
A Graphical Environment to Support the Development of
Affordable Digital Manufacturing Solutions

Zhengyang Ling, Lavindra de Silva, Greg Hawkridge, Duncan McFarlane, Giovanna Martínez-Arellano,
Benjamin Schönfuß, Alan Thorne

Abstract Digital solutions have the potential to drastically transform manufacturing operations, but smaller
manufacturing businesses (SMEs) have been reluctant to adopt digital solutions due to perceived investment and
upskilling costs. The Digital Manufacturing on a Shoestring project was thus established to facilitate the process
of digital solution adoption in manufacturing SMEs. To this end, a solution development approach was proposed
including a graphical environment to support the design of affordable digital solutions. This paper discusses
the concepts and methods underlying this graphical design environment, including its early implementation. A
preliminary evaluation is also presented involving industrial user studies with SMEs.

1 Introduction

The use of digital technologies and solutions in manufacturing businesses has the potential to drastically
transform manufacturing operations, with the key benefits including cost reductions and faster delivery of goods
and services. However, a number of recent findings and our own investigations have revealed that the smaller
manufacturing businesses (SMEs), which have limited technical know-how compared to larger organisations,
are reluctant to adopt digital solutions due to perceived investment and upskilling costs [17, 19, 11]. The Digital
Manufacturing on a Shoestring project [14] was thus established and aimed toward facilitating the process of
adoption of digital solutions in manufacturing SME operations.

To achieve this, two key strategies were proposed in the project. The first was to focus only on affordable,
readily available, off-the-shelf technologies, including open source software libraries and affordable computers
such as Raspberry Pis, and the second was to create a simple ‘digital solution development approach’ that
ordinary manufacturing SMEs can use to put together digital technologies to form coherent and useful digital
solutions. The resulting development approach [8] advocates top-down development, starting from the business
needs of a company (identified through in-company ‘requirements workshops’ [18]) and an identification and
specification of the next top-priority digital solution for those needs, followed by a hierarchical and template-
based development of the solution down to the level of choosing individual technologies, with the option to
choose existing, ready-made elements in place of templates at any point in the process (e.g. an off-the-shelf,
complete digital solution that matches the solution specification).

A core part of the solution development approach is a graphical environment to support the design of a
digital manufacturing solution, either by loading and configuring an existing solution provided by a community
of users, or at the other extreme, putting together digital technology ‘building blocks’ from scratch, with the
option to also then automatically generate the relevant connections between the chosen software building blocks,
as well as the necessary guidelines for solution deployment (e.g. hardware connections). This paper discusses
the concepts and methods underlying the solution design aspect of the graphical support environment, and its
early implementation as a web-based online ‘Solution Configurator’ to assist SMEs with the adoption of digital
manufacturing solutions.

Z. Ling, L. de Silva, G. Hawkridge, D. McFarlane, B. Schönfuß, A. Thorne
Institute for Manufacturing, University of Cambridge, UK, e-mail: zl461@cam.ac.uk

G. Martínez-Arellano
Institute for Advanced Manufacturing, University of Nottingham, UK

This work was supported by the EPSRC [grant number EP/R032777/1].

1

2

This paper is organised as follows. Sec. 2 identifies the requirements for a graphical support environment
for manufacturing SMEs, and Sec. 3 addresses the design oriented requirements through a conceptual design
environment. Sec. 4 discusses the implementation of the concept, as well as some preliminary results from
qualitative experiments. Finally, Sec. 5 compares closely related work, and the conclusions and future directions
are discussed in Sec 6.

2 Requirements for a Graphical Support Environment

Anumber of particular requirements emerged for a graphical development environment that suitedmanufacturing
SMEs, which were first identified through discussions within the research team and then revised through a series
of meetings with project partners, e.g. UK manufacturing SMEs and service providers for such companies. The
main requirements originally set for this environment are listed below, split up into high-level requirements
(H1-H5) involving the entire development environment, and detailed requirements (D1-D4) involving more
specific aspects.

H1 The environment must support the development of digital manufacturing solutions from a set of modular
‘building blocks’ (BBs), abstractly representing both hardware and software, e.g. sensors and databases.

H2 BBs and their connections must look simple and intuitive, e.g. like Lego or jigsaw pieces, which contrasts
with design elements used in traditional component-based development environments such as Netbeans [5]
and Archimate [12].

