.2 19.98 40 2016.439941
0.9 0.27 4.5 1.8 249.419998
2 1.2 19.98 10 1044.219971
2 1.8 19.98 30 1761.920044
2.5 1.5 24.959999 25 2028.640015
9.5 2.85 47.459999 19 3093.179932
5 1.5 16.65 10 964.52002
6.5 5.85 97.5 65 5782.939941
5 1.5 24.959999 25 2101.409912
2.5 0.75 12.48 25 1445
9.5 5.7 94.980003 95 6857.439941

8. The time taken by IT2FLS was the shortest, i.e. 5.8 times faster than GT2FLS-
VSCTR and 21.8 times faster than GT2FLS-Sampling. Therefore, IT2FLS is
preferred in terms of speed.

5.2. Mackey-Glass time series with added noise results

The results of learning a Mackey-Glass time series with added noise are detailed in
table 8 where the average RMSE’s curves and the acceptance ratios during search are
depicted in figures 6 and 7 respectively. The main observations from the results are :

1. The best average RMSE in the testing samples was obtained by GT2FLS-VSCTR
followed by GT2FLS-Sampling.

2. The best average RMSE in training samples was obtained by GT2FLS-VSCTR
followed by GT2FLS-Sampling.

3. The average RMSE’s curves for learning FOUs (training samples) have exhibited
similar performances by the three models. However, GT2FLS-VSCTR model
obtained best average RMSEs in training and testing followed by GT2FLS-
Sampling.

4. The learning of SMFs using GT2FLS-VSCTR adds about 1% to the average
testing RMSEs and about 3% to the average training RMSEs over the FOU’s
learning best results. The learning of SMFs using GT2FLS-Sampling adds about
0.32% to the training RMSEs but worsened the testing RMSEs by about −0.1.

5. The learning curves of SMFs showed a clear difference in performance between
GT2FLS-VSCTR and GT2FLS-Sampling models. GT2FLS-VSCTR shows con-
tinuous improvements compared to relatively small improvements obtained by
GT2FLS-Sampling.

6. The acceptance ratio curves when learning FOUs show similar behaviors be-
tween GT2FLS-VSCTR and IT2FLS, better than the narrower acceptance be-
havior obtained by GT2FLS-Sampling. The latter converges to acceptance ratios
close to 0% in less than 25 Markov chains.

22

Table 7: The forecasting results for noise-free Mackey-Glass time series by simulated annealing with
GT2FLS

Stage MeanRMSE StdRMSE MinimumRMSE

IT2FLS
Training 0.04980955 0.0200348 0.026242
Testing 0.0433439 0.010239 0.027117
Time (seconds) 332.55 21.027488 295

GT2FLS with Sampling Defuzzification
After FOU’s Learning

Training 0.0553228125 0.01243 0.03761027
Testing 0.0518645455 0.0107249 0.03617023

After SMF’s Learning
Training 0.0548446 0.0119293 0.0372725
Improvement by SMF 0.86% - -
Testing 0.051895285 0.010721 0.0362123
Improvement by SMF -0.059269 % - -
Time (seconds) 7,259.9 992.126 5,724

GT2FLS with VSCTR Defuzzification
After FOU’s Learning

Training 0.0483079765 0.01089 0.03428513
Testing 0.0446682685 0.0121448 0.02823214

After SMF’s Learning
Training 0.03975027 0.0115896 0.0240021
Improvement by SMF 17.7% - -
Testing 0.03943346 0.0116557 0.024325
Improvement by SMF 11.7% - -
Time (seconds) 1,945.45 368.392 1,217

Figure 4: The average convergence of the method using the three models for noise-free Mackey-Glass time
series problem when learning FOU (left) and SMF (right).

R
M
S
E

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iteration

0 10 20 30 40

GT2FLS-SAMPLING

GT2FLS-VSCTR

IT2FLS

R
M
S
E

0.04

0.045

0.05

0.055

0.06

Iteration

0 2 4 6 8 10 12

GT2FLS-SAMPLING

GT2FLS-VSCTR

23

Figure 5: The average acceptance ratios of the three models when learning FOU (left) and SMF (right) for
noise-free Mackey-Glass time series problem.

