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Abstract

Methods for unconstrained face alignment must satisfy two requirements: they must

not rely on accurate initialisation/face detection and they should perform equally well for

the whole spectrum of facial poses. To the best of our knowledge, there are no methods

meeting these requirements to satisfactory extent, and in this paper, we propose Convolu-

tional Aggregation of Local Evidence (CALE), a Convolutional Neural Network (CNN)

architecture particularly designed for addressing both of them. In particular, to remove

the requirement for accurate face detection, our system firstly performs facial part detec-

tion, providing confidence scores for the location of each of the facial landmarks (local

evidence). Next, these score maps along with early CNN features are aggregated by

our system through joint regression in order to refine the landmarks’ location. Besides

playing the role of a graphical model, CNN regression is a key feature of our system,

guiding the network to rely on context for predicting the location of occluded landmarks,

typically encountered in very large poses. The whole system is trained end-to-end with

intermediate supervision. When applied to AFLW-PIFA, the most challenging human

face alignment test set to date, our method provides more than 50% gain in localisation

accuracy when compared to other recently published methods for large pose face align-

ment. Going beyond human faces, we also demonstrate that CALE is effective in dealing

with very large changes in shape and appearance, typically encountered in animal faces.

1 Introduction

Face alignment refers to the problem of localising a set of fiducial points on the human

face. Being a long-standing problem in Computer Vision research, a multitude of approaches

with various degrees of success have been proposed so far to solve it. With the advent of

cascaded regression [10] and its application to face alignment [7, 27, 28, 34], state-of-the-

art is now considered to have reached a satisfactory level of performance for frontal faces

including faces with difficult illumination, expression and occlusion. Yet, the problem of

face alignment under very large pose variation (including alignment of profile faces) has

received little attention so far. This paper proposes a CNN architecture that copes well for

the case of (a) inaccurate initialisation/face detection, and (b) severe self-occlusions, and

hence it is particularly suitable for arbitrary pose face alignment.

Recently, regression has been the standard approach to face alignment. Because learning

a direct mapping from image features to landmark locations might be hard, most approaches
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Figure 1: Qualitative fitting results produced by CALE on AFLW-PIFA test set. Observe that

our method copes well for both occlusions and difficult poses. Blue/Yellow points indicate

visible/invisible landmarks. All the keypoints are detected from a 3D perspective, so the

non-visible (yellow) points are actually accurately localised for the majority of cases.

Figure 2: Qualitative results produced by CALE on our Cats&Dogs dataset.
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learn a cascade of regressors, applied in a progressive manner by initialising each regressor

with the output of the previous one in the cascade. Such methods have been shown to produce

remarkably accurate results on a number of face datasets with significant expression, illumi-

nation change and to some extent occlusion like LFPW[4], Helen [17] and 300-W[21]. Yet,

it is well-known that such methods (a) are sensitive to initialisation (see for example [29]),

and (b) that their performance deteriorates for large pose datasets (e.g. AFLW-PIFA [13, 16]

and AFW [36]) especially when there is a significant number of self-occluded landmarks or

when there are large rotations (both out-of-plane and in-plane) and, in general, unfamiliar

poses. Due to poor visibility caused by self-occlusion and due to the large number of unfa-

miliar poses, it is unclear whether cascaded regression methods can learn a mapping from a

large number of occluded/non-visible parts to landmark coordinates.

To address the aforementioned limitations of prior work, in this paper we propose a

CNN architecture for large pose face alignment which we call Convolutional Aggregation

of Local Evidence (CALE). CALE by-passes the requirement for accurate face detection

by firstly using a CNN detector to perform facial landmark detection, providing at the same

time confidence scores for the location of each of the facial landmarks (local evidence). Next,

CALE aggregates the local evidence for each facial landmark through joint CNN regression

of the confidence scores, in order to refine the landmarks’ location. Besides playing the role

of a graphical model, CNN regression is a key feature of our system, guiding the network to

rely on context for predicting the location of occluded landmarks, typically encountered in

very large poses. The proposed architecture is very simple and can be trained end-to-end with

intermediate supervision. We show that our system achieves large performance improvement

on AFLW-PIFA, which is, to the best of our knowledge, by far the most difficult test set for

face alignment to date.

