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A B S T R A C T   

Although global- and catchment-scale hydrological models are often shown to accurately simulate long-term 
runoff time-series, far less is known about their suitability for capturing hydrological extremes, such as 
droughts. Here we evaluated simulations of hydrological droughts from nine catchment scale hydrological 
models (CHMs) and eight global scale hydrological models (GHMs) for eight large catchments: Upper Amazon, 
Lena, Upper Mississippi, Upper Niger, Rhine, Tagus, Upper Yangtze and Upper Yellow. The simulations were 
conducted within the framework of phase 2a of the Inter-Sectoral Impact Model Intercomparison Project (ISI
MIP2a). We evaluated the ability of the CHMs, GHMs and their respective ensemble means (Ens-CHM and Ens- 
GHM) to simulate observed hydrological droughts of at least one month duration, over 31 years (1971–2001). 
Hydrological drought events were identified from runoff-deficits and the Standardised Runoff Index (SRI). In all 
catchments, the CHMs performed relatively better than the GHMs, for simulating monthly runoff-deficits. The 
number of drought events identified under different drought categories (i.e. SRI values of -1 to -1.49, -1.5 to 
-1.99, and ≤-2) varied significantly between models. All the models, as well as the two ensemble means, have 
limited abilities to accurately simulate drought events in all eight catchments, in terms of their occurrence and 
magnitude. Overall, there are opportunities to improve both CHMs and GHMs for better characterisation of 
hydrological droughts.   

1. Introduction 

A drought is an event where water availability is lower than normal, 

resulting in a failure to fulfil the water demands of different natural 
systems and socioeconomic sectors (WMO, 1986). From 1991 to 2005, 
950 million people were affected by droughts worldwide and economic 
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damage of 100 billion US dollars was reported UN and UNISDR, UNDP, 
I., (2009). Droughts are usually the consequence of a prolonged period 
of below normal precipitation that also affects many other environ
mental, climate and socio-economic variables (Lloyd-Hughes, 2014; Van 
Loon, 2015). Drought can be difficult to identify in space and time, 
which makes it one of the most complex natural hazard (Wilhite, 1993; 
Wilhite et al., 2000). Researchers, managers and policy makers quantify 
drought events using drought indices based on climate data (reviewed in 
Heim, 2002; Keyantash and Dracup, 2002; Mishra and Singh, 2010). 
Whilst precipitation is a key input to calculate these indices, other 
climate and environmental variables that affect water storage and 
availability, are also significant. 

Droughts are complex natural disasters as their onset and magnitude 
are related to the interaction between many hydrological and climato
logical processes. Droughts can be classified into different types namely 
meteorological, hydrological, agricultural and socioeconomic droughts. 
Meteorological droughts represent below normal precipitation and are 
mainly presented by precipitation driven indices such as the Stand
ardised Precipitation Index (SPI; McKee et al., 1993), Regional Drought 
Area Index (RDAI; Fleig et al., 2011) and Effective drought index (EDI; 
Byun and Wilhite, 1999). In contrast, hydrological droughts define ef
fects on freshwater storage, which are represented by indices that use 
stream flows, reservoir levels, groundwater levels or other similar var
iables. Hydrological droughts are often closely related to meteorological 
droughts and can also be exacerbated by environmental changes, 
anthropogenic activities, and mismanagement of water resources (Tal
laksen et al., 2004). 

Studies on hydrological droughts at global or continental scales 
increasingly use Land Surface Models (LSMs), Global Hydrological 
Models (GHMs) and Catchment Scale Hydrological Models (CHMs) to 
quantify and predict drought events (Gosling, Zaherpour, et al., 2017; 
Hattermann et al., 2017). GHMs, LSMs and CHMs have been widely used 
to model flood hazards and risk (Arnell and Gosling 2016), climate 
change mitigation (Irvine et al., 2017), forecasting at shorter time scales 
(Emerton et al., 2016) and food security (Elliott et al., 2014). The use of 
these models to study droughts is also relatively common (Van Huijge
voort, et al., 2013; Prudhomme et al., 2014) but there is relatively less 
information on the performance of the models for simulating drought. 
Given the societal significance of drought prediction under climate 
change scenarios (Pokhrel et al., 2021) using these tools, and the in
fluence of results on climate change adaptation and mitigation 

decision-making, it is critical to understand their strengths and limita
tions when specifically focusing on drought assessment and prediction. 

Whilst some studies have assessed the ability of multiple CHMs 
(Huang et al., 2017) and GHMs (Zaherpour et al., 2018) to simulate 
historical low flows, there has to date been no study that compares the 
performance of CHMs and GHMs with a focus on drought characteris
tics. Thus the main novelty of this study is that it is the first cross-scale 
model evaluation of drought event frequency, intensity/severity and 
duration, together referred to as ‘droughts’ hereafter. This was achieved 
through the computation of observed and simulated runoff-deficits and 
the Standardised Runoff Index (SRI). 

The main objective of this study was to systematically evaluate the 
performance of several global scale and catchment scale hydrological 
models to simulate droughts. We also discuss the opportunities for 
improving the simulation of drought events by both GHMs and CHMs. 

2. Data 

2.1. Study catchments 

Eight large (> 65,000 km2) catchments were selected to cover 
diverse climate zones and hydrological systems around the globe. These 
were, the Upper Amazon, Lena, Upper Mississippi, Upper Niger, Rhine, 
Tagus, Upper Yangtze and Upper Yellow (Fig. 1). The same eight 
catchments used in previous GHM-CHM comparisons (Gosling et al., 
2017; Hattermann et al., 2017). For the analysis, only the upper part of 
the Amazon, Mississippi, Niger, Yangtze and Yellow were modelled due 
to their complicated geomorphological structure and human alterations 
further downstream (Krysanova and Hattermann, 2017). Catchment 
boundaries were defined according to Drainage Direction Maps at 30′

(DDM30; Döll and Lehner, 2002) for the GHMs and CHMs, and ac
cording to the Global Runoff Data Centre (GRDC; http://grdc.bafg.de) 
for the observed data. 

