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Simulation fails to replicate stress in trainees performing a technical procedure 

in the clinical environment. 

 

Abstract 

Introduction 

Simulation based training (SBT) has become an increasingly important method by 

which doctors learn. Stress has an impact upon learning, performance, technical, and 

non-technical skills. However, there are currently no studies that compare stress in the 

clinical and simulated environment. We aimed to compare objective (heart rate 

variability, HRV) and subjective (state trait anxiety inventory, STAI) measures of 

stress theatre with a simulated environment. 

 

Methods 

HRV recordings were obtained from eight anaesthetic trainees performing an 

uncomplicated rapid sequence induction at pre-determined procedural steps using a 

wireless Polar RS800CX monitor © in an emergency theatre setting. This was 

repeated in the simulated environment. Participants completed an STAI before and 

after the procedure. 

 

Results 

Eight trainees completed the study. The theatre environment caused an increase in 

objective stress vs baseline (p=0.004). There was no significant difference between 

average objective stress levels across all time points (p=0.20) between environments. 

However, there was a significant interaction between the variables of objective stress 
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and environment (p=0.045). There was no significant difference in subjective stress 

(p=0.27) between environments. 

 

Discussion 

Simulation was unable to accurately replicate the stress of the technical procedure. 

This is the first study that compares the stress during SBT with the theatre 

environment and has implications for the assessment of simulated environments for 

use in examinations, rating of technical and non-technical skills, and stress 

management training. 
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Introduction 

The master-apprenticeship ‘see one, do one’ approach to medical education (WS 

Halsted 1904) has stood for some time. The potential impact of this approach upon 

patient safety is unacceptable. Trainees must now climb the ‘learning curve’ without 

exposing patients to preventable errors. Simulation based training (SBT) is ‘a 

technique to replace or amplify real-patient experiences with guided experiences, 

artificially contrived, that evokes or replicates substantial aspects of the real world in 

a fully interactive manner’ (Gaba 2004). SBT has become increasingly important 

within medical education and now often forms a mandatory part of training and 

examinations, pioneered by anaesthesia (Gaba & DeAnda 1988; Holzman et al. 

1995).  

 

High-fidelity simulation has previously been defined as simulations that look like the 

criterion context and present realistic performance characteristics and scenarios 

(Grierson 2014). However, there is a lack of evidence for the assumption that high-

fidelity simulations lead to better learning (Norman et al. 2012), and some have 

suggested that the term ‘fidelity’ is abandoned altogether (Hamstra et al. 2014), 

instead focussing on specific factors that impact upon educational effectiveness 

enabling educators to consider the value of a particular simulation for learners of 

varying experience who have different ‘learning curves’ (Aggarwal et al. 2010).  

 

Stress is described as a physical and psychological response to environmental 

demands and is best recognised as the ‘Fight or Flight’ response (Selye 1973). The 

stress response is triggered when an individual assesses his or her resources to be 



	 5	

insufficient to meet the demands of the situation (Harvey et al. 2010). Socio-

evaluative stressors (when behaviour is potentially being judged by others) and 

situations beyond the perceived control of the participant are more likely to induce 

stress, and this may be relevant in formative and summative assessment. Studies 

demonstrate improved performance during crisis simulation is associated with lower 

levels of stress (Wetzel et al. 2010). In addition, significantly increased levels of 

stress can potentially impair learning in the simulated environment (Harvey et al. 

2012), and lead to adverse events in theatre (Arora, Hull, et al. 2010). Stress is known 

to adversely affect both technical and non-technical skills (Doleman et al. 2016), 

which has implications for the assessment of these skills in trainees within simulated 

environments. The airline and military industries have pioneered the use of SBT to 

prepare individuals for stressful situations. They have acknowledged that even the 

performance of experienced operators can deteriorate with stress and have training 

programmes to mitigate these effects (JE Driskell & E Salas 1991; R Flin et al. 2008). 

An understanding of the effect of stress in clinical contexts is critical as performance 

impairment could impact upon patient care. Furthermore, it has been suggested that 

SBT may be used in stress management training (Arora et al. 2009; Harvey et al. 

2010) for acute clinical scenarios. 

 

There are no published studies directly comparing stress in a clinical environment 

with SBT. Evaluation of SBT in this regard is currently based on learner outcomes 

and subsequent performance. Altering aspects of simulated environments and 

scenarios will impact upon levels of stress in participants. The ability to assess 

whether levels of stress are commensurate with the clinical environment has 

implications for participant learning and the use of simulation for formative and 
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summative assessment. Optimisation of stress management training requires the 

ability to compare the stress generated by the training delivered with the clinical 

environment. This proof of principle study proposes a methodology by which this 

may be achieved. 

