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Abstract. Automatic segmentation of challenging biomedical volumes
with multiple objects is still an open research field. Automatic approaches
usually require a large amount of training data to be able to model the
complex and often noisy appearance and structure of biological organelles
and their boundaries. However, due to the variety of different biological
specimens and the large volume sizes of the datasets, training data is
costly to produce, error prone and sparsely available. Here, we propose
a novel Selective Labelling algorithm to overcome these challenges; an
unsupervised sub-volume proposal method that identifies the most rep-
resentative regions of a volume. This massively-reduced subset of regions
are then manually labelled and combined with an active learning pro-
cedure to fully segment the volume. Results on a publicly available EM
dataset demonstrate the quality of our approach by achieving equivalent
segmentation accuracy with only 5% of the training data.
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1 Introduction

Automatic segmentation approaches have yet to have an impact in biological
volumes due to the very challenging nature, and wide variety, of datasets. These
approaches typically require large amounts of training data to be able to model
the complex and noisy appearance of biological organelles. Unfortunately, the
tedious process of manually labelling large volumes with multiple objects, which
takes days to weeks for a human expert, makes it infeasible to generate reusable
and generalizable training data. To deal with this absence of training data, sev-
eral semi-automatic (also called interactive) segmentation techniques have been
proposed in the medical imaging literature. This trend has been rapidly growing
over the last few years due to the advances in fast and efficient segmentation
techniques. These approaches have been used to interactively segment a wide
variety of medical volumes, such as arbitrary medical volumes[1] and organs[2].

? Corresponding Author



2 Selective Labelling

Fig. 1. Overview of our proposed pipeline

However, segmenting large biological volumes with tens to hundreds of organelles
requires much more user interaction for which current interactive systems are
not prepared. With current systems, an expert would need to manually anno-
tate parts of most (or even all) the organelles in order to achieve the desired
segmentation accuracy. To deal with the absence of training data and assist the
human expert with the interactive segmentation task we propose a Selective La-
belling approach. This consists of a novel unsupervised sub-volume1 proposal
method to identify a massively reduced subset of windows which best represent
all the textural patterns of the volume. These sub-volumes are then combined
with an active learning procedure to iteratively select the next most informa-
tive sub-volume to segment. This subset of small regions combined with a smart
region-based active learning query strategy preserve enough discriminative in-
formation to achieve state-of-the-art segmentation accuracy while reducing the
amount of training data needed by several orders of magnitude.

The work presented here is inspired by the recent work of Uijlings et al.[3]
(Selective Search) which extracts a reduced subset of multi-scale windows for
object segmentation and has been proved to increase the performance of deep
neural networks in object recognition. We adapt the idea of finding representative
windows across the image under the hypothesis that a subset of representative
windows have enough information to segment the whole volume. Our approach
differs from Selective Search in the definition of what representative windows
are. Selective Search tries to find windows that enclose objects, and thus, they
apply a hierarchical merging process over the superpixel graph with the aim
of obtaining windows that enclose objects. Here, we adopt a completely differ-
ent definition of representative windows by searching for a subset of fixed-sized
windows along the volume that best represent the textural information of the
volume. This provides a reduced subset of volume patches that are easier to
segment and more generalizable. Active learning techniques have been applied
before in medical imaging[4][5], but they have been focused on querying the
most uncertain voxels or slice according to the current performance of the clas-
sification model in single organ medical images. Our approach differs from other
active learning approaches in medical imaging by: (1) It operates in the super-
voxel space, making the whole algorithm several orders of magnitudes faster. (2)
It first extracts a subset of representative windows which are used to loop the

1 The terms sub-volume and window will be used interchangeably along the document.
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active learning procedure. Training and querying strategy is only applied in a
massively reduced subset of data, reducing computational complexity. (3) The
queries for the user are fixed-sized sub-volumes which are very easy to segment
with standard graphcut techniques. To summarize, the main contributions of
the current work can be listed as follows:

1. A novel representative patch retrieval system to select the most informative
sub-volumes of the dataset.

2. A novel active learning procedure to query the window that would maximize
the model’s performance.

3. Our segmentation framework, used as an upper bound measure, achieves
similar performance to [6] while being much faster.