2.2. Models and input data 

We used CHM and GHM simulations from ISIMIP2a (Gosling et al., 
2017) to identify historical drought events from their respective 
monthly runoff simulations, and evaluated how these droughts 
compared to the observed record. The simulations are the most 
up-to-date opportunity that exists to robustly and consistently compare 

Fig. 1. Location of the eight study catchments labelled as (1) Upper Amazon, (2) Lena, (3) Upper Mississippi, (4) Upper Niger, (5) Rhine, (6) Tagus, (7) Upper 
Yangtze, and (8) Upper Yellow. 
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the performance of several CHMs and GHMs. 
Simulated runoff data from nine CHMs and eight GHMs along with 

corresponding observed runoff data from the GRDC, for 1971–2001, 
were used in this study. Observed monthly runoff data was acquired 
from the most downstream gauge in the GRDC catalogue for each 
catchment. All GHMs and CHMs were run with daily input climate data 
from WATCH ERA-40 (Weedon et al., 2011) for the period 1971–2001, 
which we aggregated to monthly temporal resolution. Output from the 
models is openly available from the Earth System Grid Federation 
(ESGF; https://esg.pik-potsdam.de/search/isimip) for the GHMs 
(Gosling et al., 2017) and the CHMs (Krysanova et al., 2017). All the 
GHMs provided outputs for all catchments; however, the number of 
CHMs with simulated runoff varied by catchment (Table 1). Following 
the method described by Haddeland et al. (2011), monthly observed and 
simulated runoff data was converted to catchment-mean monthly runoff 
by using the area upstream of the gauge according to the DDM30 river 
network. Thus, an area correction factor was applied to the GRDC runoff 
data to account for the fact that the river network, which is at 0.5◦

spatial resolution, may not perfectly overlap with the GRDC river 
catchment boundaries (Table 1). 

Both CHMs and GHMs simulate the full hydrological cycle with 
predominantly daily precipitation and temperature as input data. All the 
GHMs simulated hydrological processes at a spatial resolution of 0.5◦ x 
0.5◦ across the global land surface. In contrast, CHMs operated using 
various approaches; three CHMs run on a grid (mHM, VIC, WaterGAP3), 
four by splitting the catchment into sub-catchments and smaller hy
drological response units (HBV, HYPE, SWAT, SWIM) and one by 
considering the whole catchment as a single entity (HYMOD). The GHMs 
were not calibrated to catchment specific conditions, except WaterGAP2 
(which was calibrated against long-term average annual streamflow for 
1319 gauges worldwide) while the CHMs were calibrated and the 

performance of the calibration evaluated in a separate validation period 
using the WATCH ERA-40 climate forcing data (Huang et al., 2017). 

In addition to the individual model results, we calculated the cor
responding ensemble mean (using monthly runoff values) for the GHMs 
(denoted Ens-GHM) and CHMs (Ens-CHM) for every catchment, and 
included them in the analysis (SM 1). All the calculations of runoff- 
deficits and SRI for Ens-GHM and Ens-CHM are based on ensemble 
monthly runoff values. For the purposes of this study, all the models 
were treated as independent even though some of the models employ 
similar model parameterisations for some hydrological processes. No 
hydrological model was excluded or weighted based on their ability to 
simulate runoff. 

3. Method 

3.1. Runoff-deficit 

We calculated runoff-deficit values based on a variable threshold and 
compared the simulated runoff-deficit with observed values. The 
threshold was defined as the 80th exceedance percentile runoff for each 
month separately, a value between the 70th and 95th percentile, 
commonly used for perennial rivers (Hisdal et al., 2001; Andreadis et al., 
2005; Fleig et al., 2006; Tallaksen et al., 2009; van Loon, 2015). A 
positive runoff deficit indicates dry conditions i.e. when the runoff falls 
below the threshold value. 

3.2. Standardised runoff index (SRI) 

Several standardised indices have been developed for identifying 
hydrological droughts, such as the Palmer Hydrological Drought Index 
(PDHI; Jacobi et al., 2013), Water Supply Index (WSI; Garen, 1993) and 

Table 1 
Catchments, gauging station, upstream area of gauging station, and the GHMs and CHMs that comprise ensemble (marked with x).  

Catchment Upper Amazon Lena Upper 
Mississippi 

Upper 
Niger 

Rhine Tagus Upper 
Yangtze 

Upper 
Yellow 

GRDC number 3,623,100 2,903,430 4,119,800 1,134,100 6,435,060 6,113,050 — — 
Gauging station Sao Paulo de 

Olivenca 
Stolb Alton Koulikoro Lobith Almourol Cuntan Tangnaihai 

Upstream drainage area (km2) - GRDC 990,781 2460,000 444,185 120,000 160,800 67,490 804,859 121,000 
Upstream drainage area (km2) – DDM30 994,469 2456,513 448,575 121,058 162,092 71,007 851,303 117,543 
Difference between GRDC and DDM30 areas 

(%) 
− 0.4 0.1 − 1.0 − 0.9 − 0.8 − 5.2 − 5.8 2.9 

GHM 
ensemble 
(Ens-GHM) 