 

Heart Rate Variability (HRV) is a measure of the fluctuations in the interval between 

consecutive heart beats (R-R interval). Assessment of these fluctuations allows for the 

relative contribution of the sympathetic and parasympathetic nervous systems to be 

calculated (Jones et al. 2015). Mental stress results in an increase in sympathetic 

output, which is reflected in HRV recordings (Akselrod et al. 1985; Malliani et al. 

1991; Mølgaard 1991). HRV has been used previously in multiple studies to 

demonstrate increases in intra-operative stress in surgeons (Böhm et al. 2001; Song et 

al. 2009; Jones et al. 2015), and for the assessment of training effectiveness and 

simulator realism in simulated flight (Jorna 1993). HRV can be measured 

dynamically, non-invasively, and remotely, allowing stress to be measured 

objectively at defined time points with no interruption during the accomplishment of a 

given clinical or technical procedure.  

 

The State Trait Anxiety Inventory (STAI) is a is a six-item, 4-point Likert style 

questionnaire for use in quantifying subjective levels of stress in the clinical 

environment (RL Metzger 1976).  A short version developed by Marteau and Becker 

was used in this study (1992). Scores range from 6 to 24; higher scores signify greater 

levels of stress among participants. 
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Due to the adoption of SBT within medical education, and the known effects of stress 

on learning, performance, technical and non-technical skills, we aimed to compare the 

stress induced by simulation with clinical environments. To our knowledge this is the 

first published direct comparison of stress induced in SBT with that induced in the 

theatre environment, and propose that this is a reproducible methodology that may be 

used to optimise SBT for learning, assessment, and stress management training.  

 

Methods 

Ethical approval was gained from the University of Nottingham Medical School 

Research Ethics Committee (LTf15082013 SoM Med Sci GEM). 

Participants and conditions 

After providing written informed consent, eight anaesthetic core trainees participated 

in our study (trainees in the first three years of specialist training). Participants did not 

take part in vigorous activity within 30 minutes of the control recording and did not 

consume caffeine for 12 hours prior to performing the procedure in theatre or in the 

simulated environment. None of the participants had any medical conditions that 

could influence HRV and none took any regular medications. All were non-smokers. 

 

Rapid sequence induction (RSI) is the preferred method of achieving emergency 

endotracheal intubation as it results in rapid unconsciousness and neuromuscular 

blockade. This is important in patients who have not fasted and are at high risk for 

regurgitation and aspiration. RSI was chosen as the criterion procedure as trainees are 

increasingly trained in this procedure in the simulated environment as it is often 
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performed in an emergency situation, the pathway is usually reproducible between 

patients, infrequently complicated, and requires minimal levels of physical activity by 

the performer that may otherwise affect HRV recordings.  All RSIs performed in the 

theatre environment were uncomplicated cases on the emergency theatre list. 

 

Heart rate variability 

Heart rate recordings were obtained using a wireless Polar RS800CX monitor (© 

Polar Electro 2011, Warwick UK). The equipment comprises a wireless chest strap 

that remotely transmits data to a watch device operated by the researcher so that there 

is no interference during the procedure. Polar devices have been validated for 

recording HRV in humans (Gamelin et al. 2006). The electrocardiogram recorded R-

R intervals for a period of five minutes according to guidelines published by the Task 

Force of the European Society of Cardiology and the North American Society of 

Pacing and Electrophysiology (Heart rate variability 1996) at each of the pre-

determined steps of the procedure. All data were electronically transferred to a 

computer using Polar Protrainer® software version 5.40.170 and analysed offline. In 

order to obtain frequency domain measures a computerised fast Fourier 

transformation calculated the power spectral density. Low frequency (LF) (0.04-

0.15Hz) and high frequency (HF) (0.15-0.4Hz) components were analysed. An 

increase in the LF component reflects increased sympathetic tone, and an increase in 

the HF component reflects increased vagal tone. The LF/HF ratios were subsequently 

calculated, as this is considered to be the most sensitive marker of overall 

sympathovagal tone (Pagani et al. 1989; McCraty et al. 1995; Heart rate variability 

1996; Lin et al. 2001). Data is presented as absolute units (milliseconds squared).  
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Data collection 

HRV recordings were taken at pre-determined procedural steps, derived from the 

Royal College of Anaesthetists Direct Observation of Procedural Skill (RCoA DOPS) 

proforma, routinely performed during RSI (1=Control, 2=Preparation, 3=Pre-

oxygenation-endotracheal tube placement with proof (intubation), 4=Post-intubation 

management). A STAI assessment was obtained immediately prior to and following 

the procedure, and trainees were asked to identify what they perceived to be the most 

stressful component. The supervising consultant anaesthetist was asked to complete 

an RCoA DOPS proforma immediately following the procedure to validate that an 

RSI had taken place. This process was also performed with the same participants in 

the simulated environment. Recordings from 50% were taken in the theatre 

environment prior to the simulated environment, with the reverse true for the 

remaining participants. An identical uncomplicated clinical scenario was provided to 

all participants. The simulated environment was matched as closely as possible to the 

operative environment in the presence of an operating department practitioner (ODP) 

and consultant anaesthetist on SimMan3G version 2.3_020304 (Figure 1). A trained 

technician using a multidirectional camera and microphone system controlled 

SimMan. All participants were required to wear theatre clothing, use equipment 

identical to that of the operative environment, and interact with the SimMan. The 

physiological parameters of SimMan were visible throughout.  

