
LUENGO, BASHAM, FRENCH: SMURFS SUPERPIXELS 1

SMURFS: Superpixels from Multi-scale
Refinement of Super-regions

Imanol Luengo1

imanol.luengo@nottingham.ac.uk

Mark Basham2

mark.basham@diamond.ac.uk

Andrew P. French1

andrew.p.french@nottingham.ac.uk

1 School of Computer Science,
University of Nottingham,
Nottingham, UK, NG8 1BB

2 Diamond Light Source Ltd,
Harwell Science & Innovation Campus,
Didcot, UK, OX11 0DE

Abstract

Recent applications in computer vision have come to rely on superpixel segmentation
as a pre-processing step for higher level vision tasks, such as object recognition, scene
labelling or image segmentation. Here, we present a new algorithm, Superpixels from
MUlti-scale ReFinement of Super-regions (SMURFS), which not only obtains state-of-
the-art superpixels, but can also be applied hierarchically to form what we call n-th order
super-regions. In essence, starting from a uniformly distributed set of super-regions, the
algorithm iteratively alternates graph-based split and merge optimization schemes which
yield superpixels that better represent the image. The split step is performed over the
pixel grid to separate large super-regions into more discriminative smaller superpixels.
The merging process, conversely, is performed over the superpixel graph to create 2nd-
order super-regions (super-segments). Iterative refinement over the two-scale regions
allows the algorithm to achieve better over-segmentation results than current state-of-the-
art methods, as experimental results show on the public Berkeley Segmentation Dataset
(BSD500).

1 Introduction
There is an increasing trend to use superpixels as building blocks for many computer vision
applications such as image segmentation [11], image parsing [14], semantic labelling [6]
and object detection and tracking [19]. Superpixel algorithms group pixels into perceptually
meaningful regions, which are more aligned with the human visual cognition system. They
not only reduce the redundancy and noise effects in the standard pixel grid, but are also es-
pecially useful for high computational cost problems, as operating over a superpixel graph
reduces dimensionality (and thus computational complexity) by several orders of magni-
tude. To enable this reduction in resolution to be helpful, there are some generally accepted
properties that a superpixel algorithm should offer in order to provide quality results in the
subsequent higher-level applications: (1) Superpixels should adhere to image boundaries.
(2) Each superpixel should be contained in a unique higher level object. That’s is, a super-
pixel should not overlap more than one object in the image. And (3), in most applications
superpixels are used as a preprocessing step; therefore they should be fast to compute and
memory efficient.

c© 2016. The copyright of this document resides with its authors.

Citation
Citation
{Ren and Malik} 2003

Citation
Citation
{Tighe and Lazebnik} 2010

Citation
Citation
{Kohli, Torr, etprotect unhbox voidb@x penalty @M {}al.} 2009

Citation
Citation
{Wang, Lu, Yang, and Yang} 2011

2 LUENGO, BASHAM, FRENCH: SMURFS SUPERPIXELS

Hierarchical Oversegmentation Layers

1st-order super-regions
(superpixels)

2nd-order super-regions
(super-segments)

0th-order super-regions
(original image, standard pixel grid)

Figure 1: Overview of the hierarchical regions, where 0th-order super-regions correspond to
the standard pixel grid. Each layer of the hierarchy outputs a decreasing number of regions
while maintaining image representation capabilities.

Most of the state-of-the-art algorithms [1][9][15][8][7] extract superpixels by adding
cuts to a graph, growing superpixels from a predefined set of seeds. In SEEDS [15], the
authors adopt a different idea. Rather than starting with seeds or a connected graph and
iteratively modifying the current state until superpixels are created, the authors propose to
iteratively refine an initial set of superpixel boundaries. Starting by a complete superpixel
partition (uniformly distributed blocks), the superpixels are iteratively refined by moving
their boundaries at pixel or block levels.