H3 The environment must be configuration (or ‘composition’) oriented, rather than a coding environment; e.g.,
BBs and their connections should represent interactions between subsystems, rather than between snippets
of code (the latter approach is used, e.g., in Scratch [16] and MakeCode [3]).

H4 The environment must guide the user during the design process, e.g., helping identify optimal BBs (tech-
nologies) for a solution, and flagging potential issues when BBs are put together in undesirable or potentially
problematic ways (e.g. a Raspberry Pi is connected to an incompatible camera).

H5 The environment should ideally generate guidelines for how to manually integrate the hardware and software
depicted in the design, as well as code for BB communication and orchestration; this contrasts with develop-
ment environments that generate function skeletons to be filled in by a programmer (e.g. Eclipse [20]) and
code for machining a designed part (e.g. AutoCAD).

D1 BBs must have levels of abstraction, enabling the design to start from a top-level solution need [18] and end at
a level that suits the end-user. For example, the user may want to only design at the level of ‘service modules’
[8] (e.g. ‘data collection’ and ‘data storage’), without designing or even viewing the BBs they encapsulate
(e.g. a sensor, software library, and database).

D2 Related to the above need is the ability to hide (or show) the constituents of any BB, allowing the user to
focus on only the relevant detail.

D3 It should be possible to dynamically adjust the number of connectors in a BB, e.g. to enable any number of
widget BBs to be part of a data visualisation BB.

D4 BBs should allow suitable connection types, e.g. ‘side-by-side’ and ‘nested’ (in contrast to, e.g., Node-RED
[1]), to represent relationships between software and hardware, analogously to relationships identified in
Software Engineering, e.g. association and composition.

These requirements have provided an ongoing reference point for the developments described in the following
sections.

3 Conceptual Development of the Graphical Environment

Requirements H1-5 and D1-4 outlined in Sec. 2 were addressed first in the form of a conceptual design
environment, driven by other aspects of the overall Shoestring solution development approach [14, 8], which
advocates top-down solution development, starting from the business needs of a company and the identification
and specification of the next top-priority digital solution for those needs, followed by a hierarchical, template-
based development of the solution. This can involve firstly choosing (guided by the specification) a suitable
‘solution template’, which comprises a collection of ‘service module’ types, and then incrementally filling in the

3

template through the selection of a service module template for each type, until either the desired level of detail
is reached or a full solution instance has been designed in terms of individual BB instances (e.g. technologies).

Following [14, 8], the conceptual design environment therefore distinguishes between four main types of
elements: a Solution, Service Module (SM), Basic BB (or simply BB), and BB Component, with each of them
being a higher level of abstraction than the next. There are 6 types of SM [8], e.g. ‘Data Collection’, ‘State and
Data Storage’, and ‘User Interface’, and many types of BB, with the mandatory ones being ‘Computing Device’
(representing a computer that hosts one or more SMs) and ‘Service Wrapper’ (representing the API used by an
SM to communicate with other SMs), and other common BB types including ‘Database’, ‘Sensor’, ‘Camera’,
‘Microphone’, ‘Interface Adaptor’, and ‘Visualisation Platform’. BBs themselves can also have a few levels of
abstraction, e.g. two ‘Visualisation Dashboard’ BBs within a ‘Visualisation Platform’ BB. Examples of BB
Components (types) include a (dashboard) ‘Panel’ and (database) ‘Column’.

(a) (b)

(c) (d)

Fig. 1: A Data Collection SM template (a); its instantiation (b); a Data Storage SM (c); and a User Interface SM (d), together with
a possible data visualisation for the dashboard (bottom center).

4

Solution ::= Category, [Name], {SM}+
SM ::= SMType, [Name], SW, CompuDev, {BB}+
SW ::= Connectivity, ("Input" | "Output"),

{DataStream}
BB ::= BBType, {BBSubtype}, [Name], Detail

Detail ::= {BB} | {Comp}
CompuDev ::= {BBSubtype}, [Name], OS, [Name]

Comp ::= CompType, {CompSubType},
[Name], {Attribute, Value}

Category ::= “Fault Monitoring” | “Job Tracking” | · · ·
SMType ::= “Data Storage” | “User Interface” | · · ·
BBType ::= “Sensor” | “Visualisation Platform” | · · ·

BBSubtype ::= “Camera” | “Dashboard” | · · ·
CompType ::= “Item” | “Widget” | · · ·