CLM (Oleson et al., 2010) x x x x x x x x 
DBH (Tang et al., 2007) x x x x x x x x 
H08 (Hanasaki et al., 2008) x x x x x x x x 
MATSIRO (Pokhrel et al., 
2015) 

x x x x x x x x 

MPI-HM (Hagemann and 
Dümenil, 1998) 

x x x x x x x x 

PCR-GLOBWB (Wada et al., 
2014) 

x x x x x x x x 

WaterGAP2 (Muller Schmied 
et al., 2016) 

x x x x x x x x 

LPJmL (Bondeau et al., 2007) x x x x x x x x 

Number of GHM simulations 8 8 8 8 8 8 8 8 

CHM 
ensemble 
(Ens-CHM) 

ECOMAG (Motovilov et al., 
1999)  

x       

HBV (Bergstrom and Forsman, 
1973) 

x  x x x x x x 

HYMOD (Boyle, 2001) x  x x x   x 
HYPE (Lindström et al., 2010)  x   x x   
mHM (Samaniego et al., 2010) x  x x x   x 
SWAT (Arnold et al., 1993) x  x x x  x  
SWIM (Krysanova et al., 1998) x x x x x  x x 
VIC (Liang et al., 1994) x x x x x x x x 
WaterGAP3 (Verzano 2009) x x x x x x  x 

Number of CHM simulations 7 5 7 7 8 4 4 6  
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Standardised Streamflow/Runoff Index (SSI/SRI; Vicente-Serrano et al., 
2012). In comparison with PHDI and WSI, SSI is more commonly 
accepted because it is simple to calculate, can be used on various time 
scales and requires fewer inputs. SSI is extensively used in many studies 
(Shukla and Wood, 2008; Vicente-Serrano et al., 2012; Wu et al., 2018; 
Liu et al., 2019). Calculation of SSI/SRI is similar to that of Standardised 
Precipitation Index (SPI) proposed by McKee et al. (1993b) but 
considering runoff instead of precipitation. The SRI values are deter
mined based on long-term runoff records (preferably >30 years) by 
aggregating the monthly runoff over an accumulation period (1, 3, 6, 12, 
or 24 months). The new series formed after accumulation (1 month for 
this study) is then fitted to a probability distribution that subsequently is 
transformed to a normal distribution such that the mean SRI is zero. We 
tested three different probability distributions, Gamma, Normal and 
Weibull, to see which had the best fit to observed runoff. The Gamma 
distribution was the best fit for all eight catchments (SM 2) and was used 
for all the SRI calculations. 

The “SPEI” package in R (Beguería and Vicente-Serrano, 2017) was 
used for the calculations of SRI. “SPEI” i.e. Standardized 
Precipitation-Evapotranspiration Index package, facilitates computation 
of SPI and other variants of SPI (SRI in our study) by providing defined 
functions that can be used directly in the R working environment. Any 
positive SRI values indicate runoff values greater than the mean monthly 
runoff and vice versa. SRI values less than − 1 were considered to indi
cate drought conditions. These drought conditions were categorised 
based on SRI values into three drought categories, moderate, severe and 
extreme droughts. SRI values from − 1 to − 1.49 indicate moderate 
drought, from − 1.5 to − 1.99 severe drought, and all the SRI values less 
than − 2 indicate extreme drought (McKee et al., 1993a; Lloyd-Hughes 
and Saunders, 2002; Mishra et al., 2007; Bloomfield and Marchant, 
2013; Wasko et al., 2021). 

3.3. Drought characteristics and performance evaluation 

SRI drought events (drought events based on SRI values) were 
defined as temporally continuous SRI values ˂− 1 lasting until the SRI is 
above − 1 again. Runoff-deficit drought events (drought events based on 
runoff-deficit values) were defined as temporally continuous positive 
runoff-deficit values lasting until it is zero or less. 

We calculated three drought characteristics for both runoff-deficit 
and SRI drought events from the observed and simulated data: 
drought intensity (or severity in case of runoff-deficit drought events), 
drought duration and frequency of drought events. Run theory (Yevjevich 
and Ica Yevjevich, 1967) was used for the extraction of drought char
acteristics from the SRI and runoff deficit time series. The Run theory 
method is based on a threshold level approach which considers the 
statistical properties of runs (here, length of negative or positive de
viations in SRI or runoff-deficit values respectively) above or below a 
given threshold level. The drought duration (in months) was taken as the 
period in months for which the SRI remained less than a threshold value 
of − 1 or runoff-deficit was greater than a threshold value of 0. The 
minimum SRI value in the drought period was used as the drought in
tensity for SRI drought events, while the collective sum of all positive 
runoff-deficits over the drought period was taken as drought severity for 
runoff-deficit drought events. 

We used the coefficient of determination i.e. the square of Pearson 
product moment correlation coefficient (R2), and the Nash-Sutcliffe Ef
ficiency coefficient (NSE; Nash and Sutcliffe, 1970) to evaluate the 
goodness of fit between observed and simulated runoff-deficits and SRI 
values, for each CHM, GHM, and the Ens-CHM and Ens-GHM. R2 indi
cated the strength of relationship between the simulated and observed 
runoff, and NSE indicated the models’ efficiency (range -ꝏ–1). NSE 
values approaching 1 indicate a perfect match of simulated and 
observed runoff values while negative values show that the observed 
mean is a better predictor than the model. 