Our second contribution in this paper is an investigation of CALE’s alignment perfor-

mance beyond human faces and, in particular, on animal faces. As animal faces exhibit a

much larger degree of variability in shape and appearance as well as in pose and expression,

animal face alignment is a much more difficult problem which, to the best of our knowledge,

has never been systematically explored in the past by the Computer Vision community. Al-

though drawing a direct comparison is not possible, our results, both quantitative and quali-

tative (see Figs 1 and 2), show that CALE’s performance on animal faces is not far from that

on human faces.

2 Related Work

This section reviews related work on face alignment.

2D face alignment. State-of-the-art in 2D face alignment are techniques based on cas-

caded regression, see for example [7, 27, 28, 34]. Most commonly, such methods rely on

hand-crafted features, are sensitive to face detection initialisation [29], might require a cas-

cade with many steps, and most notably have been shown to work well mainly for frontal

datasets like LFPW[4], Helen [17] and 300-W[21] in which most of the landmarks are vis-

ible. On the contrary, our method does not rely on accurate face detection, uses a single

regression step and can cope well with arbitrary poses and severe self-occlusion. Notably,

the idea of aggregating local evidence for facial landmark localisation has been explored

within methods based on the so-called Constrained Local Model (CLM) [1, 2, 8, 22]. Note

that all CLM-based methods use hand-crafted features and have been shown to be largely

outperformed by cascaded regression methods. On the contrary, we show that our method,
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which can be seen as a deep version of the CLM, largely outperforms all prior work on large

pose face alignment.

Large pose face alignment. State-of-the-art methods for large pose face alignment in-

clude techniques that attempt to perform face alignment by fitting a 3D Morphable Model

(3DMM) to a 2D image [13, 14, 37]. The work in [13] aligns faces using a sparse 3D point

distribution model the parameters of which along with the projection matrix are estimated

by cascaded regression. Notably, [13] introduces AFLW-PIFA, the most challenging, to the

best of our knowledge, dataset for large pose unconstrained face alignment. The work in

[14] extends [13] by fitting a dense 3DMM using a cascade of CNNs. A similar approach

to [14] has been also proposed in [37]. Besides 3DMM-based approaches, the work in [37]

performs large pose 2D face alignment based on compositional cascaded learning, a novel

way to perform model averaging within cascaded regression. Despite its elegant formula-

tion, [37] completely avoids regressing non-visible landmarks and suffers from many of the

problems common in all cascaded regression techniques (please see above). Compared to

[13, 14, 37], our system by-passes the burden of fitting a 3D model and compared to [37], our

method avoids the limitations of cascaded regression. On AFLW-PIFA, our system reduces

the error reported in [13, 14, 37] by more than 50% ([37] does not report performance on

this dataset).

CNNs for face alignment. CNNs have been applied to the problem of face alignment,

only recently. One of the very first attempts that uses a simple CNN to regress landmark lo-

cations on the face image was proposed in [24]. The work in [32] proposes to combine facial

landmark localisation with attribute classification through multi-task learning. One limita-

tion of both methods is that they can detect 5 landmarks only. Very recent work includes

[14, 37] mentioned above and [26] which extends [28] within recurrent neural networks.

Our work largely outperforms [14] on AFLW-PIFA, while [26] has been applied to frontal

face alignment only, not reporting performance on AFLW or other large pose face alignment

datasets (e.g. AFLW-PIFA [13, 16] and AFW [36]).

CNN regression. Recently, methods based on CNNs have been shown to produce state-

of-the-art results for many Computer Vision tasks like image recognition [23], object detec-

tion [11] and semantic image segmentation [18]. In the context of landmark localisation, it is

natural to formulate the problem as a regression one in which CNN features are regressed in

order to provide a joint prediction of the landmarks, see for example recent works on human

pose estimation [3, 5, 20, 25]. The idea of joint regression of part detection scoremaps for

localisation has been explored in [5], however in the context of human pose estimation.