Here we present an alternative idea that consists of alternating moves at different hier-
archical segmentation layers. We present a new superpixel over-segmentation framework,
SMURFS, which uses a multi-scale region representation of the image to iteratively refine
super-regions at different scales. We define a multi-scale region representation by what we
term n-order hierarchical super-regions, which can be seen as hierarchical segmentation lay-
ers. Each layer of the super-region is composed by grouping elements of the previous layer,
and thus, yielding increasingly larger segments while maintaining boundary adherence and
image representation properties. The 0th-order super-region corresponds to the standard
pixel grid, 1st-order super-regions represent common superpixels, made of groups of similar
pixels, and the 2nd-order super-regions are essentially superpixels of superpixels (first intro-
duced as super-segments in [12]). Figure 1 overviews this process. Our main contribution
is an algorithm to iteratively create and refine super-regions at both scales to provide su-
perpixels with increasing image modelling capabilities. Results in the BSD500 dataset [10]
show that by alternating simple formulations at two over-segmentation layers, our algorithm
is able to better capture global and local image properties and obtain superpixels with the
highest Achievable Segmentation Accuracy (ASA), compared to recent state of the art.

2 Related work
We split the previous existing algorithms into three different categories: superpixels from a
graph formulation by gradually adding cuts, superpixels grown from initialized seeds, and
superpixels extracted by moving a predefined set of boundaries.

It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Achanta, Shaji, Smith, Lucchi, Fua, and Susstrunk} 2012

Citation
Citation
{Liu, Tuzel, Ramalingam, and Chellappa} 2011

Citation
Citation
{Vanprotect unhbox voidb@x penalty @M {}den Bergh, Boix, Roig, deprotect unhbox voidb@x penalty @M {}Capitani, and Vanprotect unhbox voidb@x penalty @M {}Gool} 2012

Citation
Citation
{Li and Chen} 2015

Citation
Citation
{Levinshtein, Stere, Kutulakos, Fleet, Dickinson, and Siddiqi} 2009

Citation
Citation
{Vanprotect unhbox voidb@x penalty @M {}den Bergh, Boix, Roig, deprotect unhbox voidb@x penalty @M {}Capitani, and Vanprotect unhbox voidb@x penalty @M {}Gool} 2012

Citation
Citation
{Russell, Kohli, Torr, etprotect unhbox voidb@x penalty @M {}al.} 2009

Citation
Citation
{Martin, Fowlkes, Tal, and Malik} 2001

LUENGO, BASHAM, FRENCH: SMURFS SUPERPIXELS 3

Graph-based methods represent the image as a graph of pixels in a 4 or 8-neighbouring
system and calculate similarities between adjacent pixels. For example, Normalized Cuts
[13] globally minimizes an objective function by recursively finding the optimal partition
in the normalized Laplacian graph. While giving good results, the algorithm is computa-
tionally expensive. An alternative approach is an agglomerative clustering algorithm from
Felzenszwalb and Huttenlocher [5] which is faster than Normalized Cuts. However, it can
produce very irregular superpixels which tend to miss some important boundaries. Veksler
and Boykov [17] managed to generate superpixels by placing overlapped patches over the
image and assigning each pixel to one of them. They formulate the problem in a MRF
framework whose solution is inferred with Graph Cuts [2]. In 2011, Liu et al. [9] introduced
Entropy Rate superpixels (ERS), a graph-based clustering method of the entropy rate of a
random walk, balanced by an energy that encourages superpixels of similar size. ERS su-
perpixels have a very good performance and they are able to detect boundaries that other
superpixels tend to smooth.

Region growing methods start by using a predefined set of seed points to grow superpix-
els using different techniques. Perhaps a classic example of this is watershed segmentation
[18]. An alternative approach would be QuickShift [16], which is itself a fast approximation
of MeanShift [4] and both are mode seeking algorithms. Another seed-based approach is
Turpopixels (TP) [7] which grows geometric flows from seeds until superpixels are created.
Recently introduced by Achanta et al. is Simple Linear Iterative Clustering (SLIC) [1], per-
haps one of the most widely known superpixel algorithm due to its simple and yet powerful
formulation that performs a fast variation of a local k-means clustering in superpixel win-
dows. Another recent introduction is the SEEDS algorithm [15], which extracts superpixels
by moving a predefined set of pixel boundaries in an energy maximization framework that
encourages color homogeneity and shape regularity. Last, the latest superpixel algorithm
from 2015, Linear Spectral Clustering (LSC) [8] has been proven extremely powerful and
efficient by adopting the normalized cuts formulation and approximating the similarity met-
ric by a kernel function, leading to an explicit mapping of the pixels into a high dimensional
feature space.