4. Results 

4.1. Comparison of observed and simulated runoff deficits 

Table 2 shows the R2 and NSE values for all the CHMs and GHMs, as 
well as the Ens-CHM and Ens-GHM. An R2 value >0.7 was interpreted as 
satisfactory model performance, as was an NSE >0.70, following Moriasi 
et al. (2007), (2015). For all eight catchments, the CHMs were better 
than GHMs for the estimation of monthly runoff-deficits because the R2 

values for Ens-CHM were higher than those for Ens-GHM. Both ensem
bles performed well in four catchments according to R2 because the 
Ens-CHM and Ens-GHM R2 values were greater than 0.7 (Moriasi et al., 
2007, 2015): the Upper Mississippi, Rhine, Tagus and Upper Yellow. 
NSE values for Ens-CHM were greater than 0.7 for five catchments, and 
closer to 1 for the Rhine and Tagus catchments, while for Ens-GHM only 
two catchments (Upper Mississippi and Tagus) had NSE values greater 
than 0.7. 

All individual CHMs that simulated runoff for the Rhine, Tagus and 
Upper Yangtze catchments had R2 and NSE values >0.70 except 
WaterGAP3 for the Tagus catchment achieving 0.77 (R2) and 0.60 
(NSE). Both the R2 and NSE values were <0.70 for all other catchments, 
the only exception being mHM for the Upper Mississippi and Upper 
Yellow catchments. 

None of the individual CHMs or GHMs had consistently satisfactory 
R2 and NSE values across all catchments. The Rhine and Tagus catch
ments had individual GHMs with R2 values >0.70 for over half the 
models but with unsatisfactory NSE values. In addition, the Upper 
Amazon, Lena and Upper Niger catchments had no individual GHMs 
with R2 or NSE values >0.70. Individual GHMs showed good perfor
mance in the Tagus catchment, where both indicators were >0.70. 

4.2. Comparison of observed and simulated SRI 

R2 and NSE values for the SRI series are displayed in Table 3. Both R2 

and NSE vary widely across all catchments for both CHMs and GHMs. 
The R2 values of the ensemble series varied between 0.18 (Ens-GHM, 
Upper Niger) and 0.94 (Ens-CHM, Rhine), while the NSE ranged from 
− 0.14 (Ens-GHM, Upper Niger) to 0.95 (Ens-CHM, Rhine). For only 
three catchments, Ens-CHM had R2 and NSE values >0.70 and Ens-GHM 
for only two. 

The catchments where most of the models (both CHMs and GHMs) 
performed well were the Upper Mississippi and Rhine, both with R2 and 
NSE values for Ens-CHM and Ens-GHM >0.85. For both these catch
ments, individual models always achieved R2 >0.50 and NSE values 
>0.40. No individual CHM or GHM achieved R2 and NSE values >0.7 for 
the other six catchments, with the exception of HBV for the Tagus 
catchment (R2 = 0.75 and NSE = 0.74). The catchment where all the 
models performed the worst was the Upper Niger, where no individual 
GHM or CHM (except SWIM) achieved an R2 value >0.35 and NSE 
values were always close to, or below zero. 

4.3. Evaluation of the frequency of drought events 

Table 4 presents the number of runoff deficit and SRI drought events, 
identified from the observed and simulated runoff (Ens-CHM and Ens- 
GHM) for all eight catchments. The total number of individual 
drought events identified by Ens-GHM and Ens-CHM were comparable 
in most catchments. For all eight catchments, 136 individual SRI 
drought events were identified from the observed data, and the 
ensemble models successfully simulated 133 and 123 drought events for 
Ens-GHM and Ens-CHM, respectively. Similarly, Ens-GHM and Ens-CHM 
successfully simulated 233 and 220 individual drought events respec
tively from 244 individual runoff-deficit drought events, identified from 
observed records. 

Ens-CHM and Ens-GHM performed similarly in their estimation of 
the number of drought events for most catchments, with five catchments 
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differing by 6 or less runoff-deficit drought events and only by 2 or less 
SRI drought events. For half of the catchments, the number of SRI 
drought events estimated by the Ens-GHM was closer to the observed 
data than the Ens-CHM simulations, while for observed runoff-deficit 
drought events estimation by the Ens-CHM was better in the majority 
of catchments. 

Despite the comparable estimates of the total number of SRI and 
runoff-deficit drought events across most catchments, both Ens-CHM 
and Ens-GHM struggled in estimating the frequency of droughts within 
SRI drought categories. Both, Ens-CHM and Ens-GHM underestimated 
the number of extreme SRI droughts (≤− 2) in the Upper Amazon, Upper 
Niger and Tagus catchments. While in the Upper Yellow catchment, Ens- 
CHM and Ens-GHM both overestimated the number of extreme SRI 
droughts, showing 3 and 4 extreme events respectively when no such SRI 
drought events were identified in the observed data. 

4.4. Evaluation of drought intensity 

Fig. 2 and SM 3 (supplementary materials) show extreme SRI and 
severe runoff deficit drought events respectively, and the performance of 
individual models in representing these events with regards to drought 
intensity or severity along with drought duration. Substantial variation 
was seen in the ability of individual CHMs and GHMs to simulate 
drought intensity or severity. The over- or under-estimation of drought 
intensity in Fig. 2 (drought severity in SM 3) shown as colour coded cells 
from shades of green to brown is based on the difference in estimated 

and observed drought intensity or severity. There are marked differences 
across catchments in whether the models over- or under-estimated the 
intensity (or severity) of observed droughts, and in the ability to simulate 
the very occurrence of an observed drought itself. We observed cases 
where ensemble models simulated a drought that never occurred in the 
observed record, and cases where a model fails to simulate a drought 
that occurred in the observed record, in most catchments for extreme SRI 
and severe runoff-deficit drought events. 