3 Convolutional Aggregation of Local Evidence

In our system (CALE), a CNN detector is firstly trained to detect the individual facial land-

marks thus by-passing the requirement for accurate face detection. At the same time, the

CNN detector provides confidence scores for the location of each of the facial landmarks (lo-

cal evidence). Next, CALE aggregates the local evidence for each facial landmark through

joint CNN regression of the confidence scores stacked with high-resolution CNN features,

in order to refine the landmarks’ location. The CNN detector and regressor are described in

detail in the following subsections. The proposed architecture is illustrated in Fig. 3.

CNN detection. One of the main issues with almost all prior techniques on face align-

ment is face detection initialisation. It is well-known that face alignment methods are sen-

sitive to how accurate the face detection algorithm is, with faces in difficult poses being
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Figure 3: Proposed architecture for Convolutional Aggregation of Local Evidence (CALE).

usually detected with less accuracy. A second important, but not so well-discussed, issue is

that typically face alignment methods are tight with a specific face detector, with alignment

accuracy rapidly deteriorating if a different face detector (than the one that the face align-

ment algorithm was trained on) is used. Notably, face alignment methods are usually tight to

both the statistics of the face detector and the definition of the face region that the detector

was trained on.

To overcome the strong dependency on the face detector, CALE firstly performs detec-

tion of the individual facial landmarks, expecting as input a grayscale image, scaled and

cropped based on a bounding box, used only for obtaining an rough estimate of the face size

and location. See Figs 1 and 2. Notably, the CNN landmark detectors of CALE are trained

jointly as follows: the detectors are based on a fully convolutional VGG [23], also making

use of earlier level CNN features to increase spatial resolution, as proposed in [18]. To avoid

the problem of neighbouring landmarks overlapping with each other, we used the training

procedure for detecting landmarks described in [31]: each landmark is encoded as a binary

image, with the values being within a specific radius around each landmark’s location set

to 1 (otherwise they are set to 0). Hence, the output of this network is a set of N channels,

one for each landmark. A radius of 10 pixels was found to work well for a face size of 175

pixels. Finally, the facial landmark detectors are trained jointly using the pixelwise sigmoid

cross entropy loss [31].

CNN regressor. The CNN regressor of CALE aims to play the role of a graphical model,

enforcing additional shape constraints necessary for enhancing accuracy and robustness to

occlusion [5, 20]. To this end, the N landmark heatmaps produced by the CNN detector

are stacked with high resolution CNN features produced from conv3_3 (see Fig. 3) and

then are fed to CALE’s CNN regressor. The CNN regressor has seven convolutional layers,

the first for of which have a kernel size varying from 7 to 17, ensuring a sufficiently large

receptive field. The last three layers have a kernel size equal to 1, and are the equivalent of

the fully connected layers [18]. Finally, the regressor has N output channels, one for each

landmark. As in [20], we represent each landmark with a Gaussian (with standard deviation

of 9 pixels) centred at the landmark’s ground truth location. Finally, the CNN regressor is

trained to regress the location of all landmarks jointly using the L2 loss [20].

Training. We trained our CNN landmark detectors by fine-tuning from a VGG-16 net-

work that was previously trained on ImageNet [9]. We followed a training procedure similar

to the one described in [18] by firstly, performing a “network surgery” which converts VGG-

16 to a fully convolutional network. We firstly trained the 32-stride model with a learning

rate of 1e−7 for 10 epochs. Because the 32-stride version of the network does not provide

enough resolution, we went all the way down to 8-stride. The detectors were trained under

this setting for 20 epochs (25 for the Cats&Dogs dataset) with a learning rate of 1e− 8.

Then, we gradually reduced the learning rate twice, down to 1e− 10. All the new learned

layers were initialised with zeros. In order to avoid early divergence, we froze the learning
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for all CNN detector layers and set temporary the learning rate to 0, training only the CNN

regressor. We trained the sub-network for 30 epochs with a learning rate of 1e−6. After 20

epochs, we lowered it to 1e− 7 and continued the training until convergence was reached.