A
c
c
e
p
t
a
n
c
e
 R
a
t
io
 %

0

20

40

60

80

100

Iteration

0 2 4 6 8 10 12

GT2FLS-SAMPLING

GT2FLS-VSCTR

A
c
c
e
p
t
a
n
c
e
 R
a
t
io
 %

0

10

20

30

40

50

60

70

80

90

100

Iteration

0 10 20 30 40 50

GT2FLS-SAMPLING

GT2FLS-VSCTR

IT2FLS

7. The acceptance ratio curves when learning SMFs show a clear difference in be-
haviors between GT2FLS-VSCTR and GT2FLS-Sampling models. The GT2FLS-
Sampling shows very wide acceptance behavior compared to a narrower one by
GT2FLS-VSCTR.

8. The time taken by IT2FLS was the shortest at 6.3 times faster than GT2FLS-
VSCTR and 20 times faster than GT2FLS-Sampling.

5.3. The low voltage electrical line length results

The results of the learning low voltage electrical line length problem are detailed in
table 9 where the average RMSEs curves and the acceptance ratios during search are
depicted in figures 8 and 9 respectively. The main observations from the results are :

1. The best average RMSE in testing samples was obtained by GT2FLS-VSCTR
followed by GT2FLS-Sampling.

2. The best average RMSE in training samples was obtained by GT2FLS-VSCTR
followed by GT2FLS-Sampling.

3. The average RMSE’s curves for learning FOUs (training samples) have exhib-
ited similar performances by the three models. However, the GT2FLS-VSCTR
model obtained the best average RMSEs in training and testing. The second in
testing was GT2FLS-Sampling while IT2FLS was the second in training.

4. The learning of SMFs using GT2FLS-VSCTR adds about 0.88% to the average
testing RMSEs and about 4.9% to the average training RMSEs over the FOU’s
learning best results. The learning of SMFs using GT2FLS-Sampling adds about
0.05% to the testing RMSEs and about 3.15% to the training RMSEs after FOU’s
learning.

24

Table 8: The forecasting results for Mackey-Glass time series with added noise by simulated annealing with
IT2FLS and GT2FLS

Stage MeanRMSE StdRMSE MinimumRMSE

IT2FLS
Training 0.1468528 0.02459 0.125778
Testing 0.1525942 0.014847 0.126217
Time (seconds) 350 57.217 285

GT2FLS with Sampling Defuzzification
After FOU’s Learning

Training 0.13835616 0.00835 0.1282838
Testing 0.14152867 0.008688 0.1242401

After SMF’s Learning
Training 0.13790745 0.008148 0.128318
Improvement by SMF 0.32% - -
Testing 0.1416725 0.0086397 0.124408
Improvement by SMF -0.1% - -
Time (seconds) 6,999.45 1,107.276 4,645

GT2FLS with VSCTR Defuzzification
After FOU’s Learning

Training 0.132636905 0.0045462 0.123189
Testing 0.138335225 0.004243 0.1287115

After SMF’s Learning
Training 0.12860905 0.004316 0.120457
Improvement by SMF 3% - -
Testing 0.136965 0.0043126 0.128493
Improvement by SMF 1% - -
Time (seconds) 2,197.5 426.4706 1,460

Figure 6: The average convergence of the method using the three models for noise-free Mackey-Glass time
series with added noise problem when learning FOU (left) and SMF (right).

R
M
SE

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iteration

0 10 20 30 40

GT2FLS-SAMPLING

GT2FLS-VSCTR

IT2FLS

R
M
SE

0.13

0.135

0.14

Iteration

0 2 4 6 8 10

GT2FLS-SAMPLING

GT2FLS-VSCTR

25

Figure 7: The average acceptance ratios of the three models when learning FOU (left) and SMF (right) for
noisy Mackey-Glass time series problem.

