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Abstract
In engineering there are numerous examples of structures, such as train rails and airplane fuselages, that
present periodicity in their geometry or mechanical properties. It has been observed that this periodicity
leads to banded frequency response after excitation. These band gaps can be engineered to isolate noise and
vibrations of the periodic structure.
In this paper an infinite composite sandwich beam with hollow and pressurised core cells as periodic band
gap inducing factors was examined. Wave finite element (WFE) method was used to predict the effect
of pressured core cells periodicity on wave propagation and band gaps generation. Three low order finite
elements (FE) models were produced using commercially available FE software package. These models
consisted of a small section of the simple sandwich beam with homogenous core, with hollow core and with
pressurised hollow core.

1 Introduction

Periodic structures consist of infinite assembly of identical elements, usually called cells, joined in an iden-
tical manner. These structures, also called banded structures, have been subject of research for more than
a century. Floquet [1] was the first to publish research on periodic structures, where he studied 1D Math-
ieu’s equation. His work was followed by Rayleigh [2], who arrived at a form of Floquet’s theorem. In this
century, Mead firstly introduced Wave Finite Elements (WFE) Method in [3] which is based on Brillouin’s
periodicity theory (PT) [4] and Floquet’s and Bloch’s theorems. In [5] his work on wave propagation in
periodic structures was reviewed.
Periodic structures exhibit band-gaps, where wave propagation is significantly attenuated. Due to this atten-
uation and their potentials to passively damp vibration, numerous researches have been published examining
periodic structures’ banded frequency response. Some of the most important work are Ruzzene’s et al. [6, 7]
and Hussein’s et al. [8, 9]. Ruzzene et al. focused on the control of wave propagation and banded behaviour,
firstly in sandwich composite beams with periodic auxetic core [6] and then in 2D sandwich plate with pe-
riodic honeycomb [7]. In both works it was proved that banded behaviour can be controlled by changing
parameters like the length ratio of the periodic cells of the core. Hussein et al. derived dispersion relations
for periodic materials and examined the analysis [8] and design [9] of them. Based on these works, Liu et
al. [10] produced a research focusing on the wave motion and banded response of four different types of
periodicity in 1D beams. In addition to this work, Wu et al. [11] examined the banded behaviour of sand-
wiches with corrugated core, focusing on the geometry of the core and Chen et al. [12] examined the wave
propagation in sandwich with periodic core. In the latter work, two different materials periodically forming
the core of the sandwich were examined. WFE method has, also, been used to examine the banded behaviour
of a periodic beam in [13].
In this paper two versions of an infinite composite sandwich beams were modelled and their wave dispersion



curves were examined. The first one’s core was homogenous, while the second one’s was periodically hollow
inducing banded behaviour. For the second one a pre-stressed model was examined, with pressure applied
on the skins in the hollow part of the core.

2 The one dimensional WFE method

2.1 Description of the method

In this work an infinite composite sandwich beam was examined. An ANSYS FE model of a small segment
of the beam was created, whose length was Lx. This area was meshed with the only additional constraint
that the DOFs and the numbering of the nodes on the left and right side ought to be identical [15]. The length
of the segment, Lx, should not be too large or too small compared to the shortest wavelength so that the
accuracy of the analysis is reliable [16]. According to a conventional FE analysis, the equation of the motion
of the section is

[
K − ω2M

]
q = f (1)

where K and M are the stiffness and mass matrices, respectively, f is the vector of the nodal forces and q the
vector of the nodal DOFs. Damping can, also, be included in the analysis whether with K being complex or
as a viscous damping matrix C. Dynamic stiffness matrix D = K − ω2M is partitioned as in equation 2 in
order to reflect the influence of internal, left and right nodes on the wave propagation (no external forced on
the interior nodes):
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Since in our case the models included internal nodes, the appropriate condensation as descibed in [15] was
used. After the condensation, equation 2 can be written as
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According to Floquet’s theorem, the equation that relates the displacements on the two edges of the section
is [13]:

qR = λqL, fR = −λfL, (5)

where λ = e−ikLx , with k being the wavenumber. Equation 3 is rearranged:
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is the transfer matrix. The transfer matrix T depends only on the dynamic stiffness of the section. It has been
shown [15] that the eigenvalues of T are defined such that

|λj | ≤ 1,

Re
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(8)

These eigensolutions come in two sets: (λj ,ϕ
+
j ) and (1/λj ,ϕ

−
j ) and represent n positive-going (|λj | < 1)

and n negative-going (|λj | > 1) wave types, respectively, where n is the number of DOFs on each side of
the section.

2.2 Postprocessing

The eigenvalues are complex numbers and can be written as [17]

λj = e−µjLxe−ikjLx (9)

where i =
√
−1, µ ∈ R stands for the change in amplitude and k ∈ R stands for the change in phase, which

is generally known as wavenumber. Equation 9 can be written

− lnλj

Lx
= µj + ikj (10)

Damping being absent, propagating waves’ amplitude remains constant, which is given by |λj | = 1 and
µj = 0 and λj = e−ikLx , since |eix| = 1 ∀x ∈ R. The relation µj = 0 was used as guide to get the
propagating waves. For the non-propagating waves, µj was examined.