Out of the 27 observed extreme SRI drought events across all catch
ments, Ens-CHM and Ens-GHM failed to identify 1 and 3 drought events, 
respectively. In total 14 extreme SRI drought events were identified by 
the models which were not observed (shaded grey under ‘Observed’ in 
Fig. 2), and 5 of these events were identified by both Ens-CHM and Ens- 
GHM. For the Upper Amazon, individual CHMs and GHMs performed 
similarly, with most models under-estimating drought intensity for 6 of 
the observed extreme SRI drought events. For one event in the Upper 
Amazon, an observed SRI drought event went undetected by 10 out of 17 
models. All the individual models did not accurately simulate hydro
logical conditions in the Upper Yellow catchment, with 4 extreme 
drought events simulated that were not observed in reality. Model 
performance is more nuanced in the other catchments, with some 
observed droughts within a catchment under-estimated and other events 
over-estimated (Upper Niger, Rhine, and Upper Yangtze). 

Ens-CHM and Ens-GHM each failed to identify 12 drought events 
across all eight catchments from 70 observed severe runoff-deficit 
droughts (SM 3, supplementary material). In addition to 70 observed 

Table 2 
R2 and NSE (in parentheses) values for simulated (individual GHMs and CHMs including both ensembles) versus observed monthly runoff-deficit across all eight 
catchments. Cells with bold text denotes where both R2 and NSE values are above 0.7. Cells marked with x denote that the particular model was not run for the specific 
catchment.    

Upper Amazon Lena Upper Mississippi Upper Niger Rhine Tagus Upper Yangtze Upper Yellow 

GHMs CLM 0.36 
(− 0.13) 

0.05 
(− 0.04) 

0.58 
(0.09) 

0.49 
(− 1.33) 

0.47 
(− 1.13) 

0.59 
(0.53) 

0.19 
(0.08) 

0.42 
(0.40) 

DBH 0.38 
(0.32) 

0.07 
(− 0.16) 

0.69 
(0.03) 

0.41 
(− 2.37) 

0.73 
(0.01) 

0.82 
(− 0.08) 

0.54 
(0.5) 

0.64 
(0.62) 

H08 0.37 
(0.20) 

0.01 
(− 0.17) 

0.60 
(− 0.01) 

0.40 
(− 3.67) 

0.64 
(− 0.47) 

0.85 
(− 1.26) 

0.44 
(0.38) 

0.45 
(0.39) 

MATSIRO 0.30 
(0.24) 

0.31 
(0.26) 

0.69 
(0.49) 

0.63 
(− 0.87) 

0.55 
(0.51) 

0.85 
(0.79) 

0.58 
(0.56) 

0.58 
(0.35) 

MPI-HM 0.36 
(0.32) 

0.10 
(− 0.05) 

0.74 
(0.50) 

0.56 
(− 0.08) 

0.67 
(0.36) 

0.76 
(0.55) 

0.39 
(0.37) 

0.50 
(0.42) 

PCR-GLOBWB 0.38 
(0.34) 

0.41 
(0.36) 

0.74 
(0.67) 

0.31 
(0.15) 

0.81 
(0.67) 

0.88 
(0.87) 

0.77 
(0.70) 

0.70 
(0.70) 

WaterGAP2 0.46 
(0.39) 

0.39 
(0.35) 

0.75 
(0.70) 

0.44 
(0.42) 

0.86 
(0.86) 

0.86 
(0.85) 

0.62 
(0.61) 

0.65 
(0.56) 

LPJmL 0.37 
(0.23) 

0.23 
(− 1.73) 

0.45 
(− 0.33) 

0.41 
(− 4.05) 

0.84 
(0.12) 

0.86 
(− 0.89) 

0.66 
(0.66) 

0.54 
(0.53) 

CHMs ECOMAG x 0.67 
(0.58) 

x x x x x x 

HBV 0.52 
(0.51) 

x 0.65 
(0.63) 

0.55 
(0.41) 

0.86 
(0.86) 

0.94 
(0.88) 

0.80 
(0.79) 

0.69 
(0.67) 

HYMOD 0.43 
(0.39) 

x 0.54 
(0.48) 

0.56 
(0.46) 

0.86 
(0.84) 

x x 0.61 
(0.59) 

HYPE x 0.72 
(0.62) 

x x 0.91 
(0.88) 

0.94 
(0.92) 

x x 

mHM 0.50 
(0.48) 

x 0.85 
(0.83) 

0.54 
(0.51) 

0.90 
(0.90) 

x x 0.76 
(0.73) 

SWAT 0.49 
(0.43) 

x 0.77 
(0.68) 

0.49 
(0.47) 

0.94 
(0.92) 

x 0.79 
(0.78) 

x 

SWIM 0.55 
(0.51) 

0.58 
(0.47) 

0.70 
(0.65) 

0.67 
(0.59) 

0.89 
(0.89) 

x 0.79 
(0.72) 

0.71 
(0.68) 

VIC 0.49 
(0.45) 

0.53 
(0.52) 

0.65 
(0.56) 

0.59 
(0.49) 

0.91 
(0.90) 

0.91 
(0.87) 

0.83 
(0.82) 

0.59 
(0.46) 

WaterGAP3 0.17 
(− 0.35) 

0.37 
(0.31) 

0.67 
(0.65) 

0.35 
(0.22) 

0.85 
(0.85) 

0.77 
(0.60) 

x 0.59 
(0.56) 

Ens-GHM 0.49 
(0.47) 

0.37 
(0.30) 

0.82 
(0.80) 

0.53 
(− 0.35) 

0.82 
(0.65) 

0.9 
(0.71) 

0.63 
(0.62) 

0.72 
(0.62) 

Ens-CHM 0.50 
(0.48) 

0.73 
(0.73) 

0.83 
(0.82) 

0.61 
(0.59) 

0.96 
(0.95) 

0.96 
(0.95) 

0.85 
(0.85) 

0.73 
(0.66)  
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severe runoff-deficit drought events, 19 additional runoff-deficit drought 
events were identified by the models which were not observed and 9 of 
these additional events were identified as severe runoff-deficit drought 
events by both Ens-GHM and Ens-CHM. Performance of CHMs and 
GHMs was analogous in estimating drought severity across all catch
ments, however there were fewer cases in CHMs (than GHMs) where 
observed severe runoff-deficit drought events were identified only by one 
individual model. Two runoff-deficit drought events went undetected by 
all individual models in the Upper Yellow catchment. 