Superpixel algorithms are usually formulated as constrained frameworks where the num-
ber of superpixels N plays an important role in the final output. As seen above, this constraint
is introduced into the problem by different approaches such as initializing a grid of N uni-
form superpixels, N seed points, N uniform patches or as stopping criterion when the solution
reaches N connected regions. Here however, we will formulate the image over-segmentation
problem as an unconstrained optimization algorithm (in the number of superpixels), where
the number of superpixels is encouraged in an iterative split & merge step, and is later
enforced as a post-processed step which merges sufficiently small and similar superpixels
until the exact number of desired superpixels is returned. This allows us to provide a more
general framework with applications to other computer vision problems such as interactive
ND-image segmentation or hierarchical semantic labelling by exploiting their inherent hier-
archical nature.

3 Multi-scale Iterative Refinement of Super-regions
In this section we will present our super-region segmentation algorithm. To avoid the su-
perpixels from falling into local optima and failing to represent global image features, our
algorithm alternates split and merge steps iteratively over different super-region layers. Start-

Citation
Citation
{Shi and Malik} 2000

Citation
Citation
{Felzenszwalb and Huttenlocher} 2004

Citation
Citation
{Veksler, Boykov, and Mehrani} 2010

Citation
Citation
{Boykov and Kolmogorov} 2004

Citation
Citation
{Liu, Tuzel, Ramalingam, and Chellappa} 2011

Citation
Citation
{Vincent and Soille} 1991

Citation
Citation
{Vedaldi and Soatto} 2008

Citation
Citation
{Comaniciu and Meer} 2002

Citation
Citation
{Levinshtein, Stere, Kutulakos, Fleet, Dickinson, and Siddiqi} 2009

Citation
Citation
{Achanta, Shaji, Smith, Lucchi, Fua, and Susstrunk} 2012

Citation
Citation
{Vanprotect unhbox voidb@x penalty @M {}den Bergh, Boix, Roig, deprotect unhbox voidb@x penalty @M {}Capitani, and Vanprotect unhbox voidb@x penalty @M {}Gool} 2012

Citation
Citation
{Li and Chen} 2015

4 LUENGO, BASHAM, FRENCH: SMURFS SUPERPIXELS

Original Image Initial partition Superpixels Super-segments Final result

Merge similar superpixels

Split large super-segments

Optimization loop

(Desired: 200 superpixels) (100 super-segments)

Split Merge small

(200 superpixels)

Figure 2: Overview of our superpixel algorithm. Iterative refinement over two scales of
regions yields increasingly more robust superpixels that better capture global image features.

ing from an initial uniform grid of super-segments (with half the number of super-segments
than the desired number of superpixels), the split method will attempt to separate each of
the individual super-segments into smaller superpixels that better adhere to image bound-
aries. This step is highly parallelizable as every super-segment is separated independently
to the others. The merging step groups together the very similar neighbouring superpixels
into more meaningful super-segments trying to find higher-level objects. Alternation of these
two steps yields increasingly more robust superpixels as the two-step iteration tries to cap-
ture both local and global image properties respectively. Figure 2 illustrates the main idea of
our algorithm.

3.1 Problem representation
Let I be a standardized image in the Lab colorspace, N =width×height the number of pixels
and M the number of desired superpixels. We represent our 1st and 2nd-order hierarchical
regions as mappings s1 and s2

s1 : {1, . . . ,N}→ {1, . . . ,M1} and s2 : {1, . . . ,M1}→ {1, . . . ,M2} (1)

with M1 ' M and M2 < M1. Here, the set of M1 superpixels is composed by a group of
similar and adjacent pixels of the image, while M2 super-segments are formed by grouping
together the adjacent M1 superpixels. Each pixel is assigned to only one superpixel, and
equivalently, each superpixel is assigned to a single super-segment. The set of pixels that
belong to a superpixel is then denoted as Sm = {i | s1(i) = m} and the set of superpixels
that form a super-segment are described by Rm = { j | s2(j) = m}. Mapping from pixels to
super-segments is then straightforward. Let us, for completeness, denote as |S| and |R| the
set of all superpixels and super-segments respectively.