A
c
c
e
p
t
a
n
c
e
 R
a
t
io
 %

0

20

40

60

80

100

Iteration

0 2 4 6 8 10 12

GT2FLS-SAMPLING

GT2FLS-VSCTR

A
c
c
e
p
t
a
n
c
e
 R
a
t
io
 %

0

10

20

30

40

50

60

70

80

90

100

Iteration

0 10 20 30 40 50

GT2FLS-SAMPLING

GT2FLS-VSCTR

IT2FLS

5. The learning curves of SMFs showed a clear difference in performance between
GT2FLS-VSCTR and GT2FLS-Sampling models. GT2FLS-VSCTR shows con-
tinuous improvements compared to relatively small improvements obtained by
GT2FLS-Sampling.

6. The acceptance ratio curves when learning FOUs show similar behaviors be-
tween GT2FLS-VSCTR and IT2FLS better than acceptance behavior obtained
by GT2FLS-Sampling. The last one converges to acceptance ratios close to 0%
in less than 25 Markov chains.

7. The acceptance ratio curves when learning SMFs show a clear difference in be-
haviors between GT2FLS-VSCTR and GT2FLS-Sampling models. The GT2FLS-
Sampling shows very wide acceptance behavior compared to a narrower one by
GT2FLS-VSCTR.

8. The time taken by IT2FLS was the shortest at 3.8 times faster than GT2FLS-
VSCTR and 17.3 times faster than GT2FLS-Sampling.

5.4. The maintenance cost problem results

The results of learning the maintenance cost problem are detailed in table 10 where
the average RMSE’s curves and the acceptance ratios during search are depicted in
figures 10 and 11 respectively. The main observations are :

1. The best average RMSE in testing samples was obtained by GT2FLS-VSCTR
followed by interval type-2 fuzzy logic system.

2. The best average RMSE in training samples was obtained by GT2FLS-VSCTR
followed by interval type-2 fuzzy logic system.

3. The average RMSE’s curves for learning FOUs (training samples) have exhib-
ited similar performances by the three models. Again, GT2FLS-VSCTR model
obtained best average RMSEs in both training and testing followed by IT2FLS.

26

Table 9: The estimation results for low voltage electrical line length by simulated annealing with IT2FLS
and GT2FLS

Stage MeanRMSE StdRMSE MinimumRMSE

IT2FLS
Training 627.816 64.10956 580.319
Testing 606.84075 62.6282 568.15
Time (seconds) 530.8 47.5987 463

GT2FLS with Sampling Defuzzification
After FOU’s Learning

Training 632.080425 50.4127 595.8498
Testing 594.33905 16.46317 562.3377

After SMF’s Learning
Training 612.13475 10.24457 593.864
Improvement by SMF 3.15% - -
Testing 594.02365 16.2959 560.929
Improvement by SMF 0.05% - -
Time (seconds) 9,162.3 2,521.752 4,377

GT2FLS with VSCTR Defuzzification
After FOU’s Learning

Training 618.412695 52.09535 577.1892
Testing 596.185465 19.2559 571.3894

After SMF’s Learning
Training 588.01895 11.6174 564.773
Improvement by SMF 4.9% - -
Testing 590.90565 18.40509 559.914
Improvement by SMF 0.88% - -
Time (seconds) 2,005.65 367.299 1,474

Figure 8: The average convergence of the method using the three models for low voltage electrical line length
problem when learning FOU (left) and SMF (right).

R
M
S
E

585

590

595

600

605

610

615

Iteration

0 2 4 6 8 10 12

GT2FLS-SAMPLING

GT2FLS-VSCTR

R
M
S
E

500

600

700

800

900

1,000

1,100

1,200

1,300

1,400

Iteration

0 10 20 30 40

GT2FLS-SAMPLING

GT2FLS-VSCTR

IT2FLS

27

Figure 9: The average acceptance ratios of the three models when learning FOU (left) and SMF (right) for
low voltage line problem

A
c
c
e
p
t
a
n
c
e
 R
a
t
io
 %

0

10

20

30

40

50

60

70

80

90

100

Iteration

0 10 20 30 40 50

GT2FLS-SAMPLING

GT2FLS-VSCTR

IT2FLS

A
c
c
e
p
t
a
n
c
e
 R
a
t
io
 %

0

20

40

60

80

100

Iteration

0 2 4 6 8 10 12

GT2FLS-SAMPLING

GT2FLS-VSCTR

4. The learning of SMFs using GT2FLS-VSCTR adds about 6.9% to the aver-
age testing RMSEs and about 14.9% to the average training RMSEs over the
FOU’s learning best results. The learning of SMFs using GT2FLS-Sampling
adds about 3.35% to the training RMSEs but worsened the testing RMSEs by
about −0.05%.

