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The efficiency of routing traffic through a network, comprising nodes connected by
links whose cost of traversal is either fixed or varies in proportion to volume of usage,
can be measured by the ‘price of anarchy’. This is the ratio of the cost incurred by
agents who act to minimise their individual expenditure to the optimal cost borne by
the entire system. As the total traffic load and the network variability—parameterised
by the proportion of variable-cost links in the network—changes, the behaviours that
the system presents can be understood with the introduction of a network of simpler
structure. This is constructed from classes of non-overlapping paths connecting source
to destination nodes that are characterised by the number of variable-cost edges they
contain. It is shown that localised peaks in the price of anarchy occur at critical traffic
volumes at which it becomes beneficial to exploit ostensibly more expensive paths as
the network becomes more congested. Simulation results verifying these findings are
presented for the variation of the price of anarchy with the network’s size, aspect-ratio,
variability and traffic load.
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1 Introduction

The principles of least action or minimum energy are fundamental to the determination
of equilibria in the physical sciences. However, in systems comprising competitive agents
who can interact with their environment and among themselves, the attainable equilib-
rium configurations can be influenced substantially through the local strategies that agents
adopt and be different from those accessible through globally-imposed strictures. Hence
there can be a difference between an equilibrium that optimises the advantages of the so-
ciety or ensemble of agents compared with an equilibrium that optimises the advantages
gained for the individual agents. This difference can be gauged by determining the cost
(measured in time or resources) for establishing these different classes of equilibria. The
ratio of these costs has been termed the ‘Price of Anarchy’ (denoted by P) [1] whose devia-
tion from unity measures the percentage of resource wasted through the agents’ selfish be-
haviour. This concept is applicable to and important for systems in which agents compete
for a limited resource, and for mediating or ameliorating the effects of self-interest-driven
inefficiency. Illustrative examples of such systems include: the use of public services such
as health centres [2], the implementation of strategies in sports [3, 4], transportation [5–15]
and computer networks [16–21], and contagion dynamics [22]. The interactions of com-
petitive agents in such systems can be understood in terms of dynamics on networks, and
the techniques of this field can be brought to bear in their analysis. The desire to minimise
P motivates investigating how its value is affected by the agents’ actions and influenced
by the environment that connects them to each other. Such knowledge would provide the
capability to achieve efficiency and robustness to individuals’ actions through manipulat-
ing the network structure or, if this is not feasible, to enforce the social optimum through
a central authority influencing the quantity it carries.

The archetypal study of this problem was presented in [23] in the context of road traf-
fic flow. A simple network model was proposed in which ‘roads’ and ‘traffic’ provided a
proxy for any congestible system of links or edges bearing a flux of some quantity. The
network consists of two nodes connected by two parallel edges (roads), and a total traf-
fic T is routed from one node (the source) to the other (the destination). The two edges
are different in function: the cost incurred by a network user for traversing the fixed-cost
edge is constant, while the cost of traversing the variable-cost edge is equal to the amount
of traffic it carries. Given T = t f + tv, where t f and tv are the amounts of traffic routed to
the fixed- and variable-cost edges respectively, then c f (t f ) = c f and cv(tv) = αtv are the
respective costs of traversing the fixed- and variable-cost edges. The total cost incurred by
all users is then given by C(t f , T) = t f c f + (T − t f )cv(T − t f ). The traffic flow with mini-
mum total cost is called the System Optimum (SO). This is achieved when t f = T − c f /2α

and the associated total cost is Cso = α(T2 − t2
f ). However, when network users choose

their routes to minimise their individual costs, analogous to the concept of a Nash equi-
librium [24] in game theory, the resultant traffic flow is called the User Equilibrium (UE).
At the SO, the fixed-cost edge incurs a cost c f whereas the variable-cost edge incurs a cost
c f /2. There is evidently an incentive for users to switch from the fixed to the variable-cost
edge. At the UE, if T ≤ c f /α then all the traffic takes the variable-cost edge giving a total
cost Cue = αT2. Consequently P ≡ Cue/Cso ≥ 1 in general, with P = 1 corresponding
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to the absence of any inefficiency driven through selfish routing. In [23] the network was
analysed for T = α = c f = 1 which gave P = 4/3, this being an upper bound on the value
of P achievable for any network with linear cost functions [17]. Effort has been expended
on deriving bounds on P for various nonlinear cost functions [25–28], although these is-
sues will not be the concern here.

More recent investigations have considered the behaviours that P can exhibit for large
and complex networks. In [5] the efficiency of real transportation networks was consid-
ered, using road networks for parts of Boston-Cambridge, New York City and London as
examples. In each case, the value of P was calculated as a function of the traffic load T
which was routed between a selected pair of origin (source) and destination (sink) loca-
tions. The routes between the two locations were a series of roads, all of which incurred a
variable cost for carrying traffic. The value of P exhibited generically similar features irre-
spective of the road structure or form of cv(tv) that was appropriate to that city, increasing
from unity through a series of local maxima or ‘ripples’ to a principal peak value ∼ 1.3
before falling monotonically to unity at high values of T. The number of ripples exhibited
was particular to the city. This general trend was repeated for abstract networks having dif-
ferent topologies by virtue of the degree distribution [29]. The ripple structures smoothed
out to leave a single peak in P when averages over different sources and sinks were con-
sidered as an ensemble. Similar behaviour was seen in a study of the public health service
in Wales [2], which examined the inefficiency of allowing patients to choose which health
centre they visit rather than having it designated to them by central authority. The value
of P arising in a network representing public and private healthcare provision—with the
former corresponding to variable-cost edges and the latter to fixed-cost edges—was inves-
tigated as a function of the demand for treatment, this being analogous to T. Here too P
exhibited ripples before declining monotonically beyond a principal peak value P ∼ 1.2.
In recent work [14], the dependence of P on T for a two-node network with parallel links
of varying costs was investigated, and analytical locations of the peaks in P were given.

