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The nonlinear Zeeman effect can induce splittings and asymmetries of magnetic-resonance lines in
the geophysical magnetic-field range. We demonstrate an all-optical scheme, based on spin locking,
to suppress the nonlinear Zeeman effect. This scheme achieves spin locking via an effective oscillating
magnetic field in the form of AC Stark shifts induced by an intensity- and polarization-modulated
laser beam. This results in the collapse of the multi-component asymmetric magnetic-resonance line
with ∼100Hz width in the Earth-field range into a peak with a central component width of 25Hz.
The technique is expected to be broadly applicable in practical magnetometry, potentially boosting
the sensitivity and accuracy of Earth-surveying magnetometers by increasing the magnetic-resonance
amplitude and decreasing its width. An advantage of the all-optical approach is the absence of cross-
talk between nearby sensors when they are used in a gradiometric or array arrangement.

I. INTRODUCTION

Measurements of magnetic fields with femtotesla sen-
sitivity are critical to many applications, including geo-
physics [1], fundamental physics [2, 3], and medicine
[4–7]. Optical magnetometers [8–11] currently reach

subfemtotesla/
√
Hz sensitivity levels for submicrotesla

fields [1]. However, in the geophysical field range (up to
100 µT), the main limitation to the magnetic-resonance
line width and sensitivity is the nonlinear Zeeman (NLZ)
splitting [12–16]. The NLZ effect can cause splitting of
resonance components, leading to a decrease in magne-
tometer signal and to the spurious dependence of scalar-
sensor readings on the relative orientation of sensor and
magnetic fiel NLZ shifts can be effectively canceled by
means of several techniques, including the use of double-
modulated synchronous optical pumping [13], high-order
polarization moments [14], and tensor light-shift effects
[15, 17]. Recently, a new scheme to suppress the NLZ
effect by adding a so-called spin-locking field [18] was
demonstrated. In this scheme, an oscillating magnetic
field (RF field) or short magnetic-field pulses applied in
the laboratory frame results in an effective static mag-
netic field along the atomic magnetization in the rotating
frame. The atomic spin state then precesses about this
static field, rather than evolving into a different state, as
it would under the action of the nonlinear Zeeman effect
alone. As a result, this spin-locking field prevents split-
ting, shifts, and line-shape asymmetries from occurring.
A potential drawback to this approach is that globally
applied magnetic fields may lead to crosstalk between

closely located sensors (as in a gradiometer); this would
limit the applicability of this technique to sensor net-
works, which are important in biomedical applications,
such as imaging the human heart or mapping brain ac-
tivity [4, 19–22], as well as fundamental physics appli-
cations. Additionally, in remote magnetometry appli-
cations, spin-locking magnetic fields cannot be directly
applied to the atomic sample [23–25].

To circumvent these difficulties, spin locking can be in-
duced using a fictitious magnetic field—in the form of a
light field—rather than a real magnetic field. In the pres-
ence of light, the energies of Zeeman sublevels are subject
to AC Stark shifts, or “light shifts” [26–29]. There are,
depending on the polarization of the light and the atomic
transition, scalar, vector, and tensor shifts. In particular,
the effect of the vector light shift (VLS) is analogous to
a fictitious magnetic field [27, 30]. VLS have been stud-
ied in the context of all-optical magnetometry [8, 29, 31];
in particular, light was used to substitute for RF fields
[32, 33]. Here, we demonstrate all-optical compensation
of the nonlinear Zeeman shift in a magnetometer using
spin locking by replacing the RF field with an intensity-
and polarization-modulated laser beam. This method
allows for the building of a highly sensitive multi-sensor
magnetometer array capable of working in the magnetic-
field range of the Earth.
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II. THEORETICAL DESCRIPTION

A. Nonlinear Zeeman effect

The ground-state Hamiltonian for an atom in a mag-
netic field for states with electronic angular momentum
J = 1/2, including both the hyperfine and Zeeman inter-
actions, is