5. The learning curves of SMFs showed a clear difference in performance between
GT2FLS-VSCTR and GT2FLS-Sampling models. GT2FLS-VSCTR shows con-
tinuous improvements compared to relatively very small improvements obtained
by GT2FLS-Sampling.

6. The acceptance ratio curves when learning FOUs show similar behaviors be-
tween GT2FLS-VSCTR and IT2FLS better than acceptance behavior obtained
by GT2FLS-Sampling. The latter converges to acceptance ratios close to 0% in
less than 25 Markov chains.

7. The acceptance ratio curves when learning SMFs show a clear difference in be-
haviors between GT2FLS-VSCTR and GT2FLS-Sampling models. The GT2FLS-
Sampling shows very wide acceptance behavior compared to a narrower one by
GT2FLS-VSCTR.

8. The time taken by IT2FLS was the shortest at 3.77 times faster than GT2FLS-
VSCTR and 14.4 times faster than GT2FLS-Sampling.

5.5. Results summary

The main conclusions from the results for the four problems are :

1. The GT2FLS-VSCTR model obtained the best results in all cases for both train-
ing and testing results (average RMSEs).

28

Table 10: The estimation results for the maintenance cost problem by simulated annealing with IT2FLS and
GT2FLS

Stage MeanRMSE StdRMSE MinimumRMSE

IT2FLS
Training 304.8366 92.320619 145.985
Testing 353.99755 106.36379 207.672
Time (seconds) 410.95 44.00535 341

GT2FLS with Sampling Defuzzification
After FOU’s Learning

Training 347.56075 93.88004 172.6323
Testing 424.139295 107.8478 230.5775

After SMF’s Learning
Training 335.91655 81.6298 172.514
Improvement by SMF 3.35% - -
Testing 424.3692 108.0096 229.275
Improvement by SMF -0.05% - -
Time (seconds) 5,936.6 937.4517 4,037

GT2FLS with VSCTR Defuzzification
After FOU’s Learning

Training 281.416145 96.938 124.3031
Testing 341.1021 112.5648 155.5801

After SMF’s Learning
Training 239.4284 76.2998 109.223
Improvement by SMF 14.9% - -
Testing 317.43325 104.8642 145.222
Improvement by SMF 6.9% - -
Time (seconds) 1,556.25 183.7191 1,260

Figure 10: The average convergence of the method using the three models for the maintenance cost problem
when learning FOU (left) and SMF (right).

R
M
SE

0

500

1,000

1,500

2,000

Iteration

0 10 20 30 40

GT2FLS-SAMPLING

GT2FLS-VSCTR

IT2FLS

R
M
SE

250

300

350

400

Iteration

0 2 4 6 8 10

GT2FLS-SAMPLING

GT2FLS-VSCTR

29

Figure 11: The average acceptance ratios of the three models when learning FOU (left) and SMF (right) for
maintenance cost problem

A
c
c
e
p
t
a
n
c
e
 R
a
t
io
 %

−10

0

10

20

30

40

50

60

70

80

90

100

Iteration

0 10 20 30 40 50

GT2FLS-SAMPLING

GT2FLS-VSCTR

IT2FLS

A
c
c
e
p
t
a
n
c
e
 R
a
t
io
 %

0

20

40

60

80

100

Iteration

0 2 4 6 8 10 12

GT2FLS-SAMPLING

GT2FLS-VSCTR

2. GT2FLS-Sampling and IT2FLS were overlapping the second position and there-
fore showing similar results. However, the learning of SMF when using sampling
defuzzification was adversely affected by the stochastic behavior for the objec-
tive function. In fact, it is unfair to compare a model with a stochastic evaluation
(GT2FLS-Sampling) with a model with a deterministic evaluation (IT2FLS) of
the objective function. Therefore, the question of whether general type-2 fuzzy
logic systems or IT2FLS is better in handling uncertainties should not be based
on such a case.