The investigation in [30] sought to gain a more fundamental understanding of the in-
fluence of a congestible network structure on its efficiency. In place of networks aimed
at modelling real-world systems a regular lattice was considered and the effect on P to
changing the proportion of variable-cost edges whilst keeping T fixed was examined. This
enabled the influence of the network microscopic-structure on its macroscopic manifesta-
tions to be probed. The lattice structure considered is depicted in Figure 1, the key features
of which being that traffic emanates from I left-most nodes, terminates at I right-most
nodes, between which paths of L edges are traversed. The traffic is one-way, always trav-
elling from source to destination, and the edges joining the nodes have probability p and
(1− p) of belonging to the variable- or fixed-cost type respectively. In [30] the particular
case for which L = 2I was considered and the value of P (whose average over many net-
work realisations is P) as a function of p was shown to display similar behaviour to that
occurring in [5], rising fromP = 1 to a peak value∼ 1.05 at p ∼ 0.6 before falling rapidly to
unity for larger values of p, but the ripple structures were absent. The location of the peak
in P was shown to occur at the value of p which corresponds to the directed-percolation
threshold of the lattice, i.e. at the emergence of paths crossing the entire network compris-
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ing entirely variable-cost edges. Consequently a connection was drawn between this and
the more general insights gleaned from the extensive study of idealized lattice models. The
conclusions of [30] apply for a network of sufficiently large size that edge effects could be
ignored and a suitably defined thermodynamic limit thereby inferred.

The qualitative similarity of the behaviours exhibited byP to variation in the flux upon,
and inhomogeneity of, the network prompts enquiring whether the effect of some under-
lying principle is being manifested, and if so whether this can be employed to explain the
quantitative differences. This paper seeks to provide a more complete study of the depen-
dence of the efficiency of random heterogeneous networks on the network’s structure and
the volume of traffic it bears. This will be achieved by considering the idealized lattice
structure of [30] to explore the effects that network microstructure and macroscale geom-
etry has on P(p, T). Evidently the value of P when viewed as a function of two variables
possesses a richer structure than has been revealed hitherto. This work will unveil that
structure both by computational and analytical means.

We highlight that the ripple structures observed in [2,5] for P(p = const., T) also occur
for P(p, T = const.) in smaller networks with aspect ratio R = 2I/L different from unity.
We analyse the dependence of P on p, T, and network size and shape, highlighting regions
in (p, T)-space where P attains both local and global maxima, thereby providing diagnos-
tics to predict and manipulate those conditions causing inefficiency through the action of
dynamical processes on a heterogeneous network. We formalise and extend the analysis
of [14] to consider a lattice network and thereby characterise the ripples in P(p, T), a key
ingredient of which being to recognise that the lattice network under consideration can be
distilled to a simpler network that permits analysis.

The contents are organized as follows. Section 2 describes the lattice structure and the
procedures through which the optimum and Nash equilibrium costs, and thereby P , are
determined. Section 3 explores the effects of network size and aspect ratio in combination
with variation in the homogeneity of the links and overall traffic volume respectively. The
full landscape of P(p, T) is also considered, and approximately invariant structures that
exist within that terrain are highlighted. In Section 4, an explanation for the occurrence of
the ripple structure and location is provided. The final section discusses the implications
and generalizations of the work. Technical details are assigned to Supplementary Material.

2 A heterogeneous network model

The network structure studied here is that considered by [30] and described in Section
1. Periodic boundary conditions are applied in the vertical direction and, for a particular
realization, users have complete information about the network’s structure and all other
users’ actions.

For the remainder of this article we shall refer to “variable-cost” and “fixed-cost” edges
simply as “variable” and “fixed” edges, respectively. If j ∈ P denotes an edge of a partic-
ular path P, comprising both variable and fixed edges, the cost for an individual user to
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traverse that path will be

cP = ∑
j∈P

(
χjcv(τj) + (1− χj)c f

)
. (1)

where 0 ≤ τj ≤ T is the traffic carried on edge j and χi is an indicator function:

χj =

{
1, if j is a variable edge;

0, if j is a fixed edge.

We consider a network in which a proportion p of randomly-chosen edges have variable
cost function cv(τ) = τ, with the remainder having constant cost c f = 1. In this way, the
parameter p denotes the level of variability of the network. The cost of traversing a path P
is then

cP = ∑
j∈P

(
χjτj + (1− χj)

)
. (2)

The total cost incurred by all traffic on path P is

CP = ∑
j∈P

(
χjτ

2
j + (1− χj)τj

)
. (3)

If E denotes the set of all edges of the network, then the total cost of a traffic flow on the
network is given by

C = ∑
j∈E

(
χjτ

2
j + (1− χj)τj

)
.

To reiterate, at UE all network users choose the cheapest path available to them while the
SO traffic flow minimises C. Denoting these total network costs Cue and Cso, respectively,
the price of anarchy is P = Cue/Cso.

An iterative algorithm (after [30]) is employed to compute the UE and SO traffic flows—
full details are given in Appendix A, but the essentials are as follows. The network is ini-
tialised with a uniform distribution of traffic over all paths of the lattice. Then, an iterative
procedure is implemented whereby two paths A and B are chosen at random and some
traffic δτ is transferred from each edge of B to each edge of A. The calculation of δτ is
dependent on whether the UE or SO is being computed: for UE, the transfer of δτ results
in cA = cB; for SO, the transfer minimises (CA + CB). Due to the structure of the lattice
network under consideration, the number of paths between source nodes and destination
nodes is very large even for ostensibly small networks. The computational cost of comput-
ing the traffic flows is therefore relatively high – details of which can be found in Appendix
A.

3 Results

This section presents results demonstrating the influence that the network variability p,
traffic T, size I× L, and aspect ratio R = 2I/L, have upon the price of anarchyP . Ensemble
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(a) (b)

FIG. 1: (Colour online.) The lattice network structure, with a volume of traffic T routed
from I source nodes to I destination nodes via paths of length L that comprise randomly
interspersed fixed edges (blue/thick) and variable edges (red/thin).

averages for P are formed from 2000 realisations. Figure 2 shows ensemble average results
P(p, T = 1), for lattices with aspect ratios R > 1. In 2(a) P is presented for I = 80 and
L = 5 and 6: the value of P increases with p to a maximum of P ∼ 1.14 through a series
of ripples of increasing size before rapidly falling to unity, at which the UE and SO traffic
flows coincide. The number of ripples is always equal to the path length, with one ripple
which is not easily visable occuring at p ≈ 0. Figure 2(b) indicates the variation ofP within
the network realisations associated with the results in Figure 2(a) for L = 6, by inclusion
of an envelope of one standard deviation, thereby highlighting that while the details in P
vary, the essential features described above are generic. The inset shows the inconspicuous
ripple at p ≈ 0.