CompSubType ::= “State” | “Plot” | · · ·
Connectivity ::= “MQTT” | “OPC-UA” | · · ·

OS ::= “Windows” | “Linux” | · · ·
Name ::= unique string

Attribute ::= unique string
Value ::= unique string

DataStream ::= unique string

Job Tracking; // Solution
• Data Storage; // SM
• Name:Database;
• • MQTT; // SW
• • Input;
• • Red Light;
• • Dial Pos;
• • Temp;

• • Microcomputer; // CompuDev
• • RPi3;
• • Linux;
• • Raspbian;

• • Database; // BB
• • Excel;
• • Data Logger;
• • • Item; Col; Red Light; // Comp
• • • Item; Col; Dial Pos;
• • • Item; Col; Temp;
• • • File; Log1.csv

Fig. 2: EBNF for a Solution in terms of SMs, BBs, and BB Components (left), and an SM instance generated by the EBNF (right).
Indentation (•), spacing, and comments (//) are for readability, and a semicolon indicates concatenation. Abbreviations used are:
SW=Service Wrapper, CompuDev=Computing Device, Comp=BB Component, OS=Operating System, and Col=Column.

3.1 Conceptual solution design examples

An example of a ‘Data Collection’ SM template is shown in Fig. 1(a), with its instantiation in Fig. 1(b). (Some
computing devices are not shown in the figure due to space.) We use a jigsaw-like design for elements, with
colour coding to distinguish between them. Drop-down menus enable selecting subtypes or instances, e.g. the
‘Microcomputer’ subtype for ‘Computing Device’ and the ‘RPi Cam v2’ technology (instance) for ‘Sensor’.
Text fields allow users to optionally give their own identifiers (shown in italics) to BBs. The Service Wrapper
indicates that MQTT will be used as the connectivity technology [9] for communication, and that the SM will be
publishing (rather than subscribing to) data.1 By default, all the data that is sensed by the camera and processed
by the image processing platform will be published, with the option to customise this by clicking on the ‘+’
symbol in the Service Wrapper BB to view the hidden detail, and then removing data elements. Communication
between SMs can be depicted with arrows between SMs (not shown in the figure).

There are also other ways to design the above. For example, the SM in Fig. 1(b) could be arranged so that the
Computing Device is on the right side of the red BB, with the other BBs connected to the Computing Device.
That would be more of a ‘service-centric’ view as opposed to the ‘device-centric’ view shown in the figure.
Secondly, the operating system could appear as a nested BB within the Computing Device, rather than as a
drop-down menu option.

An example of the use of BB Components is shown in the ‘Data Storage’ SM in Fig. 1(c), which are stacked
within the Database BB rather than connected to its side. The Service Wrapper by default subscribes to all
the data streams published by other SMs already designed, and the Database BB, with ‘Excel’ as the instance,
stores each stream as an ‘Item’ BB Component, which corresponds to an Excel column. To facilitate this design,
the environment automatically selects and instantiates a default template comprising a BB Component per data
stream in the Service Wrapper.

Another example of the use of BB Components is shown in the ‘User Interface’ SM in Fig. 1(d). The
Service Wrapper by default subscribes to all data streams as before, and the ‘Visualisation Platform’ BB, with
‘Dashboard’ as the subtype, displays each stream as a ‘Panel’ BB Component. (This is a simplification of the
more flexible design approach of having separate Dashboard BBs connected to the Platform BB.) As before,
the environment automatically selects and instantiates a default template comprising the 4 panels shown in the
figure, which can be manually customised if necessary, e.g. to change a panel colour or type, or to add or remove
a panel. Alternatively, a different dashboard or template could be chosen by clicking on the ‘search’ icon in the
top right corner of the Platform BB in Fig. 1(d). The resulting data visualisation might look as shown in Fig.
1(d), produced using the Grafana visualisation platform as discussed in [13].

1 Provision for more sophisticated communication mechanisms is left to future work, e.g. where the request-response protocol is
also allowed.

5

(a) (b)
Fig. 3: Bits of the Data Collection and Data Storage SMs from the configurator.