The goal of our algorithm is then to obtain a disjoint set of M superpixels. To do so,
rather than iteratively updating the initial M1 superpixels, as most of the state-of-the-art al-
gorithms do, we alternate refinement steps at both superpixel and super-segment scales. The
splitting step treats every super-segmentRm as an independent region of the image and tries
to split them to extract a subset of superpixels that better capture local information of the re-
gionRm, which by definition satisfies the hierarchical criterion as every superpixel extracted

LUENGO, BASHAM, FRENCH: SMURFS SUPERPIXELS 5

this way is mapped to the same higher level super-segment. The merging step, conversely,
treats the subset of M1 superpixels as a whole and applies an agglomerative clustering step,
which merges similar superpixels together trying to capture global appearance features. This
merging step results in new super-segments as groups of similar adjacent superpixels, and
thus, also satisfies the hierarchical mapping property of our super-regions.

3.2 Splitting large super-segments
This step attempts to separate large regions into smaller, more meaningful ones, allowing
new and better boundaries to form inside the larger region. We first define a large region as
a region that is larger than the expected average superpixel size, proportional to the desired
number of superpixels. The expected average size of a superpixel is defined as Avg = N/M,
where M is the desired number of superpixels. A set of large regions is then defined as
L = {Ri | size(Ri) > f1 · Avg}. The size of a region is defined as the number of pixels
assigned to that region, and the factor f1 controls the minimum size for a region to be a
candidate to be split. The factor f1, if set smaller than 1, only affects performance by ignoring
some small and homogeneous regions.

We then formulate the problem of splitting a large super-segment Ri ∈ L into smaller
superpixels as an MRF segmentation problem. Given an undirected graph G = (V,E), where
V are the nodes and E is the edge set, and a finite set of labels (or classes) C, the task is to
assign the optimal label cp ∈ C to each p∈V . The general form of a 2nd order MRF enforces
unary ψp and pairwise ψpq constraints to the set of nodes and edges,

E(ccc) = ∑
p∈V

ψp(cp)+λ ∑
p,q∈E

wpq ·ψpq(cp,cq) (2)

where cp is the label assigned to pixel p, and wpq is a similarity weight. Minimizing E yields
the optimal labelling ccc∗.

To split each of the individual regions Ri, we define a K label segmentation problem. K
pixels are sampled from each of the regions and assigned as cluster centers Θi = {θk | k =
1, . . . ,K}, each cluster center θk is then mapped to a label ck ∈ {1, . . . ,K}. The unary cost
ψp(cp) of assigning a pixel to the label cp is set as the Euclidean distance between the pixel’s
color xxxp and the color of the cluster center θcp . For the pairwise potential we use a parameter
free contrast-sensitive Potts model. Let Pi = { j | p j ∈Ri} be the set of pixels p j assigned to
the super-segment Ri and Ei = { j,k | p j, pk ∈ N ∧ p j ∈ Pi ∧ pk ∈ Pi} the set of edges in
a 4-connected grid connecting pixels p j and pk assigned to the same super-segment Ri, the
MRF based segmentation of the region Ri is then defined as the minimization of the MRF
energy,

Ei(ccc,Θi) = ∑
p∈Pi

∥∥xxxp−θcp

∥∥
2 + λ ∑

p,q∈Ei

1

1+
∥∥xxxp− xxxq

∥∥2
2

· [cp == cq], (3)

where [cp == cq] evaluates to 1 if the labels of pixel p and q are the same or to 0 otherwise,
and λ = 1 for all experiments. The above optimization scheme can be seen as a spatial
clustering, as nearby similar colors are assigned to the same cluster center. It is then followed
by a quick connected components approach to identify new superpixels as connected regions
with the same optimal label. This optimization scheme is applied to every large region of the
image, yielding for each of the regions a subset of smaller superpixels that better represent
the region. Each of the regions can be separately optimized in a completely parallel fashion,

6 LUENGO, BASHAM, FRENCH: SMURFS SUPERPIXELS

Pixel node

Current super-segment label

Edge weight

Small region
(no split)

4-connected pixel grid
(3 super-segments)

S

T

Optimal Cut
Split superpixels

Postprocessed new superpixels
(5 superpixels)

Prepare the graph Find connected regions

Figure 3: Region splitting procedure with K = 2. Large super-segments are optimally sep-
arated in smaller ones while small regions are not further separated. The optimal split is
obtained with a single cut for all the regions.

which is very important for high dimensional images or volumes, but can also be minimized
globally with a single graph cut [2] and an appropriate graph setup for standard color images,
as explained below.