 

Statistical analysis 

Sample size calculations determined a sample size of 8 was required assuming a 

partial eta squared of 0.25 for two independent variables (Bakeman 2005); one with a 
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level of two (theatre versus simulation) and the other with a level of four (procedure 

step). We assumed a correlation coefficient of 0.50 and a non-sphericity correction of 

1. This analysis had a power of 0.9 and an alpha level of 0.05. To evaluate whether 

rapid sequence induction increased objective stress we used a one-way repeated 

measures ANOVA with post-hoc Bonferroni test to adjust for multiple comparisons. 

To identify the interaction of environment (theatre versus simulation) with stress, we 

performed a two-way repeated-measures ANOVA with a test for interaction. We 

tested the assumption of sphericity using Mauchly’s test with p<0.1 regarded as 

evidence of non-sphericity. We analysed STAI before and after the procedure using 

Wilcoxon signed rank test and when comparing environments used Friedman’s 

ANOVA. We regarded a p<0.05 as significant (two-tailed). All analyses were 

conducted on SPSS V21.    
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Results 

Seven male and one female anaesthetic core trainees completed the study. They were 

all familiar with the equipment in the theatre and their ODP. An RSI procedure was 

validated as having taken place on every occasion by a consultant anaesthetist.   

 

The theatre environment caused an increase in LF/HF ratio from baseline (p=0.004). 

However, post hoc tests revealed the only significant difference was between baseline 

and intubation (mean 2.97 versus 7.74; p=0.006). There was no significant increase in 

STAI in theatre from baseline to post-procedure (p=0.11). Simulation did not increase 

stress from baseline when measured objectively (p=0.86) or subjectively (p=0.16). 

 

When comparing the theatre and simulated environment, there was no significant 

difference between the average LF/HF ratios when compared across all time points 

(p=0.20). When examining the test for interaction, there was a significant interaction 

between the variables of objective stress and environment (p=0.045). For example, 

baseline LF/HF ratio was higher with simulation and did not significantly increase 

throughout the procedure (Figure 2). However, in theatre, at baseline the LF/HF ratios 

were lower but sharply rose during the procedure, peaking at intubation. On post hoc 

testing, significant interactions occurred with baseline versus preparation (p=0.01) 

and baseline versus intubation (p=0.027). When examining stress by STAI in theatre 

versus simulation there was no significant difference (p=0.27). 

 

In the theatre environment 6/8 trainees subjectively identified intubation as the most 

stressful procedural step and 2/8 identified post-intubation management. In the 
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simulated environment 4/8 trainees subjectively identified intubation as the most 

stressful procedural step, 3/8 identified preparation and 1/8 identified post-intubation 

management. Matched with their physiologically most stressful component on an 

individual basis, 6/8 participants correctly identified their most stressful component in 

the theatre environment, compared with 1/8 in the simulated environment. 
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Discussion 

Our SBT replicated the physical and procedural form of the clinical scenario as 

accurately as possible. We were able to observe real-time dynamic changes in the 

HRV at different procedural steps of the RSI. There was no significant difference in 

the average levels of stress induced by the differing environments across the entire 

course of the procedure.  

 

Our results suggest there was a greater physiological stress response seen in the 

theatre environment during the procedure when compared to baseline measures. The 

physiological stress in trainees was greater at baseline in the simulated environment 

than in the theatre environment but demonstrated little variation throughout the 

procedure. This suggests that SBT was unable to accurately replicate the stress of the 

technical procedure, but the environment may induce a level of pre-performance 

anxiety. There was a poor correlation between the component of the procedure that 

participants perceived as, and physiologically was, the most stressful component, 

particularly in the simulated environment.  

 

Undoubtedly, the most striking difference between the environments is the presence 

of a live patient. The potential for harm to occur if mistakes are made in theatre may 

account for the physiological stress response seen during the technical procedure in 

theatre. Previous studies have found that activity patterns are comparable between 

simulated and theatre environments for the same procedure (Manser et al. 2007). 