2 Segmentation framework

To be able to segment large volumes efficiently, we adopt the supervoxel strat-
egy introduced by Lucchi et al. [6] to segment mitochondria from Electron Mi-
croscopy (EM) volumes. Supervoxels consist of a group of neighbouring voxels
in a given volume that share some properties, such as texture or color. Each
of the voxels of the volume belong to exactly one supervoxel, and by adopting
the supervoxel representation of a dataset, the complexity of a problem can be
reduced two or three orders of magnitude. A supervoxel graph is created by
connecting each supervoxel to its neighbours (the one it shares boundary with).
Then, we extract local textural features from each voxel of the volume:
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where Gσx represents the input volume convolved by a Gaussian filter of σ = x
and subscript indicates directional derivatives. Supervoxel descriptors φk (for
supervoxel k) are then computed as Sigma Set[7] features of all the voxels be-
longing to them. These descriptors map the supervoxel covariance to a Euclidean
space which has been proved to be a very efficient and robust for classification
in sub-cellular volumes in [8]. To improve the accuracy and the robustness of the
supervoxel descriptors, contextual information is added by appending for each
supervoxel the mean φ of all its neighbours:
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]

(2)

Segmentation is then formulated as a Markov Random Field optimization prob-
lem defined over the supervoxel graph with labels c = {ci}:

E(c) =
∑
si∈SV

Edata(si, ci) + β
∑

(si,sj)∈N

Esmooth(ci, cj). (3)

Here, the data fidelity term Edata is defined as the negative log likelihood of the
output of an Extremely Random Forest[9] (ERF), with T = 100 trees, trained
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on the supervoxel features ψk. The pairwise potential Esmooth is also learnt from
data (similar to [6]) with another ERF by concatenating the descriptors of every
pair of adjacent supervoxels with the aim of modelling the boundariness of a
pair of supervoxels. We refer the reader to [6] for more information about this
segmentation model as it is used only as an upper bound and is out of the scope
of this paper improving the framework.

3 Finding representative sub-volumes

Biological volumes are usually very large (here for example 1024× 768× 330).
In order to efficiently segment them, we provide a framework to extract most
representative sub-volumes which can then be used to segment the rest of the
volume. We start by defining a fixed size Vs for the sub-volumes, set empiri-
cally to preserve information whilst being easy to segment. In this work, we set
Vs = [100, 100, 10]. Considering every possible overlapping window centered at

Fig. 2. Overview of the window proposal method. For visualization purposes a 2D slice
is shown, but every step is performed in 3D.

each voxel of the volume would generate too many samples (around 200M vox-
els). Thus, we start by considering the set of proposed windows w ∈ W from N
windows centered at each of the supervoxels of the image, as we already know
these regions are likely to have consistent properties. We extract 10 × 10 × 10
supervoxels which reduces the amount of windows by 3 orders of magnitude to
roughly 200K. Next, in order to extract representative regions from the image
we first need to define how to describe a region. To do so, we first cluster all the
supervoxel descriptors φk in B = 50 bins to assign a texton to each supervoxel.
The regional descriptor rk, assigned to the window proposal wk centered at su-
pervoxel k, is the `1-normalized histogram of supervoxel textons in that window.
Thus, rk encodes the different textural patches and the proportion of each of
them present in each window. The descriptor is rotationally invariant and very
powerful discriminative descriptor for a region.
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3.1 Grouping similar nearby sub-volumes

Once sub-volume descriptors are extracted, we perform a second local clustering.
Similar to SLIC to create supervoxels but to cluster together nearby similar sub-
volumes. To do so, we first sample a grid of Vs cluster centers Ci ∈ C uniformly
across the volume and assign them to their nearest window wk. For each window
we use their position pk in the volume and their descriptor rk. Then, the local
k-means clustering iterates as follows:

1. Assign each sub-volume to their nearest cluster center. For each
cluster Ci compute the distance to each of the windows in a neighbourhood.
The neighbourhood is set to 2× Vs = [200, 200, 20].

d(Ci, k) =
∥∥∥pCi

− pk

∥∥∥
2

+
λ√
2

∥∥∥∥√rCi
−
√

rk

∥∥∥∥
2

(4)

where the first term represents the standard Euclidean spatial distance be-
tween windows and the second term is the Hellinger distance that measures
the difference in appearance of the windows. Each window wk is assigned to
the neighbouring cluster Ci(label Lk) that minimizes the above distance.

2. Update cluster centers. The new cluster center is the assigned the window
to minimizes the sum of differences with all the other windows, or in other
words, the window that best represents all the others assigned to the same
cluster:

Ci = argmink∈{k|Lk=i}
∑

j∈{j|Lj=i}

d(k, j) (5)

The above update is very efficient and clusters nearby and similar windows into
a even smaller set. After 5 iterations of the above procedure, the number of
proposal windows wk ∈ W is reduced from 200K to 3500 by only considering
the windows that best describe their neighbouring windows wCi

∈ W. Let us
refer to this reduced set of windows as R.