3.2.1 Efficient simultaneous partition of every super-segment

Let us, for simplicity, consider the case with K = 2 colors, where each of the regions will be
separated in a binary fashion. The optimal labelling for each of the regions can be obtained
very efficiently with the well known maxflow method [2]. However, this formulation would
require M2 graph creations and M2 optimization schemes, where M2 is the actual number of
super-segments. This is a very efficient solution for high dimensional images where M2 and
the number of pixels/voxels N are very large, as every sub-problem can be solved in paral-
lel independently. For standard natural images, however, the cost of constructing different
graphs for every region is as expensive as the cost of calculating the optimal cut once the
graph is constructed. Thus, we propose a method for calculating the optimal cut for each
of the regions simultaneously. First, a standard 4-connected graph G is extracted from the
image and pixel differences are calculated according to wpq in equations 2 and 3. Next, for
every split iteration, the following modifications are applied to G to form the current graph
F : (1) Pixels assigned to different super-segments are disconnected, isolating the max-flow
problem inside each region. (2) Every pixel assigned to a small super-segment (which is
not a candidate to be separated) is disconnected from its neighbours and connected to the
background label with infinity weight. This will force all the pixels of that super-segment to
be assigned to the same label, and thus, being in the same superpixel after the optimization.
(3) Each of the pixels is connected to each of the cluster centers θk with their corresponding
weight (as ψp in equation 2 and 3).

Note that, although all the pixels are connected to K = 2 labels, each of the cluster
centers θk is different for every region Ri, as different cluster centers are sampled for each
region. Finding the optimal solution to the above min-cut/max-flow problem in the graph F
is equivalent to efficiently finding the solution for each of the individual regions. It is also
considerably faster than computing a standard graph cut in an image of the same size, since
the graph C contains less edges than G. Extension to multiple labels K > 2 is straightforward
by means of α-expansion [3]. Figure 3 illustrates this process for an artificial setup with
K = 2 and 3 super-segments.

Citation
Citation
{Boykov and Kolmogorov} 2004

Citation
Citation
{Boykov and Kolmogorov} 2004

Citation
Citation
{Boykov, Veksler, and Zabih} 2001

LUENGO, BASHAM, FRENCH: SMURFS SUPERPIXELS 7

3.3 Merging similar superpixels
The set of superpixels to be merged is represented as a Region Adjacency Graph (RAG),
a graph where each of the nodes corresponds to a superpixel i ∈ |S| and edges connect
neighbouring superpixels (superpixels sharing boundary pixels) with a dissimilarity weight.
The weight is calculated by first extracting a feature descriptor fi from each superpixel i. For
simplicity, we extract the mean color of the pixels assigned to each of the superpixels, as is
later shown to produce discriminative enough descriptors for merging purposes while being
very fast. The dissimilarity weight of the edge between two superpixels di j is calculated
as the Euclidean distance between the descriptors. With the above constructed RAG, we
apply an agglomerative clustering procedure, similar to the one of Felzenswalb [5] with an
added number of super-segments constraint and applied at the superpixel level (RAG) to
efficiently merge superpixels into super-segments. The weights of the graph are first ordered
by the weight di j. Then, iteratively, the two most similar superpixels i, j ∈ |S| that satisfy
a merging condition τ are merged. The internal similarity of the region and the merging
condition are described as,

Cint(i) = cost(i)+
f2 ·Avg
size(i)

, and, τ(i, j) = di j < min(Cint(i),Cint(j)), (4)

where Avg is the expected average size of a superpixel (proportional to the desired number
of superpixels), size(·) determines the size (in pixels) of the region i ∈ |R| and cost(i) is an
internal cost of the region i. The internal cost is initially set to cost(i) = 1