The results presented in Figure 2 correspond to a relatively small network, and with
large aspect ratio; however, such a restrictive choice is not required, the ripples being pre-
served for networks of increasing size and for smaller R. In each case, the number of
ripples is increased due to the longer path lengths involved.

The ripples in P(p, T = constant) are a novel feature. The variation of P with network
variability is more subtle than the correspondence between maximum inefficiency and
the lattice percolation threshold, highlighted in [30] in the thermodynamic limit of large
network size and for R = 1. Moreover, [30] studied variations of network variability
carrying unit traffic (T = 1), which we will show is less generic than one might initially
suppose.

Figure 3 shows the price of anarchy as a function of T for fixed p. Figure 3(a) shows
ensemble results P corresponding to a lattice with I = 80 and L = 6, for two different
values of p. Here, P attains a principal peak before saturating to unity. However, for p =

0.2 there is additional structure that recalls the ripples seen in Figure 2. Figure 3(b) shows
P(p = 0.2, T) for a single realisation of the network. While peaks are evident in P(p =

constant, T) the sharply-defined structures shown in Figure 3(b) have been smoothed due
to variability occuring in each realisation, with only the dominant final peak remaining
consistently.

Figure 4 examines the full landscape ofP(p, T) for different choices of network size and
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FIG. 2: The variation of P with respect to p (for T = 1) for a lattice with dimensions (a)
I = 80, L = 5, 6; (b) I = 80, L = 6. In (b) the shaded area indicates an envelope of one
standard deviation, while the inset displays the first peak which occurs at very small p.
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FIG. 3: The variation of P with T. (a) P(p = constant, T) for I = 80, L = 6 and different
network variability: p = 0.2, 0.7. (b) P(p = 0.2, T) for a single realisation of the network
with I = 80, L = 6.

aspect ratio, with 0 ≤ p ≤ 1 and T ranging over 4 decades. The top row shows results for
square networks, while the bottom row indicates those for R > 1; network size increases
from left to right. There are two principal features in P(p, T). First, a large thin region
of increased P localised in T but quasi-invariant with p (extending for 0.2 . p . 0.8) is
present in all networks. Its precise location is dependent on aspect ratio (for R = 1 it occurs
at T ∼ 10, whereas for R > 1 its location moves to T ∼ 100). The second more complex
feature is more strongly dependent on network characteristics, in particular the aspect ra-
tio. For a square network it has a localised and globular morphology concentrated around
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p = 0.6, T = 0.1. For R > 1 we observe striations through the (p, T)-landscape. The
results of Figures 4(c,d) highlight that for fixed aspect ratio the morphology of the land-
scapes of P are not strongly dependent on network size. However, the relative importance
of the two features described is reversed as the network size increases: in small networks,
the dominant peak in P occurs for large T; for larger networks, the globular or striated
regions dominate. This is maintained for further increases in network size. For aspect
ratio R < 1, additional simulations that are not illustrated here show that the locations
and relative strength of the prominent features in the landscape of P for square networks
prevail.

Figures 2 and 3, which were for networks of moderate size, reveal a rich structure in
P that is directly linked to the network path length and aspect ratio. Figure 4 highlights
that these features are replicated in larger networks. Therefore the finite-size effect is not
restricted to artificially small networks but applies more widely to larger structures en-
countered in real networks of finite size.

4 Network analysis

4.1 Network simplification: a collection of non-overlapping paths

This section provides a fundamental understanding of the phenomenology shown in Sec-
tion 3. This is achieved by distilling the lattice network to a simpler and more essential
entity that comprises a set of I non-overlapping paths of length L, each of which connect a
source node to a destination node via L edges. The other assumptions about the network
and the rules for the traffic flow are unchanged. A key consequence of this simplification
is that the traffic borne by each edge in a given path is identical. Moreover, under both
UE and SO all paths with the same number of variable edges (greater than 0) carry equal
traffic. This is evident for the UE case: if two paths with the same number of variable
edges carried unequal traffic, one path would cost more to traverse than the other and the
traffic flow would not satisfy the Nash equilibrium (see §2). It must also be true for the SO
case because the cost of variable edges is an increasing function of traffic carried, hence the
total cost of the flow can only be minimised if the traffic is uniformly distributed within
‘classes’ of paths which have the same number of variable edges.

In this simplified representation, the UE and SO on a given network realisation can be
characterised by the amount of traffic allocated to paths (or ‘classes’ of paths) depending
on the number of variable edges they comprise. Denote by τk the quantity of traffic routed
to each path which comprises k variable edges and (L− k) fixed edges (referred to as ‘k-
paths’), and denote by Nk the number of such paths in the network. For a given realisation,
denote by k∗ ≤ L the number of variable edges within the path(s) with the greatest number
of variable edges. The user cost incurred by traversing a k-path is, from equations (2) and
(3),

ck(τk) = kτk + (L− k), (4)

and the total cost incurred by traffic using that path is

Ck(τk) = τkc(τk) = kτ2
k + (L− k)τk. (5)
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FIG. 4: The P landscape for different choices of aspect ratio and network size. (P − 1) is
presented here to enhance contrast. Top row, R = 1; bottom row, R > 1. (a) I = 10, L = 20;
(b) I = 20, L = 40; (c) I = 80, L = 6; (d) I = 160, L = 12. Dashed white lines in (c)
highlight parameter choices corresponding to results presented in Figures 2 and 3.
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Since all paths in a class carry equal traffic, the total cost of a UE or SO flow is given by

C =
k∗

∑
k=0

Ck(τk)Nk. (6)

The network variability p dictates the set of Nk, k = 0 . . . k∗, with Nk in general increas-
ing with p. Note that T and p have opposite effects on the total cost C. The total cost
increases with T because the total cost is an aggregate cost of all the traffic, hence an in-
crease in the traffic load results in a greater total cost. Moreover, increasing the traffic load
results in greater congestion on the variable edges and therefore greater user-travel costs.
By contrast, the total cost decreases with respect to p because variable edges are cheaper to
traverse than fixed edges (assuming that the traffic demand in the system is not too large
and that the traffic load on variable edges is ≤ 1), hence an increase in the number of vari-
able edges results in a decrease to the total aggregate cost. Both UE and SO flows depend
on which k-paths carry traffic, which is determined by the the relationship between T and
Nk. From this relationship we infer thresholds in the traffic load at which unused k-paths
become utilised. These thresholds, themselves depending on Nk, differ for the UE and SO
flows and so affect P . The following sections establish these thresholds and discuss their
consequences. A rigorous derivation of the thresholds and associated bounds is given in
Appendix B.