The entire network (CNN detector and CNN regressor) was then trained jointly, in an end-

to-end fashion for 5 more epochs. All the new layers added were initialised with a random

Gaussian distribution with standard deviation of 0.01.

Regarding data augmentation, we applied image flipping and scale jittering (0.8-1.2).

Because the images provided in the AFLW-PIFA dataset were grayscale, the human face

alignment model was trained with grayscale images, while the one for animals using colour

images.

All models were trained and tested using Caffe[12] on a single Titan X GPU. The models

and the code will be published on our page.

4 Results

We firstly report results on the most challenging and large scale dataset for large pose human

face alignment, namely AFLW-PIFA [13], illustrating that CALE reduces the error achieved

by state-of-the-art methods [35, 37] by more than 50%. Then, we report results on our

Cats&Dogs dataset, illustrating, for the first time, that a face alignment method is capable of

achieving similar performance on both animal and human faces.

4.1 Human faces

We have opted not to report results on LFPW[4], Helen [17] and 300-W[21] which are all

frontal datasets containing a small portion of test images and are currently being considered

as saturated [35, 37]. Instead we report performance on AFLW-PIFA which is by far the

most challenging dataset for large pose face alignment [13]. In particular, the authors of

[13] created a subset of AFLW [16] that has a balanced distribution of yaw angles (from -90

degrees to 90 degrees) including 3901 images for training and a large number of 1299 for

testing. Notably, besides the existing 21 key points, this subset contains 13 new landmarks,

making the total number of annotated keypoints equal to 34. All the images are annotated

from a 3D perspective which makes the landmark location prediction even more difficult,

making AFLW-PIFA the most challenging dataset for face alignment. We report results on

the original 21 point annotations [13] as well as on the new ones, based on 34 points [14].

The evaluation metric used for AFLW-PIFA subset is the Normalized Mean Error (NME),

which is the average of the normalized (by the face size as defined in [14]) estimation error

of the visible landmarks:

NME =
1

N

N

∑
i=1

1

fi|vi|1

Nk

∑
j

vi( j)
∥∥∥L̃i(:, j)−Li(:, j)

∥∥∥ , (1)

where N is the total number of faces, Nk the number of keypoints and vi the corresponding

visibility label for the image Ii. For each image, the error is normalized by fi, which for

ALFW-PIFA is the square root of the face size calculated from the bounding box as in [14].

Firstly, we compare the performance of our CNN detector alone with that of the overall

CNN architecture (CALE). We opted to report performance on both occluded and visible

points. The results on AFLW-PIFA are given in Table 1 and Fig. 4. We observe that although
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21 points (vis.) 21 points 34 points (vis) 34 points

CNN detector 3.32 5.53 3.63 5.96

CALE 2.63 4.38 2.96 4.97

Table 1: Performance analysis of CALE on AFLW-PIFA using NME (%). Results are re-

ported on both 21 and 34 points. Results marked with (vis) are calculated on visible points

only, while the rest are calculated on both occluded and visible landmarks.

a) Evaluation on visible points only b) Evaluation on both invisible and visible

Figure 4: NME-based (%) comparison between CNN detector and CALE on AFLW-PIFA

on 34 points.

the CNN detector alone performs very well, CALE largely outperforms it achieving very

high alignment accuracy. The performance improvement offered by CALE is even greater

on the occluded points, verifying the usefulness of the CNN regressor for the difficult poses

and occlusions of AFLW-PIFA.

Next, we compare the performance of our method with that of currently considered state-

of-the-art methods for large pose face alignment, also including the very recent works of [14]

and [35]. Tables 2 and 3 summarise our results on AFLW-PIFA on both 21 and 34 points for

the visible points only. From Table 2, we observe that CALE largely outperforms all other

methods by a remarkable more than 50%, reducing the error of the second best performing

method [35] to more than half. Similarly, from Table 3, we observe that the improvement

over the second best performing method approaches 37%. Note that prior work reports on

visible points, only. To the best of our knowledge we are the first to report results on non-

visible landmarks too, please see Table 1. Remarkably, the performance of CALE when

evaluated on all points - both visible and occluded (see Table 1) surpasses the performance

of all existing methods when these are evaluated on visible points only (see Tables 2 and 3).