N ∑

∥∥∇fp
∥∥, the

mean color gradient magnitude of the region i, as a measure of region homogeneity, and it is
updated with di j after regions i and j are merged. The internal cost prevents homogeneous
regions from being merged unless the two regions are very similar. The merging condition
τ depends on an adjustable scale parameter f2 which will define a penalty to prevent large
regions from merging. The larger f2 the smaller the cost to merge a region. Empirically we
chose f2 = 0.1, which encourages small superpixels to be merged and prevents very large
superpixels to merge each other. The merging process stops if the number of current regions
is smaller than the desired number of superpixels or when all nodes have been visited. Note
that while a pixel grid might have hundreds of thousands of nodes, the RAG defined here
only contains M superpixels nodes (usually M < 1000 for a 480×320 image in the BSD500
dataset) which makes this merging process very fast.

4 Experiments
We compare SMURFS superpixels to seven state-of-the-art superpixel algorithms: SLIC [1],
Turbopixels [7], SEEDS [15], EneOpt0 and EneOpt1 [17], ERS [9] and LSC [8]. For all the
algorithms, we use the implementation publicly available in the author’s web pages. We
perform the experiments in the test dataset of the Berkeley Segmentation Dataset (BSD500)
consisting of 200 images, all with at least 4-5 manually segmented ground truth boundaries
and use the other 200 training images to empirically chose the parameters of our algorithm.
We compare the quality of our superpixels by three commonly used evaluation metrics: cor-
rected under-segmentation error (CUE), boundary recall (BR) and achievable segmentation
accuracy (ASA). Here, CUE measures the error of superpixels overlapping more than one
ground truth object. Lower CUE indicates that fewer superpixels overlap more than one
ground truth object. ASA measures the maximum achievable segmentation accuracy when

Citation
Citation
{Felzenszwalb and Huttenlocher} 2004

Citation
Citation
{Achanta, Shaji, Smith, Lucchi, Fua, and Susstrunk} 2012

Citation
Citation
{Levinshtein, Stere, Kutulakos, Fleet, Dickinson, and Siddiqi} 2009

Citation
Citation
{Vanprotect unhbox voidb@x penalty @M {}den Bergh, Boix, Roig, deprotect unhbox voidb@x penalty @M {}Capitani, and Vanprotect unhbox voidb@x penalty @M {}Gool} 2012

Citation
Citation
{Veksler, Boykov, and Mehrani} 2010

Citation
Citation
{Liu, Tuzel, Ramalingam, and Chellappa} 2011

Citation
Citation
{Li and Chen} 2015

8 LUENGO, BASHAM, FRENCH: SMURFS SUPERPIXELS

(a) ASA (↑ better) (b) CUE (↓ better) (c) BR (↑ better) (d) ASA over iterations

Figure 4: (a), (b) and (c): comparison of different configurations of our algorithms in stan-
dard benchmarks. All four version achieve similar results, with different convergence rates
as shown in (d). (d) Example convergence rate with M = 400 superpixels in an image of the
BSD500 dataset. The number of sampled colors K seems to have an important role in the
final ASA, however, with the same K, the sampling criterion only affects convergence rate.

using superpixels as units by assigning each superpixel to the object that it most overlaps.
High values of ASA indicate that the over-segmentation matches well higher level objects.
BR measures the fraction of ground truth boundaries that match superpixel boundaries. It is
measured as the percentage of true boundary pixels that are within 2 pixels from at least one
superpixel boundary point. Here we adopt the definition of CUE used in [15] and BR and
ASA from [9][1].