3.2 Guiding the user through the solution design process

Since the templates available for a Solution, SM, or BBmay be limited, the user may choose for example to select
and adapt a predefined template, or build a solution from scratch by putting together BBs and BB Components.
There is therefore the need for a mechanism that can guide the user (with minimal delay) during the solution
design process (requirement H4 in Sec. 2). We propose the use of an approach where the structure of Solutions
(including SMs, BBs, and Components) is defined using a grammar which is then used to check the solution
as it is being designed. Fig. 2 shows a high-level grammar for a Solution in the ISO/IEC EBNF [2] format, as
well as a valid string generated by the grammar, which is a textual version of the graphical design shown in
Fig. 1(c). The grammar requires further restrictions to preclude more nuanced connections that are invalid, e.g.
a (database) ‘Item’ BB component being mistakenly added into a ‘Dashboard’ BB (which should only include
‘Panel’ BB Components), but we leave the extended grammar to future work.2 Nonetheless, even the grammar
shown, once it has been normalised (i.e., converted into Chomsky Normal Form [6]) can be used to provide the
user with useful (automated) guidance while a solution is being designed. For example, an attempt to replace a
BB Component in the Dashboard BB in Fig. 1(d) with a (Basic) BB can be detected and flagged as being invalid,
as indicated by the non-terminal symbol ‘Detail’ in Fig. 2 (left).

Detecting such inconsistencies requires two steps: (i) converting the graphical solution into a string as shown
in Fig. 2 (right), and (ii) checking whether the string can be generated by the (normalised) grammar. The first
step only requires one traversal of each element (SM, BB, and BB Component) in the current ‘snapshot’ of
the solution being designed, which can be done in polynomial time relative to the number of elements in the
solution; the second step can also be done in polynomial time relative to the length of the resulting string [21]
(and thus the number of elements in the current solution). The overall polynomial-time complexity of a user
guidance algorithm is vital to minimise the ‘lag’ that the user may experience during design (i.e., waiting for the
algorithm to check whether a change done to the design is valid).

4 Initial Implementation of the Graphical Support Environment

The implementation of the Solution Configurator was based on the conceptual design environment discussed in
Sec. 3, and used the Blockly [15] library, which facilitates creating block-based visual programming languages
using client-side Javascript. Fragments of SMs put together using the configurator are shown in Fig. 3(a)-
(b), which correspond to the conceptual examples in Fig. 1(b)-(c), respectively. The implementation is still a
prototype, with the following main differences compared to the concept: (i) a Basic BB cannot yet be connected
to another Basic BB (e.g. a Dashboard (Basic) BB connected to the Platform (Basic) BB); (ii) some terms that
describe BB types are yet to be made consistent (e.g. use of the term ‘Platform’ in the concept versus ‘Software’
in the implementation); and (iii) compared to the concept, there is more detail in some SMs/BBs/Components in

2 Techniques from the area of Behaviour Composition, e.g. [7], might prove useful to this end.

6

the implementation, allowing more customisation (e.g. the ability to subscribe to specific ‘topics’) but perhaps
at the expense of user friendliness – the right amount of detail to show is still being investigated. There were also
limitations in the Blockly library itself, which dictated certain modeling choices: e.g. it was not possible to (i)
model a BB that has both a nested BB(s) within it as well as a BB(s) connected to its side, and (ii) draw arrows
to connect SMs, in order to illustrate how they communicate. These limitations posed difficulties in conforming
to requirement D4 in Sec. 2.

In the rest of this section we present some preliminary results from evaluations conducted using both the
conceptual design environment discussed in Sec. 3 and its current implementation (the Solution Configurator).

4.1 Feedback on the conceptual development environment

The first evaluation was carried out through an (online) meeting with 8 participants in total who had varied
roles within their organisations; from the group, 6 participants were from UK manufacturing SMEs and 2 were
from solution/technology providers for such companies. The participants were first given an overview of the
conceptual design environment as described in Sec. 3, explaining the top-down, template-based approach, and
the option to both design and customise digital solutions at the level of SMs, BBs and to the more detailed level
of (BB) Components. The participants were then asked the following question:

Q1 ‘Do you have an “IT savvy” person in your organisation who might be comfortable with using such a solution configurator
(once it is finalised) in order to design and then deploy digital solutions?’. The possible answers were: (A) ‘Yes’; (B) ‘Maybe -
we’ll need to check’; (C) ‘No - but we might be able to, after looking at documentation/tutorials’; (D) ‘No - but we might be able
to, if someone guides us’; and (E) ‘No - but we might hire someone to deploy solutions via the configurator’.