2.3 Stress stiffening

As in this work a scenario of pre-stressed structure was examined, pre-stress stiffness matrix Ks had to be
calculated. Considering that a static analysis had been solved, the updated stiffness matrix was calculated K
[14]:

K = K0 + Ks (11)

where K0 the original element stiffness matrix and:

Ks =

∫∫∫
GT τG dxdy dz (12)

where G is a matrix of shape function derivatives and τ is a matrix of the current Cauchy (true) stresses σ in
the global Cartesian system.

The updated matrix K was then used in WFEM to get the wavenumbers and eigenvectors of the pre-stressed
structure.



3 Numerical results

In this work two different models were examined: one infinite composite sandwich beam with fully ho-
mogenous core (Fig.1) and one with periodically hollow core (Fig.2). The latter beam was, also, examined
in pre-stressed condition, with 10bar pressure applied on the skins in the hollow part of the core (Fig.3).
The mechanical characteristics of each material used in the models are listed in Table 1, where Ei is the
modulus of elasticity in direction i, vij is the Poisson’s ratio for i and j being the directions of extension and
contraction, respectively, ρ is the density and Gij is the shear modulus of elasticity in direction j on the plane
whose normal is in direction i. In Fig.4 z axis is depicted. ANSYS 14.0 was used during the FE modelling.
Linear 8-node ANSYS SOLID45 solid element was chosen for the segment’s meshing, which comprises a
3D displacement field and three degrees of freedom per node (translations in the x, y, and z directions) [14].
All three models had the same core (hc = 10mm) and skin thickness (hs = 1mm) and the hollow part of
the core was Lh = 2cm long. The sandwich cell was Lx = 8cm long and each element was Le = 1cm. The
beam’s width was 2cm.

Figure 1: Infinite beam and cell with full homogenous core

Figure 2: Infinite beam and cell with periodically hollow core

Figure 3: Modelled cell of the periodically hollow core beam with pressure applied on the skins



Figure 4: Infinite beam and the modelled cell

Material I Material II
ρ = 1870kg/m3 ρ = 110kg/m3

Ex = 60e9Pa Ex = 145e6Pa
Ey = 40e9Pa Ey = 145e6Pa
Ez = 60e9Pa Ez = 145e6Pa
νxy = 0.4 νxy = 0.45
νyz = 0.4 νyz = 0.45
νxz = 0.25 νxz = 0.45

Gxy = 1.2e9Pa Gxy = 50e6Pa
Gyz = 1.2e9Pa Gyz = 50e6Pa
Gxz = 3.6e9Pa Gxz = 50e6Pa

Table 1: Material properties

3.1 Results

In Fig.5 the wavenumber curves of all three models are depicted and in Fig.6 the band gaps of the banded
ones are depicted. The results are of the same nature with the ones in [6], [10] and [12], where infinite
periodic beams were examined. As it was expected, the hollow core sandwich beam exhibits band gaps in
the following frequency bands: 1184Hz − 2252Hz, 2940Hz − 4756Hz and 6800Hz − 7572Hz. As it is
commented in [6], the discontinuity in the core of the sandwich beam along the beam’s length represents a
source of impedance mismatch, which is responsible for the existence of the band-gaps. In the same figure
we can see that the frequency band gaps exhibited by the pressurised beam are slightly different that the
non-pressurised one: 1172Hz− 2248Hz, 2924Hz− 4740Hz and 6784Hz− 7560Hz. This difference can
be seen in Fig.7. This can be explained by the local pre-stress effect on the skins due to the applied pressure.
The results reveal the potential for these two band gap inducing factors to be exploited so that the wave
propagation in a sandwich beam can be controlled, as it is suggested in the following section.
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Figure 5: Wavenumber curves of the sandwich beam with: (-) homogenous core, (x) periodically hollow
core, (+) periodically hollow core and 10bar pressure applied on the skins
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Figure 6: Band gaps of sandwich beam with: (x) periodically hollow core, (+) periodically hollow core and
pressure 10bar applied on the skins
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Figure 7: Wavenumber curves of the sandwich beam with: (x) periodically hollow core, (+) periodically
hollow core and pressure 10bar applied on the skins



4 Conclusion and Further Work

In this work the banded behaviour of an infinite composite sandwich beam with periodically hollow core was
examined, along with the effects of pressure applied in the hollow part of the core. First of all, a suggested
method of forming the core of a sandwich beam so that it could induce band gaps in vibration transmission
was shown, leading to attenuation of it. In this case, the core was hollow in periodic places of the beam. In
addition to this, 10bar pressure was applied on the skins in this hollow part of the beam, so that its effects
on the banded behaviour of the beam would be examined. The results of this analysis showed that pressure
could be a factor to control the frequency bands of the band gaps, but further analysis is needed.
This work can be continued by examining the possibility of controlling the band gap by manipulating the
inducing factors: length of the hollow part of the core and pressure magnitude.
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