4.2 P(p = constant, T)

We examine here the landscape of P(p, T) when T varies with a fixed value of p by
analysing how an increase in the total traffic from T = 0 influences its routing at each
equilibrium.

Consider first the UE, at which the network users choose the path with minimum cost.
This means that all traffic-carrying paths incur equal cost irrespective of the number of
variable edges they contain. This cost is less than or equal to the cost of any unused path.
As T increases from zero, the paths comprising entirely fixed edges are the most expen-
sive to traverse, with cost L, and the least expensive paths to use are the k∗-paths, with
minimum cost L− k∗. Consequently, the k∗-paths will be utilised first, with all others re-
maining unused. This will continue until the traffic increases to such an extent that any
additional routing along the k∗-paths would become more costly than routing onto paths
containing fewer variable edges but carrying no traffic. There is evidently a critical value
of the traffic routed along a j-path at which the cost is identical to that of an unused i-
path (i < j). Denoting this critical value to be τue

ji and appealing to (4) this occurs when
jτue

ji + L− j = L− i, that is:

τue
ji =

j− i
j

. (7)

When traffic carried by the j-paths attains this critical value, any further increase in T will
result in some traffic being routed to i-paths. Since there are Nj such j-paths and if i-paths
are unused then all k-paths with k < i incur an even greater cost and are also unused, the
critical traffic load under UE at which traffic begins to use i-paths is given by

T ue
i =

k∗

∑
j=i+1

τue
ji Nj. (8)
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This enumerates how much traffic is carried on k-paths, for k = i + 1, . . . , k∗, at the point
when it becomes beneficial for network users to employ i-paths which carry no traffic.
Provided that the total network traffic is such that Ti+1 < T ≤ Ti, all the k-paths in the
range i + 1 ≤ k ≤ k∗ carry traffic whereas those higher-cost paths with fewer variable
edges are unused. Note that T ue

i ≤ T ue
i−1, since paths with more variable edges are always

used preferentially.

Now consider the SO traffic flow, which minimises the total cost C given by (19) and
which differs in general from the total cost at the UE—in particular, Cue can exceed Cso (so
that P > 1) due to paths with a high number of variable edges having too much traffic
routed to them. The SO traffic flow must undergo a similar series of transitions with vary-
ing T. For sufficiently small T all traffic is routed to the k∗-paths; further increases in T then
lead to some traffic being routed sequentially, beginning with (k∗− 1)-paths, to previously
unused paths with fewer variable edges. Thresholds at which these transitions occur can
therefore be constructed analogously to those in the case of UE, by pairwise comparison
between the cost of traffic-carrying paths and the unused paths with the most variable
edges. To determine these, we provide the following heuristic argument for the SO equi-
librium condition and attendant critical traffic loads, a formal justification for which is
given in Appendix B.

Given a SO flow such that τj > 0, consider rerouting an amount of traffic Njδτ > 0
from the set of j-paths to the set of i-paths. Because the flow before the rerouting was SO,
the total cost of the flow cannot be decreased by the rerouting, so

NiCi(τi) + NjCj(τj) ≤ NiCi

(
τi +

Nj

Ni
δτ

)
+ NjCj

(
τj − δτ

)
(9)

where the factor Nj/Ni reflects the possible disparity between the number of paths in each
class. Since this is true for any δτ > 0, this provides Cj

′(τj) ≤ Ci
′(τi). Equality occurs if the

i- and j-paths both carry traffic. However if τi = 0, the critical value at which it becomes
cost effective to route additional traffic to both i- and j-paths, denoted by τso

ji , occurs when
Cj
′(τj) = Ci

′(τi = 0), and from (5) this is

τso
ji =

j− i
2j

. (10)

Hence the critical thresholds for the SO are given by

T so
i =

k∗

∑
j=i+1

τso
ji Nj. (11)

Note that T so
i = T ue

i /2, meaning that the traffic load for which traffic begins to use i-paths
under SO is precisely half that for UE. Conditions similar to thresolds (8) and (11) were
obtained in [14] for a two-node network with parallel edges. These thresholds therefore
extend and generalise the treatment of [14] to a random network comprising an ensemble
of heterogeneous non-overlapping paths.
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SO traffic flow UE traffic flow P
1
2T ue

i < T ≤ T ue
i

τi > 0. τi = 0. Increasing

Cue increases with T at a higher rate than Cso.

T = T ue
i τi > 0. τi = 0.

ci+1(τi+1) = ci(τi = 0).
Maximised

T ue
i < T ≤ 1

2T ue
i−1

{
τi > 0;

τi−1 = 0.

{
τi > 0;

τi−1 = 0.
Decreasing

Cue increases with T at the same rate as Cso.

Table 1: Description of the variation of P with T.

These critical thresholds can be employed to explain the behaviour of P observed in
Figure 3 as follows. At the SO, for T ue

i /2 < T ≤ T ue
i , only paths containing i or more

variable edges carry traffic, whereas at UE only paths containing (i + 1) or more variable
edges carry traffic. Given that i-paths are utilised at SO but not UE, Cue increases with T at
a higher rate than does Cso, and so P increases. P continues to increase until T reaches the
critical threshold T ue

i at which point traffic is routed to i-paths at UE, Cue increases with T
at the same rate as Cso (see Appendix C) and hence P decreases. The cycle begins to repeat
itself when T exceeds the threshold T ue

i−1/2, at which point (i− 1)-paths carry traffic at SO
but not UE, and P increases with T. In this way a series of k∗ local maxima are created in
P(p = constant, T). This behaviour is caricatured in Figure 5 and summarised in Table 1,
highlighting in particular the key influence on P of the difference between the thresholds
T ue

i and T so
i at which the flows in the network exhibit significant transition.

The above indicates that the variation in P for fixed p can be understood entirely in
terms of Cue. Recall that for the UE all traffic-carrying paths incur the same cost. Denoting
this cost by c, the total network cost arising from an imposed traffic load T is Cue = Tc.
At T = T ue

j , k-paths with k > j carry traffic, the remainder being unused. Moreover
the cost of traffic-carrying paths is equal to that of the unused j-paths so that c = L − j.
Consequently P will be maximised when

Cue

T
= L− j, (12)

i.e., when Cue/T is an integer, with unit increments corresponding to sequential allocation
to paths with increasingly many fixed edges.