Ĥ = AJI · J+ gsµBS ·B− gIµNI ·B, (1)

where AJ is the hyperfine coupling constant, gs and gI
are respectively the electron-spin and nuclear Landé fac-
tors of the atom, I is the nuclear spin, µB is the Bohr
magneton, and µN is the nuclear magneton. The first
term describes the hyperfine interaction and the second
and third terms describe Zeeman interactions. For a sys-
tem with one valence electron in an S(J = 1/2) level,
the analytical solution for the eigenvalues of the Hamil-
tonian is given by the Breit-Rabi formula, which provides
the energy shifts of the magnetic sublevels |m⟩ for a state
with a total angular momentum F in a magnetic field of
strength B [31, 34]:

Em =
∆hf

2(2I + 1)
−gIµBmB±∆hf

2

(
1 +

4mξ

2I + 1
+ ξ2

)1/2

,

(2)
where ξ = (gJ + gI)µBB/∆hf , ∆hf is the hyperfine-
structure interval and the ± sign refers to the F = I±1/2
hyperfine levels. While the nonlinear term in Eq. (2)
can be neglected for low-field magnetometry, it is im-
portant under Earth’s magnetic field. Expanding the
eigenenergies as a series in B around zero, the transi-
tion frequencies corresponding to ∆m = 1 for the cesium
62S1/2 F = 4 system are

Em+1 − Em ≈ µBB

4
+

(µBB)2

16∆hf
(2m− 1), (3)

where ωrev = (µBB)2/16ℏ∆hf is the so-called quantum-
beat revival frequency [13], gJ ≈ 2 and we neglect
the Zeeman energy of the nuclear spin [last term in
Eq. (1)] as µN ≪ µB . Assuming an Earth-range mag-
netic field of 50µT, the calculated revival frequency is
ωrev = 2π · 3.3Hz [31]. This frequency is comparable to
the magnetic resonance width and hence the system is
strongly affected by the nonlinear Zeeman effect. The Cs
magnetic resonance is split into eight peaks (see Fig. 4),
broadening the line width, reducing the signal amplitude,
and reducing magnetometer sensitivity.

B. Spin locking

To describe the physics of spin locking, we start with a
total angular momentum F = 1 system interacting with
a leading magnetic field along ẑ and an RF field along x̂.
The Hamiltonian for the system is modelled as:

Ĥ = ℏ[ΩLFz + ωrevF
2
z +Ωrf cos(ωrf t)Fx], (4)

where ΩL is the Larmor frequency of leading magnetic
field, ωrev is the “revival” frequency characterizing the
strength of the NLZ effect; Ωrf is the Larmor frequency
induced by the oscillating field and proportional to its
amplitude, ωrf is the oscillation frequency of oscillating
magnetic field.
The atomic spins are initially prepared in the mF =

1 state along the x̂ direction by a circularly polarized
pump field, and we assume that the probe-light power is
sufficiently low to be neglected for the dynamics. With
the quantization axis along ẑ, the initial state is

ψ(0) =
1

2

 1√
2
1

 . (5)

The Hamiltonian for the system under the rotating-wave
approximation (RWA) for the RF field with ΩL = ωrf is
[18]

ĤRWA = ℏ

 ωrev −Ωrf

2
√
2

0

−Ωrf

2
√
2

0 −Ωrf

2
√
2

0 −Ωrf

2
√
2

ωrev

 , (6)

With this Hamiltonian, the energy eigenvalues and en-
ergy eigenstates are:

E1 = ℏωrev , Ψ1 =

−1
0
1

 ,

E2 =
ℏ
2
(ωrev − ωl), Ψ2 =

 1√
2

Ωrf
(ωrev + ωl)

1

 ,

E3 =
ℏ
2
(ωrev + ωl), Ψ3 =

 1√
2

Ωrf
(ωrev − ωl)

1

 ,

(7)

where ωl = (ω2
rev + Ω2

rf )
1/2 is the spin-locking oscilla-

tion frequency. The eigenstates are not normalized. We
write the state ψ(t) of F as a superposition of energy
eigenstates Ψk with eigenvalues Ek:

ψ(t) =
∑
k

Ψke
−iEkt/ℏ. (8)

The probability P (t, 0) for an atom to be found in the
initial state, |⟨ψ(t)|ψ(0)⟩|2, can be written as

P (t, 0) =
ω2
l +Ω2

rf + ω2
rev cos(ωlt)

2ω2
l

, (9)

With an increase in the spin-locking field amplitude, the
oscillating component of P (t, 0) decreases in amplitude
and the frequency of the oscillation increases (see Fig. 1).
In this simplified model, it appears that spin locking im-
proves with the amplitude of the applied field. The calcu-
lations mentioned above are performed under the RWA.
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When the RF field is large enough so that the RWA is not
valid (Ωrf ≈ ωrf ), the presence of the locking field leads
to power broadening of the magnetic resonance; under
this condition the optimal amplitude of the field is such
that Ωrf is comparable to ωrev.
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FIG. 1. Probability P (t, 0) for an atom to be found in the
initial state. For small amplitudes of the spin-locking field
(Ωrf ≪ ωrev), the probability undergoes quantum beating. If
the amplitude of the spin-locking field is much larger than the
NLZ parameter (Ωrf ≫ ωrev), the atoms remain in the initial
state. If the amplitude of the spin-locking field is equal to the
NLZ parameter (Ωrf = 2ωrev), the atoms are partially locked
in the initial state and the populations undergo oscillation
with frequency ωl.

C. Spin Locking with AC Stark shift

The vector component of the light shift induced by
circularly polarized light can be interpreted as a fictitious
magnetic field along the light propagation direction, with
magnitude [35]

Bfict =
−c(∆)Iϵ
ℏγCs

, (10)

where c(∆) is a proportionality constant that depends
on atomic parameters and the frequency detuning ∆
from atomic resonance, I is the light intensity, γCs =
2.2 ·1010 rad/(s · T) is the cesium gyromagnetic ratio and
ϵ = [I(σ+)− I(σ−)] /I is the Stokes parameter specify-
ing the degree of circular light polarization (ϵ = +1 for
σ+-polarized light, ϵ = −1 for σ−-polarized light and
ϵ = 0 for linear polarization).

Consider the same system as in the previous section—
an F = 1 system with a leading magnetic field along ẑ
and a circularly polarized pump beam propagating along
x̂. Now, rather than an RF field, we apply a modulated,

circularly polarized light beam propagating in the same
direction as the pump, near-resonant with a transition
to a F = 0 state, in order to induce vector light shifts.
The effective Stark-shift Hamiltonian (see Appendix A)
for σ+ and σ− beam can be represented as

Ĥ+
eff = ℏ

(Ω+
LS)

2

∆
(K1 −K2),

Ĥ−
eff = ℏ

(Ω−
LS)

2

∆
(K1 +K2),

K1 =
1

48

1 0 1
0 2 0
1 0 1

 ,

K2 =
1

48

 0
√
2 0√

2 0
√
2

0
√
2 0

 ,

(11)

where Ω±
LS is the Rabi frequency of σ±- polarized light,

|Ω±
LS |2 is proportional to the intensity of the light I(σ±),

and ∆ is the detuning. The light-shift beam can be
intensity- and/or polarization-modulated (see the details
in the experimental section below). The intensity of σ±-
polarized light in Fig. 4(c) is:

I(σ−) = I0
cos (ωrf t) + | cos (ωrf t)|

2
,

I(σ+) = I0
− cos (ωrf t) + | cos (ωrf t)|

2
,

(12)

where ωrf is the light-shift-field modulation frequency.
By substituting Eq. (12) into Eq. (11), we get the total
Stark-shift Hamiltonian:

ĤLS =
ℏ(Ωm

LS)
2

∆
[K1| cos (ωrf t)|+K2 cos (ωrf t)] , (13)

where Ωm
LS is the amplitude of the modulated Rabi fre-

quency. The first term is an unwanted perturbation
caused by light shift beam. The second term describe
a pure fictitious RF field Bfict ∝ I0 cos(ωrf t) which is
used to perform all-optical spin locking.