More feedback was then requested after each of the following three demonstrations: (i) showing a digital
solution being put together only by selecting predefined SM instances, i.e., the ones shown in Fig. 1(b)-(c), but
with ‘CouchDB’ instead of ‘Excel’, and without the use of BB Components; (ii) showing how those two SM
instances could be designed by starting from SM templates (e.g. the one shown in Fig. 1(a)) and manually filling
in the information; and (iii) showing an example of the customisation of BB Components, which involved the
following steps: taking the ‘Data Storage’ SM instance built as part of the previous demonstration, changing
‘CouchDB’ to ‘Excel’, changing the filename, and finally, introducing the ‘User Interface’ SM instance shown in
Fig. 1 and changing some of the panel colours. After the first demonstration, feedback was requested as follows.

Q2 Participants were shown the following options: (A) ‘The design process seemed easy - I could do it’; (B) ‘The design process
seemed easy - someone in my company could do it’; (C) ‘The design process didn’t seem that easy’, followed by some specific
reasons to choose from; and (D) ‘Other feedback’.

The same feedback options were shown after the second and third demonstrations but with the specific reasons
within option C adapted to suit the demonstration. The feedback received is summarised in Table 1 below. The
key insights were that 75% (of those who answered) said they had an IT savvy person in their organisation
who might be comfortable with using the configurator, and 25% said they would need to check. All those who
answered felt that the high-level design approach – building a solution by simply putting together entire SM
instances – was easy or that someone in their company could do it. Finally, 90% felt the approach that involved
instantiating or customising BBs, or even Components, was easy or that someone in their company could do it.

Q A B C D E
1 6 2 0 0 0
2 3 5 0 - -
3 2 3 0 - -
4 2 2 1 - -

Table 1: The first column shows the question numbers, with Q3 and Q4
being the same as Q2 except for the specific reasons within answer C.
Columns A-E correspond to the answers, and the numbers indicate how
many participants gave those answers.

While these preliminary results look promising, the group of participants was relatively small, which we
intend to improve on in the future. In the next section, we discuss some preliminary user studies for the option
of designing solutions from scratch – without using predefined SMs, through company trials using the Solution
Configurator (as opposed to the conceptual design environment).

7

4.2 Lessons from industrial trials

The preliminary evaluation of the Solution Configurator involved onsite trials at 3 UK manufacturing SMEs;
one of them was carried out (at SME1) by a member of the research team, and the other two were carried out (at
SME2 and SME3) by one ‘IT savvy’ member of staff from each SME. For the latter trials, three key pieces of
information were given to the users on how to design SMs for their desired solutions:3 (i) following the approach
in [8], a high-level diagram of the SMs and BBs needed for the solution and how they should be connected; (ii)
the basic functionalities of the configurator, e.g. where to find BBs, how to connect them, and how to adjust
the number of connectors in a BB; and (iii) screenshots showing how each completed SM should look – the
development of each SM was treated as a separate ‘exercise’. In future work we intend to explore to what extent
users can develop SMs without screenshots showing the exact SM needed.

The 3 digital solutions fell under 2 solution categories [18]: SME1 needed a ‘Process Monitoring’ solution,
which used a Raspberry Pi, a low-cost camera, and machine vision to read legacy display panels in a factory
(e.g. dials, lights, and LCD displays), and also stored and visualised the resulting data; SME2 needed a ‘Fault
Monitoring’ solution, which used a similar approach to monitor a material braiding machine and alert operators
when the braiding angle was outside of a given tolerance; and SME3 also needed a ‘Process Monitoring’
solution, which used low-cost temperature sensors together with a Raspberry Pi to capture, store and visualise
temperature data as hot wax was gradually cooled along a conveyor belt. Fig. 3 shows screenshots (cropped due
to lack of space) of SMs required in some of the exercises.

Initial results from the trials were promising, with the following main insights: (i) an ‘IT savvy’ user in the
context of SME2 and SME3 meant someone with an Engineering degree; (ii) these users took under 40 minutes
per exercise on average, including the time taken to read the guidelines; and (iii) after setting up the Raspberry
Pi and camera at SME1, the researcher took under an hour on average (from three visits) to design as well
as deploy a bespoke solution (comprising a Data Collection, Data Storage, and User Interface SM and their
constituent BBs and Components) from scratch. Despite the researcher being an expert user of the configurator,
we anticipate that it would have taken him much longer to program the 3 SMs and their communication directly
in Python.