Recall that Figure 3a displays P(p = constant, T), which is an average over multiple
network realisations for a given p. The peaks of P(p = 0.2, T) are less acute than those
exhibited by P in Figure 3b for a corresponding single realisation. This is because the
corresponding thresholds T ue

i occur at different values for different network realisations,
while remaining sufficiently grouped to lead to P(p = 0.2, T) displaying smoothed peaks.

For P(p = 0.7, T), the network consists mostly of variable edges, most of which belong
to at least one k∗-path. Therefore the network essentially comprises only k∗-paths and
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FIG. 5: (Colour online.) A schematic diagram showing the variation of the total costs (per
unit traffic) at UE (red/solid line) and SO (blue/dashed line) with the traffic load T. The
cusps of the UE curve correspond to the critical thresholds T ue

i where P exhibits local
maxima.

0-paths. Hence there is only one T ue
i which takes approximately the same value for all

realisations, leading to a single, well-defined peak.

4.3 P(p, T = constant)

Equations (8) and (11) highlight the intimate relationship between T and p in determining
the cost of traffic flows in the network, and hence the variations in P . The behaviour
of P(p, T) for a fixed value of T may therefore be understood by exploiting the insight
obtained from the previous section, with the focus now on k and Nk in place of T.

The primary critical threshold of T for the UE for a given realisation of the network is
given by equations (7) and (8) as

T ue
k∗−1 =

Nk∗

k∗
.

For a given k∗, the value of Nk∗ increases with p as more k∗-paths are formed. Hence the
critical threshold for the UE at fixed T occurs at the value of p for which Nk∗ and k∗ satisfy

Nue
k∗ = Tk∗. (13)

Similarly the critical threshold at SO is given by

Nso
k∗ = 2Tk∗. (14)

Since traffic T and network variability p have opposite effects on the total cost of a traffic
flow we can infer the behaviour of P as Nk∗ varies around these critical thresholds. Taking
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SO traffic flow UE traffic flow P

Nk∗ < Tk∗

{
τi > 0, for some i < k∗;

τk∗ > 0.

Cue decreases with p at a lower rate than Cso.

Increasing

Nk∗ = Tk∗
{

τi > 0, for some i < k∗;

τk∗ > 0.

{
τi = 0, for all i < k∗;

τk∗ > 0.
Maximised

Tk∗ ≤ Nk∗ < 2Tk∗
{

τi > 0, for some i < k∗;

τk∗ > 0.

{
τi = 0, for all i < k∗;

τk∗ > 0.
Decreasing

Cue decreases with p at a higher rate than Cso.

Nk∗ ≥ 2Tk∗
{

τi = 0, for all i < k∗;

τk∗ > 0.
Equals unity

Table 2: Description of the variation of P with p.

i = k∗ − 1 in Table 1, it can be seen that P is increasing with T for Nk∗/2k∗ < T ≤ Nk∗/k∗,
and therefore P is decreasing with p for Tk∗ ≤ Nk∗ < 2Tk∗. Similarly, since P is decreasing
with T for Nk∗/k∗ < T, it follows thatP is increasing with p for Nk∗ < Tk∗. For Nk∗ ≥ 2Tk∗,
traffic is routed only to k∗-paths at both the UE and SO, and P = 1. However, Figure 2
shows that Nk∗ reaches Nso

k∗ only for k∗ = L. For k∗ < L, a path with more variable edges
than all other paths is formed before Nk∗ can reach Nso

k∗ , at which point k∗ increments by
one, Nk∗ = 1 and the cycle repeats itself. This process, summarised in Table 2, produces a
series of L local maxima in P before falling to unity.

The above considerations apply to an individual network realisation. When consider-
ing an ensemble of statistically similar networks of the same size, aspect ratio and traffic
load, maxima in P occur according to (13) for each realisation. Variation in each network
implies that maxima in P occur at values of p for which 〈|Nk∗ − Tk∗|/k∗〉 has a local mini-
mum.

4.4 Heterogeneous network

The results of the preceding sections provide exact locations of the peaks in P under vari-
ation of T and p in a simple network comprising a set of non-overlapping paths. This has
provided insight into the cause of the maximisation of P – namely, at thresholds in which
a given class of paths carries traffic under UE – which holds for more general networks.
This section investigates the applicability of the results of Sections 4.2 and 4.3 to the lattice
network of Section 3. While the lattice network does not have a complex structure, the
paths across the network overlap one another thereby making the traffic flows analytically
intractable.
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Translation of the results of Sections 4.2 and 4.3 to networks with overlapping traffic
flows is not trivial. With regards to P(p, T = constant), we know from the case of non-
overlapping paths that P is maximised by condition (13). However, this property fails to
hold for the regular-lattice network if Nk∗ is calculated simply by counting the number of
k∗-paths. This is because paths across the lattice can overlap one another by containing
one or more of the same edges, in which case the overall variability of these two paths
is between that of a single k∗-path and two non-overlapping k∗-paths, i.e. 1 < Nk∗ < 2.
Therefore peak locations given by (13) hold for more general networks only if we assign a
more sophisticated definition to Nk∗ , namely that it is the effective variability of the k∗-paths,
rather than the number of such paths. To obtain the value of Nk∗ under this definition,
for a given realisation of the network, we implement a computational procedure given in
Appendix D. Nevertheless, in the case for P(p = constant, T), the insight of (12) enables
the location of the peak to be understood entirely in terms of the UE and traffic T.

Figures 6 and 7 show the correspondence between the peak locations given by equa-
tions (12) and (13) and those observed in numerical experiments both in simple networks
of non-overlapping paths and in lattice networks. Figure 6 shows that in each case the
local minima in 〈|Nk∗ − k∗|/k∗〉 align with local maxima in P(p, T = 1). Figure 7 shows
that the peaks in P do indeed coincide with the locations given by equation (12).
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FIG. 6: The correspondence between the peaks in P(p, T = 1) and (13) in (a) a lattice
network with I = 80 and L = 6; (b) a network of non-overlapping paths with I = 160 and
L = 6.

Figure 8 displays the peak locations of P(p, T = constant) and those given by equation
(13) for lattice networks varying in size and with the same aspect ratio R = 80/3. This is
considered for T = 0.2, T = 1 and T = 5. The locations given by equation (13) correspond
to the actual peaks of P(p, T = constant) with good accuracy regardless of network size
or value of T. It can also be observed that peak locations increase both with network size
and with T, and tend to the lattice percolation threshold only as T becomes small.