We consider 4 versions of our algorithm for region splitting, one with a binary split step
(K = 2) and another one with K = 5 samples per region. For each of them we consider two
sampling criterion: randomly chosing K pixels from each of the regions, and using k-means
to obtain better cluster centers. All the algorithms run for 10 iterations, as has been shown to
be enough to produce state-of-the-art superpixels. The average running time of our algorithm
for all the images in the BSD dataset is 500/800ms per image for randomly selected samples
and 700/1500ms for the k-means version (with K = 2/K = 5 respectively). Figure 4 shows
the comparison in the above benchmarks, along with a convergence test with the ASA. It is to
note that while k-means based approaches tend to produce sightly better results, the 2-scale
iterative refinement process makes the choice of the sampling criterion less sensitive overall.
In worst case scenario, a region might randomly sample K pixels with the same color and
thus, prevent it from being separated, however, this can be corrected in following iterations
of the algorithm. This can be seen in Figure 4(d), as for a fixed K, the sample criterion
only affects the convergence rate (at computational expense). Additionally, it can be seen
that while the algorithm doesn’t try to maximize the ASA (as it is completely unsupervised
and doesn’t know about the ground truth), every iteration of the algorithm tends to give an
improvement over the last one.

Figure 5 shows the comparisons with the state of the art averaged over the 200 images
in the test partition of the BSD500 dataset. It can be seen that our algorithm is in general
as good or better than most state of the art algorithms, especially with lower numbers of
superpixels. It achieves better ASA and CUE than any other algorithm, and is very close to
LSC in BR. It is also as fast as the other algorithms. Our algorithm takes 0.5 (the quicker
version, as mentioned above) seconds using a standard i3 desktop computer for each im-
age in the BSD500 dataset, which is similar to SEEDS, SLIC and LSC that take less than a
second, faster than ERS (which takes around 3 seconds) and much faster than Turbopixels
and eneOpt0-1 (on average >5 seconds). The multi-scale iteration of our algorithm allows

Citation
Citation
{Vanprotect unhbox voidb@x penalty @M {}den Bergh, Boix, Roig, deprotect unhbox voidb@x penalty @M {}Capitani, and Vanprotect unhbox voidb@x penalty @M {}Gool} 2012

Citation
Citation
{Liu, Tuzel, Ramalingam, and Chellappa} 2011

Citation
Citation
{Achanta, Shaji, Smith, Lucchi, Fua, and Susstrunk} 2012

LUENGO, BASHAM, FRENCH: SMURFS SUPERPIXELS 9

(a) ASA (↑ better) (b) CUE (↓ better) (c) BR (↑ better)

Figure 5: Quantitative comparison of SMURFS with K = 5 and random sampling.

it to better capture global image cues and achieve excellent results, that, as shown in 4(d),
increase with the number of iterations. It is then of interest to find a balance between the
number of iterations and speed of the algorithm. Thus, we empirically chose T = 10 iter-
ations, as they are sufficient. More complex stopping criteria can be studied for different
purpose applications, such as measuring the mean similarity of the merged regions in the
last merging step and using its convergence as a stopping criterion, but it is out of the scope
of this paper.

Figure 6: Visual comparison of superpixels with M = 200 superpixels.

Figure 6 shows qualitative comparison of different superpixel algorithms. SLIC and LSC
produce the most compact superpixels while ERS, SEEDS and SMURF tend to produce

10 LUENGO, BASHAM, FRENCH: SMURFS SUPERPIXELS

larger superpixels in areas with less textural information. It can be seen that SMURFS tends
to produce piecewise-constant superpixels, which allows the algorithm to produce more su-
perpixels in areas where more attention to detail is needed. This yields large superpixels
in homogeneous areas (such as sky and road in the 1st and 3rd row) while producing more
superpixels in complex areas. We believe that the unconstrained shape and boundary adher-
ence of our superpixels could improve the over-segmentation (and thus, the effectiveness of
the posterior algorithms) in images with highly textured objects with large piecewise-smooth
backgrounds, such as biomedical images or volumes. Further study is needed to demonstrate
the potential our algorithm for biomedical volumes, but its inherent graph-based framework,
the fully parallelizable formulation of section 3.2 and the ability to over-segment image ob-
jects seem very suitable for such applications.