Fitting results from AFLW-PIFA can be seen in Fig. 1.

CDM [30] CFSS [33] ERT [15] SDM [28] PIFA [13] CCL [35] Ours

8.59 6.75 7.03 6.96 6.52 5.81 2.63

Table 2: NME-based (%) comparison on AFLW-PIFA on 21 points (visible landmarks only).

The results for CFSS, ERT and SDM are taken from [35].
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Evaluation PIFA [13] RCPR [6] PAWF [14] Ours

AFLW-PIFA 8.04 6.26 4.72 2.96

Table 3: NME-based (%) comparison on AFLW-PIFA evaluated on 34 points (visible land-

marks only). The results for PIFA, RCPR and PAWF are taken from [14].

4.2 Animal faces

While human face alignment is a well-studied problem, the problem of animal face align-

ment, to the best of our knowledge, has never been systematically explored in the past by the

Computer Vision community. As animal faces exhibit a much larger degree of variability in

shape and appearance as well as in pose and expression, animal face alignment is considered

a much more difficult problem. Cats and dogs, the two species chosen here, are the most

popular companion animals, worldwide and of enormous societal and economic importance.

Motivated by our results on human face alignment, we investigate CALE’s performance on

cat and dog face alignment. Although drawing a direct comparison is not possible, our re-

sults, both quantitative and qualitative (see Figs 1 and 2), show that CALE’s performance on

animal faces is not far from that on human faces.

Our Cats&Dogs dataset is a subset of the Oxford-IIIT-Pet dataset [19] which contains

a rich variety of cats/dogs breeds, making the dataset particularly challenging. Our dataset

contains 1511 images of cats and 1514 of dogs. For both animals, we kept 250 images for

testing and used the rest for training. We used 22 landmarks similarly defined for both species

(see 2). To measure performance, we used the same metric as the one used for AFLW-PIFA.

Fig. 5 and Table 4 summarise our results on 22 points. As we may observe, CALE

literally produces the same fitting accuracy for both species. Next, we attempt to make a

comparison between CALE’s performance on human and animal face alignment using 9

commonly defined points (2 on the corners of each eye, 1 on the nose, 3 on the upper mouth

and 1 on the jaw). Note that direct comparison is by no means straightforward as although

our Cats&Dogs dataset has “similar” training and testing sets for both species, AFLW-PIFA

is very different, including more images for training and testing and very large pose vari-

ation. Fig. 6 shows the obtained results. We may observe that CALE produces literally

the same performance for humans and cats, while the performance on dogs is inferior. This

performance deterioration is mainly due to the upper mouth and jaw landmarks which are

more noisy for dogs. Note however that when evaluation is done on all points (see Fig. 5 and

Table 4), this gap in performance diminishes illustrating that the difference in performance

shown in Fig. 6 is magnified by the not so large number of landmarks used.

Evaluation

Evaluation Ours

Cats&Dogs (Cats subset) 2.72

Cats&Dogs (Dogs subset) 2.71

Table 4: NME-based (%) performance on Cats&Dogs on 22 points.
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a) Cats. b) Dogs.

Figure 5: NME-based (%) performance on Cats&Dogs on 22 points.

Figure 6: NME-based (%) comparison between human and animal faces on 9 commonly

defined points (2 on the corners of each eye, 1 on the nose, 3 on the upper mouth and 1 on

the jaw).

5 Conclusions

We proposed Convolutional Aggregation of Local Evidence, a very simple CNN architecture

for large pose face alignment. We showed that such an approach is particularly suitable for

the case of large amount of self-occlusion typical in profile faces and unfamiliar poses. The

proposed architecture is very simple and was shown to achieve large performance improve-

ments on the most difficult datasets for large pose face alignment, for both human and animal

faces.
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