Therefore it is most likely that other factors may have affected the objective 

recordings of stress in our study. These include time pressure, distractions, 
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interruptions, being on call, or a heavy workload, all of which are commonly 

recognised stressors in the operative environment (Arora, Sevdalis, et al. 2010), but 

are difficult to replicate in SBT. Pre-performance anxiety may have contributed to the 

higher baseline physiological stress of trainees in the simulated environment. 

Participants may have expected a negative outcome or event during the simulation 

since it is a commonly used method of exposing trainees to rare or life threatening 

scenarios. In the simulated environment participants were away from their normal 

working environment, and were unaware of the scenario they were about to face, 

factors that could have created a degree of apprehension (Steel 2005).  

 

Our findings are consistent with previous studies that have also demonstrated a 

significant variation in levels of stress using HRV between procedural steps in a 

clinical environment (Song et al. 2009; Jones et al. 2015). HRV has been previously 

been well correlated with STAI by our group in consultant surgeons performing 

elective colorectal resections (Jones et al. 2015) and in consultant anaesthetists during 

intubation (Doleman et al. 2016), but this study suggests that this may not be the case 

in the simulated environment. Given that 6/8 participants identified their most 

physiologically stressful step correctly in the theatre environment (vs 1/8 in the 

simulated environment), it would appear that participants are less in tune with 

physiological changes that occur with stress when in an unfamiliar environment. The 

variation in subjective appreciation of stressful events in SBT is consistent with a 

previous study demonstrating experience of SBT differs among participants 

(Dieckmann et al. 2007).  
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Voluntary participation in this study may have introduced an element of selection 

bias, as those agreeing to participate may have been inherently more comfortable with 

either theatre or simulation environments. The lack of female participants meant that 

gender differences could not be observed and this may reduce the external validity of 

our findings. All trainees were of a similar seniority, although some may have been 

exposed to a higher number of RSIs in theatre than others prior to taking part in the 

study; using the same trainee in both environments should have controlled for this 

variable. Finally, the relatively small sample size limits the conclusions, and 

confirmatory results in larger samples are required. 

 

A significant effort was made to ensure that the simulated environment replicated that 

of theatre. SimMan 3G is designed to deliver the most realistic training possible 

whilst remaining easy to set up and simple to operate (Laerdal Medical). HRV 

measurements using the Polar RS800CX monitor are non-invasive, can be done 

remotely by the operator without procedural interruption, and require minimal 

expertise to perform. Data can be recorded from multiple members of the team 

simultaneously, and this has been demonstrated by our group (Bhalla et al - 

unpublished data).  

 

Despite the limitations of our study, our findings may have important implications for 

future medical education and research. Our finding that simulation was unable to 

recreate the stress of performing the technical procedure has implications for the 

ability of SBT to contribute towards the mastery of clinical procedures in trainee 

clinicians. Stress may have positive (Smeets et al. 2009) or negative effects (Harvey 

et al. 2012) upon learning, and is known to have a detrimental effect on both technical 
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(Arora, Sevdalis, et al. 2010) and non-technical skills (Doleman et al. 2016). SBT is 

frequently used to assess these domains in medical education and the research arena 

(Yee et al. 2005); therefore the validity of such assessments and the application of 

findings from research studies in the simulated environment to clinical practice may 

be questioned. Future studies may wish to evaluate participant stress in different 

simulated environments to assess stressful triggers and provide feedback as a learning 

tool, and to optimise SBT for assessment and stress management training. Assessing 

the impact of stress on learning and performance of technical or non-technical skills 

in simulated environments also warrants further investigation. 

 

In conclusion, we have demonstrated a real-time non-invasive method to compare the 

stress in trainees performing a procedure in a simulated versus clinical environment 

by both objective and subjective measures. Moreover, our results suggest that SBT 

was unable to accurately replicate the stress of the technical procedure performed in 

theatre, but the environment may induce a level of pre-performance anxiety. 

Importantly, this study has implications for the objective assessment of simulated 

environments for use in examinations, rating of technical and non-technical skills, and 

stress management training. To our knowledge this is the first published direct 

comparison of stress induced during SBT compared with the theatre environment. 
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Practice points 

• We have demonstrated a real-time non-invasive method to compare the stress 

in trainees performing a procedure in a simulated versus clinical environment. 

• To our knowledge this is the first published direct comparison of stress 

induced during simulation compared with the theatre environment.  

• Our simulated environment was unable to replicate the stress of the technical 

procedure in the clinical environment.  

• Our simulated environment induced a level of pre-performance anxiety. 

• This has implications for the objective assessment of simulated environments 

for use in examinations, rating of technical and non-technical skills, and stress 

management training. 
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Figure 1 – The simulated environment
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Figure 2 – Interaction between objective stress and environment (with standard 

errors of mean) 

 

 