D. Optical Rotation Signal

Let us assume that probe light linearly polarized along
x̂ with detuning δpr and Rabi frequency Ωpr is used to
measure the atomic state of Cs during its evolution. The
propagation direction ŷ of probe is perpendicular to both
the propagation direction of the pump light x̂ and the
direction of leading field ẑ. The pump field with central
detuning δp and Rabi frequency Ωp is periodically modu-
lated with frequency Ωm. To simplify the calculation, we
assume here that the frequency of pump is sinusoidally
modulated with modulation amplitude ∆m.
When Ωm = ωrf , we can solve the time-periodic evo-

lution equation using Floquet theory [36, 37]. Results
of numerical calculations with the AtomicDensityMatrix
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FIG. 2. Theoretical calculated in-phase (top row) and quadra-
ture (bottom row) first-harmonic amplitudes of optical rota-
tion signal. The NLZ effect splits the magnetic resonance into
two peaks (a); with the rf spin locking field (b) or intensity
modulated light-shift field (c), the spin is locked and mag-
netic resonance has only one peak. For these plots, the pa-
rameters Ωpr/γ = 100, δpr/γ = 106, Ωp/γ = 104, δp/γ = 103,
∆m/γ = 103, ωrev/γ = 1.5, Ωrf/γ = 0.02, Ωm

LS/γ = 0.02,
∆/γ = 105 are chosen.

(ADM) package [31, 38] are shown in Fig. 2 to illustrate
the in-phase and quadrature first-harmonic amplitudes
of the optical-rotation signal. Here, we consider each
sublevel to undergo relaxation (for example, due to spin-
depolarizing collisions) at a rate γ. In addition, the upper
state undergoes spontaneous decay at a rate Γ = 106γ.
Without the light-shift beam [Fig. 2(a)], the magnetic
resonance is split due to the NLZ effect. Figures 2(b)
and (c) show the magnetic resonance with RF field and
amplitude-modulated light-shift field, respectively. Up
to now, we show the theoretical simulation of all-optical
spin locking in F=1 to F’=0 system. For a real atomic
system, there are many hyperfine levels that need to be
taken into account for modeling it, which would increase
the computational complexity . The results of the real Cs
system are shown through the experiments (see Sec:IV).

III. EXPERIMENTAL APPARATUS

Figure 3 shows the experimental apparatus. A
paraffin-coated cylindrical cell [39–42] with a length
of 5 cm and a diameter of 4 cm containing 133Cs at
room temperature, is enclosed within a four-layer mu-
metal magnetic shield. The long spin-coherence time
in paraffin-coated cell leads to spatial averaging of the
optical pumping, probing and stark shift over the en-

probe laser

magnetic shield
PD

HWP
PBS

zy

x

AOM

pump laser

AOM EOM

light-shift laser

leading field

-

PBSQWP
ϭ+

ϭ-

monitor signal

FIG. 3. Experimental setup. AOM: acousto-optic modulator;
EOM: electro-optic modulator; HWP: half-wave plate; QWP:
Quarter-wave plate; PBS: polarizing beam splitter; PD: bal-
anced photodetector; LIA: lock-in amplifier; LO: local oscil-
lator. A partial view of the magnetic shield is shown in the
figure. Atoms are contained in a glass cell positioned in the
center of the magnetic shield and are pumped (along −x̂) and
probed (along ŷ) by laser beams under a static magnetic field
(along ẑ). The intensity of the light-shift laser beam is sinu-
soidally modulated with an AOM at a frequency Ωm, while
its polarization is switched between the σ+ and σ− states ev-
ery π/Ωm, using an EOM. Inset shows the monitor setup for
polarization and amplitude of the light-shift beam.

tire cell volume [30]. The atoms are prepared in the
stretched state along the −x̂ direction by optical pump-
ing with a circularly polarized, −x̂-directed laser beam
[43, 44]. The pump-laser frequency is locked to the Cs
D2 62S1/2 F = 3 → 62P3/2 F