5 Related Work

There are a number of graphical development environments that are similar to the Solution Configurator; we
discuss the most closely related approaches in this section.

In software and systems engineering, the Object Management Group (OMG) provides various languages for
modeling software and hardware entities and their relationships, such as block diagrams, object diagrams, activity
diagrams, deployment diagrams, component diagrams, and sequence diagrams [4]. Of particular relevance is
SysML, which allowsmodelling systems of systems by extending existing OMG languages. Similarly, Archimate
[12], hosted by the Open Group, offers comparable modeling capabilities with a focus on the high-level modeling
of entire enterprises, both within and across business domains. While some of these languages are expressive
enough to address many of the requirements in Sec. 2 (particularly requirement D4, which could not be entirely
addressed in our implementation), these languages are still meant for skilled users (e.g. engineers or computer
scientists) and tend not to be sufficiently simple and intuitive for staff at manufacturing SMEs.

There are various block-based graphical development environments that are closely related to our work, in
particular MIT’s Scratch [16] and Microsoft’s MakeCode [3]. The main difference with our work is that these
are high-level programming environments, rather than environments for modeling the composition of a cyber-
physical system. Furthermore, there are some modeling details that are harder to realise with the mentioned
environments, e.g. it is not possible to connect blocks side-by-side (requirement D4 in Sec. 2) as shown in
Fig. 1. Another closely related graphical development environment is Node-RED [1], a high-level flow-based
programming language. Node-RED makes it easy to ‘wire’ together various IoT devices, by using predefined
‘nodes’ provided by a community of users and/or by developing new nodes, where a node can represent various
entities including a Javascript function, a programming language construct such as a switch statement, a message

3 Two of the desired solutions were determined through in-company requirements workshops [18], and the third through discussions
with a company director.

8

containing data, or a connectivity technology such as MQTT. While this makes Node-RED similar in principle
to the environment presented in this paper, there are two key differences. The first is that Node-RED is still
programming-oriented, as suggested by the the core nodes which include capabilities for writing functions and
switch statements, for error handling, for splitting and combining messages passed between nodes, etc. The
second key difference is that nodes can only be ‘wired’ together (through the same type of connector) but not
grouped in more intuitive ways, e.g. nested as shown in Fig. 1. Nonetheless, Node-RED could complement our
tool, as it has a capability for modeling the flow of data between SMs.

Integrated Development Environments such as Eclipse [20], Netbeans [5], and Mendix [10] are also related
to the Solution Configurator, which facilitate building individual software applications. Like the Solution Con-
figurator, such tools offer an interface for dragging and dropping components – albeit GUI components such
as buttons, progress bars, and charts – onto a workspace, and then generating the resulting solution or solution
skeleton. However, Netbeans and Eclipse still require a software developer to fill in the corresponding function
skeletons with code, and Mendix also seems to require a certain level of skill when combining multiple applica-
tions together, e.g. pulling data from an external database to display the data in a visualisation application being
developed, which would require an understanding of data models and flows represented similarly to OMG’s
class diagrams and Node-RED’s flow diagrams. However, Mendix could, for example, correspond to a Platform
BB in our framework, for visualising data as shown in Fig. 1(d).

6 Conclusions and Future Work

This paper has discussed a graphical support environment that facilitates the development of affordable digital
manufacturing solutions for SMEs,with a focus on the solution design aspect of the environment. After describing
the environment’s underlying concepts and the resulting implementation, a preliminary evaluation was presented,
both for the conceptual environment and its implementation. Two useful features for such an environment include
the ability to generate code (based on the design) that can be deployed on the identified computing devices, and
guiding the user through the process of designing a digital solution. We leave a discussion of the former to a
longer paper, and we have given some insights into an approach for feasibly verifying whether a solution being
designed makes sense.

Possible avenues for future work include using these insights to develop a more thorough account of user
guidance and thereby address requirement H4 in Sec. 2, finding a solution to the limitations in Blockly in order to
fully address requirement D4 (support for suitable connection types), and finally, coming up with an approach for
addressing requirement H5 (guideline/code generation), even if to a limited extent – e.g. generating guidelines
only at a high level. We believe that the remaining requirements have been suitably addressed by our approach.