5 Conclusions
In this paper we have presented SMURFS, a new superpixel formulation in a graph based
multi-scale iterative refinement framework that can be applied hierarchically to obtain higher-
level segmentation layers. It achieves better results in two metrics of the BSD500 dataset
than the current state-of-the-art. Our algorithm tends to form big superpixels where there is
no characterizing texture (like ground or sky areas, see Figure 6), and will create more su-
perpixels in areas that require more attention to detail. We believe this has some interesting
implications, as further layers in the hierarchy can delineate higher level objects. This how-
ever, requires further study and we plan to examine its application to hierarchical semantic
segmentation [12] and in high dimensional image and volume segmentation. We also plan to
work towards a parallel version of our algorithm (working in the GPU) for the segmentation
of large 3D volumes, as the most computationally expensive part of the algorithm (section
3.2) is fully parallelizable.

6 Acknowledgements
We gratefully acknowledge Diamond Light Source for jointly funding Imanol Luengo under
PhD STU0079.

References
[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and

Sabine Susstrunk. Slic superpixels compared to state-of-the-art superpixel methods.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(11):2274–2282,
2012.

[2] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision. Pattern Analysis and Machine In-
telligence, IEEE Transactions on, 26(9):1124–1137, 2004.

[3] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization
via graph cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 23
(11):1222–1239, 2001.

Citation
Citation
{Russell, Kohli, Torr, etprotect unhbox voidb@x penalty @M {}al.} 2009

LUENGO, BASHAM, FRENCH: SMURFS SUPERPIXELS 11

[4] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature space
analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(5):
603–619, 2002.

[5] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image seg-
mentation. International Journal of Computer Vision, 59(2):167–181, 2004.

[6] Pushmeet Kohli, Philip HS Torr, et al. Robust higher order potentials for enforcing
label consistency. International Journal of Computer Vision, 82(3):302–324, 2009.

[7] Alex Levinshtein, Adrian Stere, Kiriakos N Kutulakos, David J Fleet, Sven J Dickin-
son, and Kaleem Siddiqi. Turbopixels: Fast superpixels using geometric flows. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 31(12):2290–2297, 2009.

[8] Zhengqin Li and Jiansheng Chen. Superpixel segmentation using linear spectral clus-
tering. In Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference
on, pages 1356–1363. IEEE, 2015.

[9] Ming-Yu Liu, Oncel Tuzel, Srikumar Ramalingam, and Rama Chellappa. Entropy rate
superpixel segmentation. In Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 2097–2104. IEEE, 2011.

[10] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring eco-
logical statistics. In Proc. 8th Int’l Conf. Computer Vision, volume 2, pages 416–423,
July 2001.

[11] Xiaofeng Ren and Jitendra Malik. Learning a classification model for segmentation. In
Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pages
10–17. IEEE, 2003.

[12] Chris Russell, Pushmeet Kohli, Philip HS Torr, et al. Associative hierarchical crfs for
object class image segmentation. In Computer Vision, 2009 IEEE 12th International
Conference on, pages 739–746. IEEE, 2009.

[13] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 22(8):888–905, 2000.

[14] Joseph Tighe and Svetlana Lazebnik. Superparsing: scalable nonparametric image
parsing with superpixels. In Computer Vision–ECCV 2010, pages 352–365. Springer,
2010.

[15] Michael Van den Bergh, Xavier Boix, Gemma Roig, Benjamin de Capitani, and Luc
Van Gool. Seeds: Superpixels extracted via energy-driven sampling. In Computer
Vision–ECCV 2012, pages 13–26. Springer, 2012.

[16] Andrea Vedaldi and Stefano Soatto. Quick shift and kernel methods for mode seeking.
In Computer Vision–ECCV 2008, pages 705–718. Springer, 2008.

[17] Olga Veksler, Yuri Boykov, and Paria Mehrani. Superpixels and supervoxels in an
energy optimization framework. In Computer Vision–ECCV 2010, pages 211–224.
Springer, 2010.

12 LUENGO, BASHAM, FRENCH: SMURFS SUPERPIXELS

[18] Luc Vincent and Pierre Soille. Watersheds in digital spaces: an efficient algorithm
based on immersion simulations. IEEE Transactions on Pattern Analysis & Machine
Intelligence, (6):583–598, 1991.

[19] Shu Wang, Huchuan Lu, Fan Yang, and Ming-Hsuan Yang. Superpixel tracking. In
Computer Vision (ICCV), 2011 IEEE International Conference on, pages 1323–1330.
IEEE, 2011.