′ = 4 transition at 852 nm
with a dichroic atomic vapor laser lock (DAVLL) [45].
The beam is pulsed (3% duty cycle) with an acousto-
optic modulator (AOM). The light power during the “on”
part of the cycle is 50 µW. The polarization rotation of a
10 µW, ŷ-directed probe beam induced by the polarized
atomic vapor is measured with a balanced polarimeter
upon transmission through the cell. The beam is linearly
polarized along the x axis and detuned by about 4GHz
towards higher frequencies from the D2F = 4 → F ′ = 5
transition. A circularly polarized light-shift beam pro-
duced with a Ti:sapphire laser propagates parallel to the
pump beam. The intensity of the beam is modulated
with an AOM and its polarization is modulated with an
EOM in order to provide a time-varying light shift. The
setup for monitoring the modulation of the light-shift
beam is shown in the inset of Fig. 3. A quarter-wave plate
is used to convert the circular σ+ and σ− components into
orthogonal linear polarization components the intensities
of which are monitored with two photodetectors. The
waist of the collimated laser beam in the vapor cell is
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FIG. 4. Magnetic-resonance line shape for a modulation frequency of 216,620Hz as a function of the leading magnetic field
along the z axis with applied light-shift field and pump (red line), without light-shift field (black line), and without pump field
(blue line). The amplitude of magnetic resonance without light shift is normalized to unity. The power in (a) and maximum
power in (b,c) of the light-shift beam is 200mW. The inset shows the polarization modulation (a), intensity modulation (b)
and both modulated (c) schemes for the pump and light-shift field.

1.5mm. The frequency of this laser can be widely tuned
and is, for most of the experiments presented here, de-
tuned by 10GHz from the 62S1/2 F = 4 → 62P3/2 F

′ = 5
D2 transition towards lower frequencies. Its frequency
is stabilized to the internal reference cavity of the laser.
The detuning of 10GHz was chosen to minimize opti-
cal pumping by the light-shift beam while maintaining
sufficient fictitious magnetic field amplitude (∼14 nT for
250mW power) for spin locking.

To measure the magnetic resonance, we fix the modu-
lation frequency Ωm of both pump and light-shift beams
at a particular value (corresponding to the Larmor fre-
quency for a magnetic field of up to 100 µT). We scan
the leading ẑ-directed magnetic field and observe the po-
larization of the probe beam. The signal from the bal-
anced polarimeter is fed into a lock-in amplifier and de-
modulated at the modulation frequency. The magnetic
resonance can be observed in the polarization rotation
amplitude and phase of the probe beam [46].

IV. EXPERIMENTAL RESULTS

We employed three different methods to modulate the
light-shift beam and achieve spin locking. Figure 4 shows
the amplitude of the lock-in output as a function of the
leading magnetic field around 60µT with the pump-laser
modulation frequency fixed at 216,620Hz. The magnetic
resonance spectra are shown without and with applica-
tion of the light-shift beam (black and red curves, respec-
tively), as well as without the pump beam (blue curve).

In the method depicted in Fig. 4(a,b), either the inten-
sity or the polarization of the light-shift beam is mod-
ulated, to provide a sine-modulated light shift, as in
Refs. [29, 32]. In the polarization-modulation scheme,
the fictitious magnetic field is oscillating around zero.
However, in this scheme, the light is only purely circu-
larly polarized when ϵ = ±1; the presence of the other
polarizations causes tensor-light shifts that broaden the
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transition. In the amplitude-modulation scheme, the
VLS produces a fictitious magnetic field of magnitude
Bfict ∝ [1 + cos(Ωmt)]. The oscillating term of the ficti-
tious field locks the spins. The static term of the ficti-
tious field plays no role in spin locking but the constant
light leads to broadening of the line width due to resid-
ual optical pumping and heading error. In the absence of
the light-shift beam, the magnetic resonance is split into
eight partially-resolved Lorentzian peaks, due to the NLZ
effect. Applying the modulated light-shift beam results
in a narrower full-width-half-maximum (FWHM) central
peak and an amplitude increase.
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FIG. 5. (a) Observed monitor signal and input intensity mod-
ulation signal. Here ϕ1 = −π/2 and ϕ2 = −π/2. The dis-
tortion of fictitious RF field is mainly caused by nonlinear
response of the AOM. (b) Phase scanning of ϕ1 and ϕ2.