The proposed support environment forms part of the larger digital solution development approach proposed by
the Digital Manufacturing on a Shoestring project [8], which accounts for further aspects such as requirements
capture, solution maintenance and operator training. Thus, another main aim going forward is to make the
environment more closely aligned with the larger development approach, e.g. by including a design element
that represents a solution, and starting the design process by identifying the highest priority solution element,
followed by a relevant template for it (comprising SM types).

References

1. Node-RED guide. http://noderedguide.com.
2. Information technology - syntactic metalanguage - Extended BNF. http://standards.iso.org/ittf/PubliclyAvailableStandards/,

1996 (accessed March 10, 2017).
3. T. Ball, A. Chatra, P. de Halleux, S. Hodges, M. Moskal, and J. Russell. Microsoft makecode: embedded programming for

education, in blocks and typescript. In Proceedings of the 2019 ACM SIGPLAN Symposium on SPLASH-E, pages 7–12, 2019.
4. G. Booch. The unified modeling language user guide. Pearson Education India, 2005.
5. T. Boudreau, J. Glick, S. Greene, V. Spurlin, and J. J. Woehr. NetBeans: the definitive guide: developing, debugging, and

deploying Java code. O’Reilly Media, Inc., 2002.
6. N. Chomsky. On certain formal properties of grammars. Information and Control, 2(2):137–167, 1959.
7. G. De Giacomo, F. Patrizi, and S. Sardina. Automatic behavior composition synthesis. Artificial Intelligence, 196:106–142,

2013.

9

8. G. Hawkridge, D. McFarlane, B. Schönfuß, J. Kaiser, L. de Silva, and G. Terrazas. Designing shoestring solutions: An approach
for designing low-cost solutions for manufacturing. In SOHOMA, page to appear, 2021.

9. G. Hawkridge, M. Perez Hernandez, L. de Silva, G. Terrazas, Y. Tlegenov, D. McFarlane, and A. Thorne. Tying together
solutions for digital manufacturing: Assessment of connectivity technologies & approaches. In IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), pages 1383–1387, 2019.

10. M. Henkel and J. Stirna. Pondering on the key functionality of model driven development tools: The case of mendix. In
International Conference on Business Informatics Research, pages 146–160. Springer, 2010.

11. D. Horváth and R. Z. Szabó. Driving forces and barriers of industry 4.0: Do multinational and small and medium-sized
companies have equal opportunities? Technological forecasting and social change, 146:119–132, 2019.

12. A. Josey, M. Lankhorst, I. Band, H. Jonkers, and D. Quartel. An introduction to the archimate® 3.0 specification. White Paper
from The Open Group, 2016.

13. G. Martínez-Arellano, M. McNally, J. C. Chaplin, Z. Ling, D. McFarlane, and S. Ratchev. Visualisation on a shoestring: a low
cost approach for building visualisation components of industrial digital solutions. In SOHOMA, page to appear, 2021.

14. D. McFarlane, S. Ratchev, A. Thorne, A. K. Parlikad, L. De Silva, B. Schönfuß, G. Hawkridge, G. Terrazas, and Y. Tlegenov.
Digital manufacturing on a shoestring: Low cost digital solutions for SMEs. In International Workshop on Service Orientation
in Holonic and Multi-Agent Manufacturing, pages 40–51, 2019.

15. E. Pasternak, R. Fenichel, and A. N. Marshall. Tips for creating a block language with blockly. In 2017 IEEE Blocks and
Beyond Workshop (B&B), pages 21–24, 2017.

16. M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum, J. Silver,
B. Silverman, et al. Scratch: programming for all. Communications of the ACM, 52(11):60–67, 2009.

17. B. Schönfuß, D. McFarlane, N. Athanassopoulou, L. Salter, L. de Silva, and S. Ratchev. Prioritising low cost digital solutions
required by manufacturing SMEs: A shoestring approach. In SOHOMA, pages 290–300, 2019.

18. B. Schönfuß, D. McFarlane, G. Hawkridge, L. Salter, N. Athanassopoulou, and L. de Silva. A catalogue of digital solution
areas for prioritising the needs of manufacturing SMEs. Computers in Industry, 133(103532), 2021.

19. A. Sevinc, Ş. Gür, and T. Eren. Analysis of the difficulties of smes in industry 4.0 applications by analytical hierarchy process
and analytical network process. Processes, 6(12):264, 2018.

20. D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: eclipse modeling framework. Pearson Education, 2008.
21. D. H. Younger. Recognition and parsing of context-free languages in time n3. Information and Control, 10(2):189–208, 1967.