3. When learning FOU, GT2FLS-VSCTR obtained the best results in all training
cases and most testing cases (three out of four) against IT2FLS. This might be
explained intuitively by the uncertainties in practice that are centered and dis-
tributed around some points in the SMF. In interval type-2 fuzzy set, all un-
certainties are given the same amount of possibilities in their SMF. Therefore,
in general, general type-2 fuzzy sets should be able in practice to handle more
information than interval type-2 fuzzy sets even without learning their SMF.

4. The learning of SMFs using GT2FLS-VSCTR adds between 0.88% and 11.7%
to the average testing RMSEs and between 3% to 17.7% to the average train-
ing RMSEs over the FOU’s learning best results. The learning of SMFs us-
ing GT2FLS-Sampling adds between 0.32% and 3.35% to the training RMSEs
and up to 0.5% to the testing RMSEs but also worsen some results by up to
−1%. Again, the comparison against GT2FLS-Sampling should not be tackled
between such models. In other words, the learning of SMFs has brought no-
ticeable improvements when allowing a deterministic method of evaluation of
objective functions meaning that general type-2 fuzzy logic systems add more
abilities and flexibilities to modeling than interval type-2 fuzzy logic systems.
This observation enforces the assumption that the third dimension in GT2FS
should enhance the modeling ability over the uniform and restricted type-2 in-

30

Table 11: Results summary for the three models ordered by accuracy (1= the best).

Model Mackey-Glass Noisy Mackey-Glass Line length Maintenance cost
Training Testing Training Testing Training Testing Training Testing

IT2FLS 2 2 3 3 3 3 2 2
GT2FLS-Sampling 3 3 2 2 2 2 3 3
GT2FLS-VSCTR 1 1 1 1 1 1 1 1

Table 12: The results summary for all problems by the three models to model testing samples (the best are
in bold font)

Problem IT2FLS GT2FLS-Sampling GT2FLS-VSCTR
MeanRMSE Time MeanRMSE Time MeanRMSE Time

Mackey-Glass 0.0433439 332.55 0.051895285 7,259.9 0.03943346 1,945
Noisy Mackey-Glass 0.1525942 350 0.1416725 6,999.45 0.136965 2,197.5
Line length 606.84075 530.8 594.02365 9,162.3 590.90565 2,005.65
Maintenance cost 353.99755 410.95 424.3692 5,936.6 317.43325 1,556.25

terval fuzzy sets when a good configuration is chosen through an optimization
process. The problem of type-reduction in general type-2 fuzzy logic systems
should be investigated further to find embedded sets based on practical and sta-
ble methods to help the automatic design of general type-2 fuzzy logic systems.

5. The stochastic evaluations of centroids using the sampling method affects the
learning performance of general type-2 fuzzy logic systems especially when
learning SMF. These effects are shown through their learning and acceptance
behavior curves.

6. The time taken by the interval type-2 fuzzy logic system was the shortest at
3.77− 6.3 times faster than GT2FLS-VSCTR and 14.4− 21.8 times faster than
GT2FLS-Sampling. Therefore, in terms of speed, IT2FLS is preferred followed
by GT2FLS-VSCTR.

7. Due to the complexity of the solution space in GT2FLS, most researchers have
only focused on modeling practical problems using more limited type-1 fuzzy
logic system (T1FLS) and IT2FLS. In our previous work [5], we presented a
comparison between IT2FLS and T1FLS results and, for this reason, in this pa-
per we only focus on comparing different versions of GT2FLS with IT2FLS.
Our research shows that an efficient optimization algorithm for finding and fine-
tuning parameters enables the use of GT2FLS to model even more complex prob-
lems within a comparable time. Tables 11 and 12 clearly show that our final
GT2FLS-VSCTR version achieved best accuracy in all cases and so provides a
clear indication of the strength of the algorithm compared to others.