In Fig. 4(c), the direction of the fictitious magnetic
field is modulated by switching the polarization of the
light-shift beam from σ+ to σ− using an EOM. In addi-
tion, the intensity I of the light-shift beam is modulated
with an AOM as I ∝ | cos(Ωmt)|. In this modulation
scheme, neglecting the counter-rotating component, the
fictitious RF field co-rotates with the precessing spins in
the laboratory frame. Since the polarization and propa-
gation direction of light-shift beam and the pump beam
are same, the light-shift beam also pump the atoms. The
blue lines in Fig. 4 show the magnetic resonance with

light-shift beam while without pump beam. The stochas-
tic nature of the optical pumping leads to a decrease in
atomic coherence time and results in a broadening of the
magnetic resonance.
The phase of intensity and polarization modulation

needs to be chosen carefully to ensure the spin locking
field points along the direction of the precessing spins
[18]. Firstly, to create a smoothly changing fictitious RF
field, the polarization should be switched when the inten-
sity is modulated to zero. Additionally, the fictitious RF
field has to be in-phase with the pump pulse. We show
the monitor signal (produced by subtraction of the σ+
and σ− recorded powers) for ϕ1 = −π/2 and ϕ2 = −π/2
in Fig. 5(a), as an fictitious RF field. Here ϕ1 is the
phase of the intensity modulation and ϕ2 is the phase
of the polarization modulation. Figure 5(b) displays the
magnetic-resonance line width for different ϕ1 and ϕ2.
The best results are achieved around (combinations of)
ϕ1 = π/2, 3π/2 and ϕ2 = π/2, 3π/2.
Figure 6 shows the effective line width of the magnetic

resonance in Earth-field range (60 µT) as a function of the
applied light-shift beam power and detuning. When the
light-shift beam is of low power and detuned far off reso-
nance, there is no spin locking and the effective line width
is ≈100Hz. When the light-shift beam is near resonance
with the atomic transition, the effect of optical pump-
ing is much stronger than that of the VLS. As a result,
the line width of the magnetic resonance is even broader
than that observed in the absence of the light-shift beam.
When the light is far-off resonant from the optical transi-
tion, the optical pumping is negligible and the VLS dom-
inates the interaction. We observe a minimum of the line
width for a 220mW light-shift beam, 10GHz detuned
below the D2 62S1/2 F = 4 → 62P3/2 F

′ = 5 transition.
Note, however, that spin locking works well also for the
opposite sign of detuning, corresponding to a sign re-
versal of the effective RF field. The power applied was
limited by the available laser.

V. CONCLUSION

We have demonstrated an all-optical method to sup-
press the NLZ effect in the range of the Earth’s magnetic
field using spin locking. A polarization and intensity
modulated light-shift beam is applied which effectively
suppresses NLZ-related broadening of the magnetic res-
onance. The method works with individual application
of intensity or polarization modulation but the combina-
tion of both yields the best result. In contrast to other
techniques, this method does not cause any crosstalk in
sensor networks and also does not interact with sam-
ples close to the sensor. The Larmor frequency induced
by the optimally effective spin-locking field in the rotat-
ing frame is one order of magnitudes larger than spin-
revival frequency; the phases (ϕ1 and ϕ2) are chosen
such that the co-rotating part of the fictitious rf mag-
netic field is colinear with the precessing spins. We note
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FIG. 6. Map of the magnetic resonance line width as a func-
tion of the applied light-shift-field power and detuning. The
minimum line width is 25.25(6)Hz.