The insight obtained from the above analysis may now be employed to explain the
quasi-invariant structure of P(p, T) observed in Figure 4. This corresponds to the critical
threshold T ue

0 , the largest traffic load for which traffic is routed to 0-paths for the SO but

15



1

1.04

1.08

1.12

1 2 3 4 5 6
T

P

C/ue

(a)

1

1.1

1.2

1.3

0 1 2 3 4 5 6

P

TC /ue

(b)
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not for the UE. With i = 0 in equations (7) and (8) this is

T ue
0 =

k∗

∑
j=1

Nj, (15)

which is the total number of paths that contain at least one variable edge. The quasi-
invariant structure of P(p, T = T ue

0 ) therefore shows that the total number of paths that
contain at least one variable edge is approximately constant over a wide range of p. From
(15) we infer that changes in p within this region alter the distribution of Nj without alter-
ing the total sum ∑k∗

j=1 Nj.

5 Summary

This paper has presented an analysis of how the efficiency for routing traffic on a net-
work is influenced by the degree of network heterogeneity and the traffic load. The lattice
network comprises both fixed- and variable-cost edges with nodes that are arranged in a
columnar array such that their connecting edges form tilted square cells. Employing the
‘price of anarchy’ P as a metric, the system efficiency was analysed as a function of traffic
T and network variability characterised by the proportion of variable edges p, considering
both individual networks and ensemble averages over a large number of realisations.

The numerical results serve to highlight a clear finite size effect in the structure of P ,
that is induced by the network structure and not observed in studies focussing on the
thermodynamic limit of large networks. Specifically, the peaked structures observed in
[2, 5, 14] for P(p = const., T) also occur for P(p, T = const.) in networks with aspect
ratio different from unity. The emergence of such structures persists in finite networks
of all sizes, including large networks which are of relevance to the analysis of real-world
phenomena.

The full landscape of P in (p, T)-space reveals a rich structure. This includes a peak
in P that occurs for large traffic volumes and is quasi-invariant with network variabil-
ity p. Here, the network inefficiency cannot be manipulated by changes to the network
variability but only by changing the traffic volume. A complex feature at lower traffic vol-
umes is more strongly dependent on network characteristics, taking either ‘globular’ or
‘striated’ form depending on the lattice aspect ratio. This is associated with the ripples in
P(p, T = const.) that we have highlighted.

In addition to these numerical experiments, we have provided an explanation for the
development of the peaks in (p, T)-space. By considering traffic flows that take place
within a simplified network of non-overlapping paths, we obtain exact formulæ (8) and
(13) for the peak locations in (p, T)-space. Under suitable re-definition of the terms, we
showed that these results hold for a network with complex traffic flows: a simple com-
putation provides, with good accuracy, equivalent peak locations that correspond to the
random lattice network.

This work therefore provides an improved understanding of the routing efficiency in
random networks. In particular, our semi-analytical characterisation of the dependence of
peaks in P on network variability and traffic load provides a powerful tool for the analysis
of general network structures.
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There are a number of important extensions to this work that warrant investigation,
and will form the focus for future work. These include investigations of the robustness of
our analyses to alternative network structures, including perturbations to the ordered lat-
tice considered here. Also the methodology allows more general random network topolo-
gies to be considred, and the effects of nonlinear cost functions.
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Appendix A: Computing the traffic flows

We used an algorithm from an earlier version of [30] to obtain the UE and SO traffic flows.
Denote by E the set of all edges of the network, and P the set of all paths. For an edge
i ∈ E, we define the following indicator function:

χi :=

{
1, if i is a variable edge;

0, if i is a fixed edge.

The cost for a user to traverse a path P ∈ P is

cP = ∑
i∈P

(
χiτi + (1− χi)

)
,

where τi is the traffic on edge i. The total cost of all traffic on path P is given by:

CP = ∑
i∈P

(
χiτi

2 + (1− χi)τi

)
.

The algorithm for computing the traffic flows is as follows. Firstly, the traffic is uniformly
distributed over all the paths. Then, an iterative procedure is implemented whereby two
paths A and B are chosen at random and some traffic δτ ∈ R is transferred from each
edge of B to each edge of A. The calculation of δτ is dependent on whether UE or SO is
being computed. Recall that under UE all paths which carry traffic incur the same cost to
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traverse. Therefore, to compute UE, δτ is calculated such that a transfer of δτ from path
B to path A results in cA = cB. Under SO the total cost of the traffic flow is minimised,
so in this case δτ is calculated such that (CA + CB) is minimised. (See below for detailed
derivations of δτ.) To improve the convergence of the algorithm, paths are generated via
a Monte Carlo sampling whereby each edge is chosen with probability proportional to
the amount of traffic the edge carries at the current iteration. Once the algorithm has
terminated, the total cost of the flow is calculated by:

C = ∑
i∈E

(
χiτi

2 + (1− χi)τi

)
.

We note that this simple numerical method is not guaranteed to converge to the exact UE
or SO flow. In order to minimise the effect of errors, we iterated over 50,000 pairs of paths
per network realisation and took the average of P over 2000 realisations for each choice of
parameters (p, T). These choices are based on a convergence criteria given in [30].

For the computation of UE, we transfer δτ from each edge of B to each edge of A to equalise
the costs of the two paths:

∑
i∈A

(
χi(τi + δτ) + (1− χi)

)
= ∑

i∈B

(
χi(τi − δτ) + (1− χi)

)
.

Solving for δτ:

δτ =

∑
i∈B

(
χiτi + (1− χi)

)
− ∑

i∈A

(
χiτi + (1− χi)

)
∑
i∈A

χi + ∑
i∈B

χi
. (16)

Note that δτ may take a negative value here, which corresponds to a transfer of traffic from
A to B. However, δτ may not leave a negative amount of traffic on any of the edges. To
this end, δτue is assigned as follows:

δτue =


min
i∈B

τi, if δτ > min
i∈B

τi

−min
i∈A

τi, if − δτ > min
i∈A

τi

δτ, otherwise,

where δτ is given by (16). Finally, to avoid oscillatory behaviour in the numerical compu-
tation, we scale δτue with a damping parameter λ = 0.5.