6. Conclusion and Future Work

Work on the incorporation of learning in general type-2 fuzzy logic systems (GT2FLSs)
using simulated annealing (SA) has been reported. The learning has been applied to the

31

configuration of all general type-2 fuzzy logic system parameters in two stages in both
the footprint of uncertainty (FOU) and the secondary membership functions (SMF)
parts. The learning process starts from scratch rather than using optimized interval
type-2 fuzzy logic systems (IT2FLSs) to initialize general type-2 fuzzy logic systems.
The novel parametrization approach presented in this work has been used to design
two models of general type-2 fuzzy logic systems. These two models used two type-
reduction techniques: non-deterministic (the sampling method) and deterministic (the
vertical-slices centroid type-reduction (VSCTR). The rationale for using the two type-
reduction techniques has been described. In addition, both models as well as interval
type-2 fuzzy logic system model have been been applied to model the four problems.

The question of whether general type-2 fuzzy logic systems can enhance the abil-
ity to handle information has been tackled. The stochastic defuzzification method of
sampling embedded sets affects the learning performance in both FOU and SMF learn-
ing stages. However, general type-2 fuzzy logic systems with sampling defuzzification
have achieved similar performance to interval type-2 fuzzy logic systems but in a very
long time. The best results achieved in all problems have been accredited to general
type-2 fuzzy logic systems with VSCTR defuzzification. The results showed that when
using the deterministic defuzzification method (VSCTR), the learning of general type-2
fuzzy logic systems can provide extra abilities to handle more information and uncer-
tainties than interval type-2 fuzzy logic systems that use uniform SMFs. Although the
use of VSCTR is not based on the concept of using embedded sets to calculate the
exact centroids of type-2 sets, the method allows the learning process to be carried out
in a practical manner. This achievement opens the door to using other learning meth-
ods to obtain greater modeling capabilities from general type-2 fuzzy logic systems in
real-world applications.

7. References

[1] E. Aarts, J. Lenstra, Local search in combinatorial optimization, Princeton Univ
Press, 2003.

[2] E. H. L. Aarts, H. M. M. T. Eikelder, Simulated annealing, in: P. Pardalos, M. Re-
sende (eds.), Handbook of applied optimization, Oxford University Press, 2002,
pp. 209–220.

[3] M. Almaraashi, R. John, Tuning of type-2 fuzzy systems by simulated annealing
to predict time series, in: Lecture Notes in Engineering and Computer Science:
Proceedings of The World Congress on Engineering 2011 , WCE 2011, vol. 2,
Newswood Limited, London, U.K, 2011, pp. 976–980.

[4] M. Almaraashi, R. John, Tuning type-2 fuzzy systems by simulated annealing to
estimate maintenance cost, in: proceedings the UKCI 2011, Manchester, 2011.

[5] M. Almaraashi, R. John, S. Ahmadi, Electrical engineering and intelligent sys-
tems book, in: S. I. Ao, L. Gelman (eds.), Learning of Type-2 Fuzzy Logic Sys-
tems by Simulated Annealing with Adaptive Step Size, vol. 130 of Lecture Notes
in Electrical Engineering, chap. 5, Springer, 2012.

32

[6] M. Almaraashi, R. John, S. Coupland, Designing generalised type-2 fuzzy logic
systems using interval type-2 fuzzy logic systems and simulated annealing, in:
Fuzzy Systems (FUZZ), 2012 IEEE International Conference on, IEEE, 2012.

[7] M. Almaraashi, R. John, A. Hopgood, Automatic learning of general type-2 fuzzy
logic systems using simulated annealing, in: Fuzzy Systems (FUZZ), 2014 IEEE
International Conference on, IEEE, 2014, accepted.

[8] J. Branke, S. Meisel, C. Schmidt, Simulated annealing in the presence of noise,
Journal of Heuristics 14 (6) (2008) 627–654.

[9] G. Casillas, Fuzzy modeling library (fmlib), Available at
http://decsai.ugr.es/ casillas/fmlib/index.html, [Ac-
cessed: 28 March 2011] (2011).