4.5. Evaluation of drought duration 

For all the observed runoff-deficit and SRI drought events (inde
pendently under each drought category i.e. moderate, severe and extreme 
for SRI droughts events), we calculated the absolute error in drought 
duration for each model. The mean of all the absolute errors (under each 
drought category for SRI droughts events) for a model yielded the mean 
absolute error (MAE) for that model. Figs. 3 and 4 shows the MAE values 
for SRI (under the three drought categories) and runoff-deficit drought 
events respectively from the Ens-CHM and Ens-GHM, for every catch
ment along with their respective mean observed drought duration. SM 4 
(supplementary materials) presents MAE values for the individual 
models averaged across all catchments for both SRI and runoff-deficit 
drought events. 

For SRI droughts, the largest total MAE (i.e. the MAE summed across 
the three drought categories) was seen for Upper Niger for both en
sembles, followed by Upper Mississippi for Ens-CHM and Upper Amazon 

for Ens-GHM (Fig. 3). Both ensembles display MAE’s smaller than all 
individual models (SM 4), for extreme SRI droughts across all three 
drought categories. The models simulate drought duration for extreme 
SRI droughts better than for lower intensity SRI droughts (Fig. 3). 
However for SRI drought events, overall, both the CHMs and GHMs 
struggle to accurately model drought duration, with MAE consistently 
>1 month (SM 4). For runoff-deficit droughts, the MAE was similar 
between Ens-CHM and Ens-GHM, except for the Lena with a difference 
of 1 month between the two ensembles (Fig. 4). MAEs were generally 
lower for runoff-deficit droughts than for SRI droughts. 

5. Discussion 

The aim of this study was to assess the performance of CHMs and 
GHMs in simulating observed drought events using runoff-deficit and 
SRI as indicators of hydrological drought. No two drought events are the 
same and, as such, drought events cannot be judged based on a single 
characteristic. Here we used three characteristics; the intensity or 
severity, duration and frequency of drought events. We used R2 and NSE to 
judge the ability of the models and their ensemble means to replicate 
observed monthly runoff-deficits and SRI. 

5.1. Comparison of CHM and GHM performance 

Different thresholds defining runoff-deficit droughts for each catch
ment meant there were not standard drought classes, which limited the 
distinctive analysis of drought occurrences. Frequency of runoff-deficit 

Table 3 
R2 and NSE (in parentheses) values for simulated (individual GHMs and CHMs including both ensembles) versus observed SRI across all eight catchments. Cells with 
bold text denotes where both R2 and NSE values are >0.70 and marked with x denotes that the particular model was not run for the specific catchment.    

Upper Amazon Lena Upper Mississippi Upper Niger Rhine Tagus Upper Yangtze Upper Yellow 

GHMs CLM 0.42 
(0.30) 

0.17 
(− 0.29) 

0.64 
(0.6) 

0.15 
(− 0.20) 

0.50 
(0.43) 

0.38 
(0.24) 

0.37 
(0.22) 

0.4 
(0.27) 

DBH 0.44 
(0.34) 

0.12 
(− 0.43) 

0.67 
(0.64) 

0.11 
(− 0.32) 

0.76 
(0.75) 

0.32 
(0.15) 

0.45 
(0.35) 

0.27 
(0.05) 

H08 0.44 
(0.34) 

0.14 
(− 0.35) 

0.66 
(0.63) 

0.11 
(− 0.32) 

0.63 
(0.59) 

0.31 
(0.13) 

0.34 
(0.18) 

0.23 
(− 0.03) 

MATSIRO 0.32 
(0.14) 

0.30 
(0.01) 

0.71 
(0.7) 

0.24 
(− 0.01) 

0.55 
(0.49) 

0.42 
(0.31) 

0.44 
(0.33) 

0.34 
(0.18) 

MPI-HM 0.39 
(0.26) 

0.19 
(− 0.24) 

0.75 
(0.74) 

0.27 
(0.05) 

0.71 
(0.7) 

0.65 
(0.62) 

0.39 
(0.25) 

0.43 
(0.32) 

PCR-GLOBWB 0.48 
(0.39) 

0.33 
(0.06) 

0.75 
(0.74) 

0.01 
(− 0.75) 

0.80 
(0.79) 

0.56 
(0.50) 

0.52 
(0.45) 

0.45 
(0.35) 

WaterGAP2 0.53 
(0.47) 

0.28 
(− 0.02) 

0.78 
(0.77) 

0.24 
(− 0.01) 

0.87 
(0.88) 

0.65 
(0.62) 

0.54 
(0.48) 

0.5 
(0.43) 

LPJmL 0.50 
(0.43) 

0.12 
(− 0.44) 

0.53 
(0.46) 

0.12 
(− 0.28) 

0.80 
(0.79) 

0.21 
(− 0.07) 

0.47 
(0.37) 

0.29 
(0.09) 

CHMs ECOMAG x 0.45 
(0.28) 

x x x x x x 

HBV 0.55 
(0.49) 

x 0.68 
(0.65) 

0.25 
(0.01) 

0.88 
(0.88) 

0.75 
(0.74) 

0.59 
(0.54) 