that the method improves the sensitivity of Earth-field-
range magnetometers for two reasons: the increase in the
magnetic-resonance signal amplitude and the reduction
in the effective line width. We observe some line-width
broadening due to residual optical pumping by the light-
shift beam, which could be ameliorated using increased
optical detuning and higher power. The area of the mag-
netic resonance profile with both pump and light shift
beam is larger than the sum of the profile areas corre-
sponding with only pump or light shift beam. This effect
might arise from pumping and repumping by the light
shift beam and needs to be further studied. We also note
that while the amplitudes of the resonances shown from
left to right in Fig. 4 are increasing, the same increase of
noise is observed. The measured noise is dominated by
magnetic noise due to fluctuations in the current source
of leading field.
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Appendix A: Effective Hamiltonian of Stark Shift

The aim of this appendix is to calculate the light
shift due to a circularly polarized field that is near-
resonant with an J = 1 → J ′ = 0 atomic transi-
tion. The detuning from atomic resonance is called
∆ and we assume the light is σ+ polarized and prop-
agating along the x-direction. If we use the x-basis
{|1,−1⟩x, |1, 0⟩x, |1,+1⟩x, |0′, 0′⟩x}, the light is only af-
fecting one transition |1,−1⟩x ↔ |0′, 0′⟩x due to the se-
lection rule for σ+ polarized light (see Fig. 7). The dipole
interaction H = −d · E(t) can be used to describe the
interaction between the atom and the light. The Hamil-
tonian in rotating wave approximation (RWA) with ro-
tating frequency ω0 +∆ is

H = ℏ


0 0 0 0
0 0 0 0
0 0 0 − ΩR

2
√
3

0 0 − ΩR

2
√
3

−∆


x

, (A1)

where ΩR is the Rabi frequency and |ΩR|2 is proportional
to the intensity of the light. The effect of oscillating fields
with frequency 2ω0 +∆ is ignored by RWA. The energy
eigenvalue EJ,mJ

of this system is:

E1,−1 =
ℏ
6
(−3∆ +

√
9∆2 + 3Ω2

R) ≈
ℏΩ2

R

12∆
,

E1,0 = 0,

E1,1 = 0,

E0′,0′ =
ℏ
6
(−3∆−

√
9∆2 + 3Ω2

R) ≈ −ℏΩ2
R

12∆
.

(A2)

As the light is detuned from atomic resonance, it
is possible to derive an effective Hamiltonian for the
ground states only. In the x-basis for the ground states
{|1,−1⟩x, |1, 0⟩x, |1,+1⟩x}, this Hamiltonian reads

Heff =
ℏΩ2

R

12∆

1 0 0
0 0 0
0 0 0


x

(A3)

We are now interested in finding the Hamiltonian in the
z-basis. In order to do so, we notice that a π/2 rotation
about the y-axis rotates the x-axis into the z-axis. This
rotation matrix can be written as

R(ŷ, π/2) = exp
[
−i

(π
2

)
Ĵy

]
=


1
2 − 1√

2
1
2

1√
2

0 − 1√
2

1
2

1√
2

1
2


x

,

(A4)
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a) Light shift beam in x-basis

|1,-1>x |1,0>x |1,+1>x

|0,0>x

σ+

0

ω0

ω0+∆
b) Light shift beam in z-basis

|1,-1>z |1,0>z |1,+1>z

|0,0>z

FIG. 7. (a) Schematics for atomic levels J = 1 and J ′ =
0 coupled by circular polarized light propagating in the x-
direction. Only two levels are coupled in the x-basis. (b) All
levels are coupled if one used the z-basis.

We can now find the effective Hamiltonian in the z-basis
as

Ĥ+
eff = R(ŷ, π/2)HeffR(ŷ, π/2)

†

=
ℏΩ2

R

12∆


1
4 − 1

2
√
2

1
4

− 1
2
√
2

1
2 − 1

2
√
2

1
4 − 1

2
√
2

1
4


z

. (A5)

For σ− polarized light, the effective Hamiltonian in the
z-basis is:

Ĥ−
eff =

ℏΩ2
R

12∆


1
4

1
2
√
2

1
4

1
2
√
2

1
2

1
2
√
2

1
4

1
2
√
2

1
4


z

. (A6)

With this we arrive at the effective Hamiltonian in the
form of Eq. (9) of the main text.
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