[10] H. H. Christian Wagner, Novel methods for the design of general type-2 fuzzy
sets based on device characteristics and linguistic labels surveys, in: 2009 IFSA
World Congress, EUSFLAT World Conference, Lisbon, Portugal, 2009, pp. 537–
543.

[11] O. Cordón, F. Herrera, L. Sánchez, Solving electrical distribution problems using
hybrid evolutionary data analysis techniques, Applied Intelligence 10 (1) (1999)
5–24.

[12] O. Cordón, F. Herrera, P. Villar, Analysis and guidelines to obtain a good uniform
fuzzy partition granularity for fuzzy rule-based systems using simulated anneal-
ing, International Journal of Approximate Reasoning 25 (3) (2000) 187–215.

[13] O. Cordón, F. Herrera, P. Villar, Generating the knowledge base of a fuzzy rule-
based system by the genetic learning of the data base, Fuzzy Systems, IEEE
Transactions on 9 (4) (2001) 667–674.

[14] O. Cordón, F. Herrera, I. Zwir, Linguistic modeling by hierarchical systems of
linguistic rules, Fuzzy Systems, IEEE Transactions on 10 (1) (2002) 2–20.

[15] S. Coupland, R. John, Geometric type-1 and type-2 fuzzy logic systems, Fuzzy
Systems, IEEE Transactions on 15 (1) (2007) 3 –15.

[16] L. Drack, H. Zadeh, Soft computing in engineering design optimisation, Journal
of Intelligent and Fuzzy Systems 17 (4) (2006) 353–365.

[17] C. Gafa, S. Coupland, A new recursive type-reduction procedure for general type-
2 fuzzy sets, in: Advances in Type-2 Fuzzy Logic Systems (T2FUZZ), 2011 IEEE
Symposium on, 2011, pp. 44 –49.

[18] S. Greenfield, F. Chiclana, S. Coupland, R. John, The collapsing method of
defuzzification for discretised interval type-2 fuzzy sets, Information Sciences
179 (13) (2009) 2055–2069, iSSN: 0020-0255.

[19] S. Greenfield, R. John, S. Coupland, A novel sampling method for type-2 defuzzi-
fication, in: Proceedings of UKCI 2005, London, 2005, pp. 120–127.

33

[20] F. Guely, R. La, P. Siarry, Fuzzy rule base learning through simulated annealing,
Fuzzy Sets and Systems 105 (3) (1999) 353 – 363.

[21] H. Hagras, Type-2 flcs: A new generation of fuzzy controllers, Computational
Intelligence Magazine, IEEE 2 (1) (2007) 30–43.

[22] H. Hamrawi, S. Coupland, R. John, A novel alpha-cut representation for type-2
fuzzy sets, in: FUZZ IEEE 2010 (WCCI 2010), IEEE, IEEE, Barcelona, Spain,
2010, pp. 1 – 8.

[23] L. Ingber, Simulated annealing: Practice versus theory, Mathematical and com-
puter modelling 18 (11) (1993) 29–57.

[24] W. Jeng, C. Yeh, S. Lee, General type-2 fuzzy neural network with hybrid learn-
ing for function approximation, in: Fuzzy Systems, 2009. FUZZ-IEEE 2009.
IEEE International Conference on, IEEE, 2009, pp. 1534–1539.

[25] R. John, Perception modelling using type-2 fuzzy sets / r. i. john., Ph.D. thesis,
De Montfort University (2000).

[26] R. John, S. Coupland, Extensions to type-1 fuzzy: type-2 fuzzy logic and uncer-
tainty, Computational Intelligence: Principles and Practice (2006) 89–102.

[27] R. John, S. Coupland, Type-2 fuzzy logic: A historical view, Computational In-
telligence Magazine, IEEE 2 (2007) 57 –62.

[28] R. John, C. Czarnecki, A type 2 adaptive fuzzy inferencing system, in: Systems,
Man, and Cybernetics, 1998. 1998 IEEE International Conference on, vol. 2,
IEEE, 1998, pp. 2068–2073.

[29] N. Karnik, J. Mendel, Operations on type-2 fuzzy sets, Fuzzy Sets and Systems
122 (2) (2001) 327–348.