For the computation of SO, δτ minimises

CA + CB = ∑
i∈A

(
χi(τi + δτ)2 + (1− χi)(τi + δτ)

)
+ ∑

i∈B

(
χi(τi − δτ)2 + (1− χi)(τi − δτ)

)
,

so

d
d(δτ)

(CA + CB) = 0. (17)
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Solving (17) for δτ:

δτ =

∑
i∈B

(
2χiτi + (1− χi)

)
− ∑

i∈A

(
2χiτi + (1− χi)

)
2

(
∑
i∈A

χi + ∑
i∈B

χi

) . (18)

As before, δτso is given by

δτso =


min
i∈B

τi, if δτ > min
i∈B

τi

−min
i∈A

τi, if − δτ > min
i∈A

τi

δτ, otherwise,

where δτ is given by (18), and we scale δτso with a damping parameter λ = 0.5.

The results of this paper were produced using computer programs written in C++. With
regards to the cost of computation: the results of Figure 2 and Figure 3a were each ob-
tained from 20 hours of a Core i3 Central Processing Unit; Figure 3b pertains to a single
realisation and was obtained from an hour of computation; the landscapes displayed in
Figure 4 were each obtained from approximately half a week of computation.

Appendix B: Conditions for k-paths to carry traffic

The UE traffic flow adheres to Wardrop’s first principle of traffic flow for which no single
user can decrease their personal cost by changing to a different path [31]. We thereby de-
fine a UE traffic flow as follows.

Definition 1
A traffic flow is UE if and only if for all i ≤ k∗,

τi > 0 =⇒ ci ≤ cj for all j ≤ k∗.

Remark 1
Under UE,

τi, τj > 0 =⇒ ci = cj.

The SO traffic flow adheres to Wardrop’s second principle of traffic flow in which the
total cost of all users is minimised [31]. Given that the cost functions of all the edges in the
network under consideration here are convex, finding an SO flow represents a problem of
optimising the following convex program:

minimise
k∗

∑
k=0

Ck(τk)Nk (19)
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subject to:
k∗

∑
k=0

τkNk = T, τk ≥ 0 for k = 0, 1, . . . , k∗.

Consider a traffic flow in which some path P1 carries an amount of traffic τP1 . A necessary
condition for this traffic flow to be locally optimal is that for any path P2, a transfer of any
amount of traffic ε, with 0 < ε ≤ τP1 , from P1 to P2 does not result in a decrease to the
total cost of the traffic flow. In other words, for any transfer of traffic from P1 to P2, the
decrease in the total cost of traffic on P1 is not greater than the increase in the total cost of
traffic on P2. Hence the flow must satisfy CP1

′(τP1) ≤ CP2
′(τP2), where CP(τP) denotes the

total cost of traffic on path P. A necessary and sufficient condition for the traffic flow to be
locally optimal is that for all P1 such that τP1 > 0, CP1

′(τP1) ≤ CP2
′(τP2) for all P2. Since the

local and global minima of a convex function on a convex set coincide [32], and since the
objective function of (19) is convex, this condition is also necessary and sufficient for the
flow to be globally optimal, i.e. SO. This can be generalised to classes of paths: a traffic flow
is SO if and only if for any i such that τi > 0, Ci

′(τi) ≤ Cj
′(τj) for all j, where Ck(τk) is the

total cost on a k-path. We thereby define a SO traffic flow as follows.

Definition 2
A traffic flow is SO if and only if for all i ≤ k∗,

τi > 0 =⇒ Ci
′(τi) ≤ Cj

′(tj) for all j ≤ k∗.

Remark 2
Under SO,

τi, τj > 0 =⇒ Ci
′(τi) = Cj

′(tj).

Remark 3
Under both UE and SO,

τi = 0 =⇒ τj = 0 for all j ≤ i.

Here we prove the following bounds associated with the critical thresholds (8) and (11)
given in the main text:

For any i ≤ k∗ with Ni > 0,

(i) Under UE, τk = 0 for all k ≤ i if and only if

T ≤
k∗

∑
j=i+1

j− i
j

Nj. (20)
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(ii) Under SO, τk = 0 for all k ≤ i if and only if

T ≤ 1
2

k∗

∑
j=i+1

j− i
j

Nj. (21)

Proof

(i) We first prove the “if” part. If τk = 0 for all k ≤ i, then τi = 0 and ci = L− i. For any
j with i < j ≤ L, if τj = 0 then cj = L− j < L− i; if τj > 0 then by Definition 1 it
follows that cj ≤ ci = L− i. Hence

cj ≤ L− i for j = i + 1, i + 2, . . . , k∗.

=⇒ τj ≤ j− i
j

for j = i + 1, i + 2, . . . , k∗.

So

T =
k∗

∑
j=0

τjNj =
k∗

∑
j=i+1

τjNj ≤
k∗

∑
j=i+1

j− i
j

Nj,

as required.

We now prove the “only if” part, by contraposition. Suppose there exists a k ≤ i
such that τk > 0. Then by the contrapositive of Remark 3 it follows that τj > 0 for all
j ≥ k. In particular, τi > 0 and

ci = iτi + (L− i) ≥ L− i.

Since τj > 0 for all j > i, by Remark 1 it follows that

cj = ci for j = i + 1, i + 2, . . . , k∗.

=⇒ τj ≥
j− i

j
for j = i + 1, i + 2, . . . , k∗.

So

T =
k∗

∑
j=0

τjNj >
k∗

∑
j=i+1

τjNj ≥
k∗

∑
j=i+1

j− i
j

Nj,

as required.

(ii) Again, we first prove the “if” part. If τk = 0 for all k ≤ i, then τi = 0 and Ci
′(τi =

0) = L− i. For any j with i < j ≤ L, if τj = 0 then Cj
′(τj = 0) = L− j < L− i; if

τj > 0 then by Definition 2 it follows that Cj
′(τj) ≤ Ci

′(τi = 0) = L− i. Hence

Cj
′(τj) ≤ L− i for j = i + 1, i + 2, . . . , k∗.

=⇒ τj ≤ j− i
2j

for j = i + 1, i + 2, . . . , k∗.
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So

T =
k∗

∑
j=0

τjNj =
k∗

∑
j=i+1

τjNj ≤
1
2

k∗

∑
j=i+1

j− i
j

Nj,

as required.

We now prove the “only if” part, by contraposition. Suppose there exists a k ≤ i
such that τk > 0. Then by the contrapositive of Remark 3 it follows that τj > 0 for all
j ≥ k. In particular, τi > 0 and

Ci
′(τi) = 2iτi + (L− i) ≥ L− i.