0.25 
(0.01) 

HYMOD 0.50 
(0.42) 

x 0.59 
(0.54) 

0.28 
(0.07) 

0.78 
(0.77) 

x x 0.41 
(0.29) 

HYPE x 0.44 
(0.27) 

x x 0.89 
(0.89) 

0.64 
(0.61) 

x x 

mHM 0.56 
(0.50) 

x 0.87 
(0.87) 

0.27 
(0.05) 

0.88 
(0.89) 

x x 0.54 
(0.47) 

SWAT 0.54 
(0.47) 

x 0.72 
(0.70) 

0.31 
(0.13) 

0.93 
(0.93) 

x 0.56 
(0.5) 

x 

SWIM 0.62 
(0.58) 

x 0.73 
(0.72) 

0.49 
(0.4) 

0.88 
(0.88) 

x 0.51 
(0.43) 

0.51 
(0.44) 

VIC 0.52 
(0.45) 

0.30 
(0.01) 

0.64 
(0.60) 

0.27 
(0.05) 

0.91 
(0.91) 

0.34 
(0.18) 

0.55 
(0.49) 

0.32 
(0.13) 

WaterGAP3 0.23 
(− 0.02) 

0.29 
(0) 

0.77 
(0.76) 

0.16 
(− 0.17) 

0.86 
(0.86) 

0.57 
(0.51) 

x 0.49 
(0.41) 

Ens-GHM 0.56 
(0.50) 

0.35 
(0.10) 

0.86 
(0.86) 

0.18 
(− 0.14) 

0.85 
(0.85) 

0.47 
(0.38) 

0.57 
(0.52) 

0.56 
(0.46) 

Ens-CHM 0.56 
(0.50) 

0.46 
(0.30) 

0.88 
(0.88) 

0.33 
(0.15) 

0.94 
(0.95) 

0.73 
(0.71) 

0.65 
(0.62) 

0.53 
(0.46)  
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drought events was higher than that of SRI drought events (Table 4), 
which resulted in almost consistent mean observed drought duration and 
very less variation was seen in the MAE between Ens-CHM and Ens-GHM 
across all catchments. 

There was a marked difference in performance of CHMs and GHMs 
when estimating drought intensity and duration with the SRI. This is 
owing to the data used for identifying simulated drought events, which 
here is simulated monthly runoff data. The accuracy of the SRI 
computation is directly proportional to the quality of data used for its 
calculation (Hayes et al., 1999). Huang et al. (2017) reported that CHMs 
accurately reproduced monthly runoff, seasonal dynamics, moderate or 
high-flows but simulations of low-flows were problematic in most 
catchments. Zaherpour et al. (2018) found that the majority of GHMs 
overestimated low-flows considerably more than they overestimated 
high-flows and that GHMs overestimated minimum flow return periods. 
The majority of the GHMs showed a tendency for overestimating 
monthly runoff with a wider magnitude range (Veldkamp et al., 2018). 
Previous studies highlight that this wider spread around ensembles in 
every catchment is due to the structure of GHMs (Haddeland et al., 2011; 
Gudmundsson et al., 2012). Physical processes such as transmission 
losses, having less presence in the GHMs is one main reason for some of 
the differences between simulated and observed runoff (Gosling and 
Arnell, 2011). In addition, evapotranspiration simulation has been re
ported to vary widely among the GHMs (Wartenburger et al., 2018). 

5.2. Performance of the ensemble means 

Although the R2 and NSE values for the SRI series are less than 
satisfactory for many individual GHMs and CHMs across catchments, the 
ensemble models were better at estimating drought frequency for most of 
the catchments. Moreover, both the ensembles display, overall, a better 
performance compared to the individual models that make up each 
respective ensemble, and showed comparable outputs (runoff-deficit 
and SRI values) despite the GHMs having a wider spread across the 
ensemble. Although the GHMs used the same climate forcing, they used 

different formulations to compute potential evapotranspiration (Telteu 
et al., 2021), which contributes to differences in simulated runoff be
tween the GHMs (Beck et al., 2017). For monthly runoff-deficits, the 
Ens-GHM outperformed individual GHMs because the individual models 
over- or under-estimated low-flow conditions. The computation of an 
ensemble mean for the GHMs essentially balances out the over- and 
under-estimation of runoff-deficits by individual models. However the 
use of a large number of models does not necessarily ensure better 
performance of the ensemble mean. For the Upper Amazon, Upper 
Mississippi and Rhine where the number of models used for the 
ensemble calculation was higher, the performance of the Ens-CHM was 
better at estimating drought frequency but showed higher MAE for 
drought duration with exception of the Rhine. 

5.3. Implications for model calibration 

The performance of WaterGAP2 for runoff-deficit estimation was 
similar to the other GHMs. Despite WaterGAP2 being the only GHM to 
be calibrated with long-term annual river discharge, it did not perform 
noticeably better than other GHMs, and independent of calibration, the 
identification of hydrological extremes was not satisfactory across all 
models. This suggests that it is important to calibrate models with high 
temporal resolution data that allows extreme events to be accounted for 
in the calibration process. The use of multiple criteria during model 
calibration, specifically for low- or no-flow could be helpful (Krysanova 
et al., 2018). 

5.4. Representation of processes and quality of observed data 

Our results indicate relatively better performances of GHMs for 
runoff-deficits and SRI patterns in the Upper Mississippi and Rhine 
compared to other catchments. Furthermore, none of the GHMs missed 
any observed SRI drought events, while only few GHMs failed to simu
late observed runoff-deficit drought events. However, tendency of GHMs 
(across all catchments) towards simulating drought events that were not 

Table 4 
Number of runoff-deficit and SRI drought events identified from observed and simulated runoff (Ens-GHM and Ens-CHM) for all eight catchments, SRI drought events 
are classified into moderate, severe and extreme drought events based on SRI values.    