[30] S. Kirkpatrick, C. Gelatt, M. Vecchi, Optimization by simulated annealing, 1983,
Science 220 (1983) 671–680.

[31] O. Linda, M. Manic, Importance sampling based defuzzification for general type-
2 fuzzy sets, in: Fuzzy Systems (FUZZ), 2010 IEEE International Conference on,
2010, pp. 1 –7.

[32] F. Liu, An efficient centroid type-reduction strategy for general type-2 fuzzy logic
system, Information Sciences 178 (9) (2008) 2224–2236.

[33] L. Lucas, T. Centeno, M. Delgado, General type-2 fuzzy inference systems: Anal-
ysis, design and computational aspects, in: Fuzzy Systems Conference, 2007.
FUZZ-IEEE 2007. IEEE International, 2007, pp. 1 –6.

[34] M. Mackey, L. Glass, Oscillation and chaos in physiological control systems,
Science 197 (4300) (1977) 287–289.

34

[35] P. Melin, C. Gonzalez, J. Castro, O. Mendoza, O. Castillo, Edge-detection method
for image processing based on generalized type-2 fuzzy logic, Fuzzy Systems,
IEEE Transactions on 22 (6) (2014) 1515–1525.

[36] J. Mendel, Uncertain rule-based fuzzy logic systems: introduction and new direc-
tions, Prentice Hall, 2001.

[37] J. Mendel, Fuzzy sets for words: a new beginning, in: Fuzzy Systems, 2003.
FUZZ’03. The 12th IEEE International Conference on, vol. 1, 2003.

[38] J. Mendel, R. John, Type-2 fuzzy sets made simple, Fuzzy Systems, IEEE Trans-
actions on 10 (2) (2002) 117 –127.

[39] J. Mendel, R. John, F. Liu, Interval type-2 fuzzy logic systems made simple,
Fuzzy Systems, IEEE Transactions on 14 (6) (2006) 808 –821.

[40] J. Mendel, F. Liu, On new quasi-type-2 fuzzy logic systems, in: Fuzzy Systems,
2008. FUZZ-IEEE 2008.(IEEE World Congress on Computational Intelligence).
IEEE International Conference on, IEEE, 2008, pp. 354–360.

[41] J. Mendel, F. Liu, D. Zhai, Alpha plane representation for type-2 fuzzy sets: The-
ory and applications, Fuzzy Systems, IEEE Transactions on 17 (5) (2009) 1189
–1207.

[42] P. Salamon, P. Sibani, R. Frost, Facts, conjectures, and improvements for simu-
lated annealing, Society for Industrial Mathematics, 2002.

[43] J. T. Starczewski, Efficient triangular type-2 fuzzy logic systems, International
Journal of Approximate Reasoning 50 (5) (2009) 799–811.

[44] C. Wagner, H. Hagras, zslices based general type-2 flc for the control of au-
tonomous mobile robots in real world environments, in: Fuzzy Systems, 2009.
FUZZ-IEEE 2009. IEEE International Conference on, 2009, pp. 718 –725.

[45] C. Wagner, H. Hagras, Toward general type-2 fuzzy logic systems based on zs-
lices, Fuzzy Systems, IEEE Transactions on 18 (4) (2010) 637 –660.

[46] C. Wagner, H. Hagras, Uncertainty and type-2 fuzzy sets and systems, in: Com-
putational Intelligence (UKCI), 2010 UK Workshop on, 2010, pp. 1 –5.

[47] C. Wagner, S. Miller, J. Garibaldi, D. Anderson, T. Havens, From interval-valued
data to general type-2 fuzzy sets, Fuzzy Systems, IEEE Transactions on 23 (2)
(2015) 248–269.

[48] S. White, Concepts of scale in simulated annealing, in: American Institute of
Physics Conference Series, vol. 122, 1984, pp. 261–270.

[49] T. Yanar, Z. Akyrek, Fuzzy model tuning using simulated annealing, Expert Sys-
tems with Applications 38 (7) (2011) 8159–8169.

[50] L. Zadeh, The concept of a linguistic variable and its application to approximate
reasoning. i, Inform. Sciences 8 (1975) 199–249.

35