Since τj > 0 for all j > i, by Remark 2 it follows that

Cj
′(τj) = Ci

′(τi) for j = i + 1, i + 2, . . . , k∗.

=⇒ τj ≥
j− i
2j

for j = i + 1, i + 2, . . . , k∗.

So

T =
k∗

∑
j=0

τjNj >
k∗

∑
j=i+1

τjNj ≥
1
2

k∗

∑
j=i+1

j− i
j

Nj,

as required.

Appendix C: Properties of the total cost under UE and SO

For T ue
i < T ≤ 1

2T ue
i−1, under both UE and SO we have that τi > 0 and τi−1 = 0, hence

T =
k∗

∑
j=i

τjNj.

Consider the UE case. Denote by c the cost of traversing paths which carry traffic, then

cj = c for j = i, i + 1, . . . , k∗

=⇒ τj =
c + j− L

j
for j = i, i + 1, . . . , k∗

=⇒ T =
k∗

∑
j=i

c + j− L
j

Nj,

which on solving for c gives

c =

T −
k∗

∑
j=i

Nj(1− L
j )

k∗

∑
j=i

Nj
j

.
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Since Cue = Tc, it follows that:

d
dT

Cue =

2T −
k∗

∑
j=i

Nj(1− L
j )

k∗

∑
j=i

Nj
j

.

Now consider the SO case. Recall that for all k such that τk > 0, Ck
′(τk) have equal value,

and denote this value by c2, then

Cj
′(τj) = c2 for j = i, i + 1, . . . , k∗

=⇒ τj =
c2 + j− L

2j
for j = i, i + 1, . . . , k∗ (22)

=⇒ T =
k∗

∑
j=i

c2 + j− L
2j

Nj,

and solving for c2 gives

c2 =

2T −
k∗

∑
j=i

Nj(1− L
j )

k∗

∑
j=i

Nj
j

=
d

dT
Cue. (23)

Moreover,

Cso(T) =
k∗

∑
k=i

Ck(τk)Nk.

Hence

d
dT

Cso(T) =
k∗

∑
k=i

Nk
d

dT
Ck(τk)

=
k∗

∑
k=i

Nk C′k(τk)
dτk

dT

= c2

k∗

∑
k=i

Nk
dτk

dT
.

From equations (22) and (23),
dτk

dT
=

1

k
k∗

∑
j=i

Nj
j

.
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Hence

d
dT

Cso(T) =

c2

k∗

∑
k=i

Nk
k

k∗

∑
j=i

Nj
j

= c2 =
d

dT
Cue(T).

So for any T such that T ue
i < T ≤ 1

2T ue
i−1 and Cue > Cso, the price of anarchyP is decreasing

with T.

Appendix D: Finding the value of Nk∗ for the diamond lattice

In the context of the diamond lattice, the definition of Nk∗ is not simply the number of
k∗-paths but the effective variability of the k∗-paths. Attaining the value of Nk∗ for a given
realisation is a non-trivial task because k∗-paths can overlap one another, in which case
variable-cost edges are utilised by multiple k∗-paths. The greater the extent to which
variable-cost edges are shared between k∗-paths, the greater the variability of the k∗-paths
is diminished. Hence the task of calculating Nk∗ cannot be achieved simply by counting
the number of k∗-paths; the extent to which variability is diminished by paths overlapping
must be accounted for.

Consider (20) which is applicable to the network of non-overlapping paths. Taking i =

(k∗ − 1) in (20) provides:

Under UE, τk = 0 ∀ k ≤ (k∗ − 1) ⇐⇒ T ≤ Nk∗

k∗
. (24)

The above can be made applicable to the lattice network by making the following adjust-
ment. Denote by Pk the set of k-paths and denote by Tk the total traffic on all k-paths, given
by:

Tk := ∑
P∈Pk

τP,

where τP is the traffic routed to path P. Then (24) can be restated as:

Under UE, Tk = 0 ∀ k ≤ (k∗ − 1) ⇐⇒ T ≤ Nk∗

k∗
.

In particular:

Tk∗−1 = 0 ⇐⇒ T ≤ Nk∗

k∗
. (25)

Denote by cP the cost of traversing path P and let P̂ ∈ Pk∗−1 be a (k∗ − 1)-path which does
not overlap with any k∗-paths, then

cP̂

{
= L− (k∗ − 1), if Tk∗−1 = 0;

> L− (k∗ − 1), if Tk∗−1 > 0.
(26)
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Recall that under UE all traffic incurs the same cost c, and the cost of traversing any unused
path is greater than or equal to c. It follows, then, that:

cP̂

{
≥ c, if Tk∗−1 = 0;

= c, if Tk∗−1 > 0.
(27)

From (26) and (27):

c

{
≤ L− (k∗ − 1), if Tk∗−1 = 0;

> L− (k∗ − 1), if Tk∗−1 > 0.
(28)

From (25) and (28):

c

{
≤ L− (k∗ − 1), if T ≤ Nk∗/k∗;

> L− (k∗ − 1), if T > Nk∗/k∗.

The total cost under UE is given by Cue = Tc, so

Cue

T

{
≤ L− (k∗ − 1), if T ≤ Nk∗/k∗;

> L− (k∗ − 1), if T > Nk∗/k∗.

This result allows for the use of a numerical method for computing Nk∗ , which works as
follows. First, the UE traffic flow is computed with T = 1/k∗ so that (since Nk∗ ≥ 1)
Cue/T ≤ L− (k∗− 1). Then T is increased in incremental steps until Cue/T = L− (k∗− 1)
at which point it is known that T = Nk∗/k∗ and Nk∗ can be computed by Nk∗ = Tk∗.
Denote by E the set of all the edges of the lattice and by τi the traffic routed to edge i ∈ E,
then the numerical method for obtaining Nk∗ is summarised as follows:

1. Compute the UE traffic flow with T = 1/k∗. If Cue/T = L− (k∗ − 1) then Nk∗ = 1;
otherwise go to step 2.

2. For all i ∈ E, τi 7→ τi + τiε/T, for small ε > 0. T 7→ T + ε.

3. If Cue/T < L− (k∗ − 1) go to step 2; otherwise Nk∗ = Tk∗.

Note from Step 2 that only those edges which carry traffic before an incremental increase
to T will carry traffic after the increase. This is true because the algorithm terminates when
T reaches the critical threshold at which (k∗ − 1)-paths begin to carry traffic, so only edges
which belong to k∗-paths carry traffic throughout the procedure.
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