SRI drought events Runoff-deficit drought events 

Catchments(↓) Drought 
category (→) 

Moderate(− 1 
to − 1.49) 

Severe(− 1.5 
to − 1.99) 

Extreme(− 2 
or Below) 

Total individualdrought 
events(− 1 or Below) 

Total individualdrought events(with 
positive drought deficit) 

Upper Amazon Ens-GHM 3 5 4 12 24 
Ens-CHM 6 5 4 15 29 
Obs 6 4 6 16 27 

Lena Ens-GHM 7 4 3 14 19 
Ens-CHM 7 5 3 15 25 
Obs 11 4 3 18 36 

Upper Mississippi Ens-GHM 8 4 2 14 28 
Ens-CHM 6 3 3 12 23 
Obs 9 3 2 14 27 

Upper Niger Ens-GHM 10 7 2 19 40 
Ens-CHM 9 4 2 15 31 
Obs 11 6 5 22 30 

Rhine Ens-GHM 7 7 4 18 32 
Ens-CHM 8 6 3 17 30 
Obs 10 6 3 19 31 

Tagus Ens-GHM 11 6 0 17 38 
Ens-CHM 2 5 1 8 16 
Obs 5 3 2 10 27 

Upper Yangtze Ens-GHM 12 5 5 22 26 
Ens-CHM 12 5 7 24 38 
Obs 10 5 6 21 34 

Upper Yellow Ens-GHM 6 7 4 17 26 
Ens-CHM 9 5 3 17 28 
Obs 7 9 0 16 32 

Total individual drought 
events across all 
catchments 

Ens-GHM 64 45 24 133 233 
Ens-CHM 59 38 26 123 220 
Obs 69 40 27 136 244  
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observed, can be attributed to a dry bias introduced by the choice of 
potential evapotranspiration formulation for individual models. For 
example, PCR-GLOBWB consistently appeared near the dry end of Ens- 
GHM, perhaps because it includes a temperature based evaporation 
formulation (Hamon) that has been shown to induce a large bias when 
applied outside its calibration range (Milly and Dunne, 2017). In gen
eral, for GHMs it is difficult to estimate a drought event at the right time 
because multiple errors propagate from the inputs (meteorological pa
rameters) and some GHMs struggle to capture the magnitude and timing 
of processes like abstraction losses and snowmelt accurately, which is 

likely to have an impact on drought timing (initiation and duration of 
drought events). 

For CHMs, large biases have been reported in simulating low-flow 
conditions across majority of the catchments we studied, especially 
the Upper Yangtze (Huang et al., 2017). Inaccuracies of low-flow ob
servations may be a factor affecting the estimation of observed drought 
conditions, as might river ice in some catchments, while the inability of 
individual CHMs to replicate low-flow or no-flow may be due to the 
choice of objective functions for calibration of the CHMs (Huang et al., 
2017). Similarities in performance of both sets of individual models in 

Fig. 2. Observed and simulated extreme SRI drought events (SRI ≤ − 2). Displayed is each observed drought’s start and end date, with the numbers indicating the 
observed and simulated drought duration in months. Drought events are colour coded based on the difference in simulated and observed drought intensity (from 2 to 
− 2), marked from shades of green to brown (under- and over-estimated respectively). Blue cells are observed droughts not present in simulated records. Grey cells are 
simulated droughts (either by Ens-CHM or Ens-GHM or both) not present in the observed record. Yellow cells denote that the particular model was not run for the 
specific catchment. 
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the Upper Amazon, Lena, Tagus, and Upper Yangtze catchments for 
drought events in and SM 3 (supplementary materials) can likely be 
attributed towards the quality of the meteorological data used for sim
ulations. Some studies have reported WATCH ERA-40 data to be 

unreliable due to inaccuracies in observed precipitation records, caused 
by fog/mist (Strauch et al., 2017). WaterGAP3 among all CHMs 
comparatively showed the weakest performance, which may be attrib
uted to fewer parameters used for model calibration compared to other 

Fig. 3. MAE for SRI drought duration under each drought category for Ens-GHM and Ens-CHM, for all eight catchments, along with respective mean observed 
drought duration. 

Fig. 4. MAE for runoff-deficit drought duration for Ens-GHM and Ens-CHM, for all eight catchments, along with respective mean observed drought duration.  
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CHMs. 

6. Conclusion 

Our study focused upon the effectiveness of catchment- and global- 
scale hydrological models to estimate drought conditions at the catch
ment scale, for 8 large catchments. We found comparably lower per
formance by most GHMs in simulating monthly runoff-deficits, while 
CHMs and GHMs were similar in estimating SRI. Both sets of models 
show limited ability to simulate the finer, more granular and detailed 
characteristics (intensity or severity, duration and frequency) of observed 
droughts but the ensembles performed better compared to the individual 
models that make up each respective ensemble. Whilst the Ens-CHM and 
Ens-GHM simulated drought frequency well for runoff-deficit and SRI 
drought events, marked differences were observed in ability to simulate 
the occurrence of observed and simulated drought events (not simu
lating several observed drought events and simulating drought events 
out of observed records). For both the ensembles, the error is, overall, 
smallest for duration of extreme SRI droughts across all three drought 
categories. However, it can also be concluded that both CHMs and GHMs 
struggled in accurately modelling drought duration for moderate and 
severe SRI drought categories. We believe that there is still room for 
improvement in runoff simulations to facilitate drought identification 
and accurate estimation of drought characteristics. 
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