3.2 Further refining window proposals

After filtering the window proposals that best represent their local neighbour-
hood, still a large number of possible sub-volumes remain. To further filter the
most representative regions from wk ∈ R we apply a affinity propagation based
clustering[10]. Affinity propagation clustering is a message-passing clustering
that automatically detects exemplars. The inputs for affinity clustering consist
of an affinity matrix as the connection weights between data points and the
preference of assigning each of the data points as exemplars. Then, through an
iterative message-passing procedure the affinity propagation refines the weights
between data points and the preferences until the optimal (and minimal) sub-
set of exemplars is found. After local representative regions are extracted from
section 3.1, the pairwise similarity between all the remaining regions wk ∈ R is
extracted as

a(i, j) = intersection(ri, rj) (6)
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to form the M ×M affinity matrix A, where Ai,j = a(i, j) is the similarity
(only in appearance, measured by the intersection kernel) between all pairs of
windows wi and wj . The preference vector P is set to a constant weighted by
the `∞ norm of the appearance vector Pi = γ (1 − ‖ri‖∞). The `∞ norm of a
vector returns the maximum absolute value of the vector. For a `1 normalized
histogram is a good measure of how spread the histogram is. Thus, the weight
(1−`∞) will encourage windows that contain wider variety of textural features to
be selected. This is a desired feature, since we aim to extract a very small subset
of window proposals for the whole volume, we would expect them to represent
all the possible textural features of the volume or if not the training stage will
fail to model unrepresented features. After the affinity propagation clustering,
we now have a manageable set of < 100 sub-volumes which together represent
the global appearance of the whole volume. Let us denote this final subset of
proposals as P.

4 Querying the next most informative sub-volume

The active learning cycle starts once a minimal representative set of sub-regions
P has been extracted and at least 1 window (containing both foreground and
background) has been segmented. From there, the ERF model from section 2
is trained and used to predict the labels of all the supervoxels belonging to all
the windows in P. Here, we average the probabilistic prediction of all the trees
t ∈ T of the ERF in order to model the probability of a supervoxel to belong to
foreground or background. The uncertainty of its prediction is then estimated
as the entropy. Then, the average uncertainty of all the supervoxels Us in a
window wk ∈ P is defined as the average uncertainty in the predictions of all
the supervoxels contained in that window. Similarly, the average uncertainty of
boundariness Ue of all connected pair of supervoxels in a window is extracted
from the other ERF trained to identify this property. The average window un-
certainty is then defined as Uw = Us + β Ue. The window with larger average
uncertainty is selected as the next sub-volume to be segmented. As all the win-
dows have been previously reduced to a minimal subset, the query strategy is
very efficient and is able to return a globally representative sub-volume that
would maximize the performance of the ERF classifier.

5 Experiments

In our experiments we used the publicy available EM dataset2 used in [6]. The
data set consists of a 5×5×5µm section taken from the CA1 hippocampus region
of the brain. Two 1024 × 768 × 165 volumes are available where mitochondria
are manually annotated (one for training and the other one for testing). We first
validate the results of our segmentation pipeline by using one of the volumes for
training while the other for testing. Table 1 shows results of different stages of

2 http://cvlab.epfl.ch/data/em
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our segmentation pipeline: (1) ERFraw evaluates only the prediction of the ERF
trained in the supervoxel features, (2) ERFnh is the prediction of the ERF after
aggregating neighbouring supervoxel features, (3) MRFnh is (2) refined with a
contrast-sensitive MRF and (4) MRFlearnt is the full model with learned unary
and pairwise potentials. Our model, used as an upper bound of the maximum

Table 1. Performance of our segmentation pipeline in the testing dataset

ERFraw ERFnh MRFnh MRFlearnt

Accuracy 0.975 0.984 0.987 0.991
DICE coefficient 0.751 0.825 0.851 0.871
Jaccard index 0.601 0.702 0.743 0.780

achievable accuracy of the following experiment. It has similar segmentation
performance to the one reported in [6], while being much faster (15 minutes of
processing and training time vs 9 hours).

Table 2 shows a benchmark of the quality and descriptive power of a re-
duced subset of our extracted windows. To evaluate the quality of our extracted
windows, we simulate different user patterns. Random User will define the be-
haviour of a user selecting n random patches for training across the training
volume. Random Oracle will select n random patches for training centered in a
supervoxel that belongs to mitochondria (thus, assumes ground truth is known
and simulates the user clicking in different mitochondria). Selective Random sim-
ulates a user choosing n windows at random from a reduced subset of windows
wk ∈ P obtained using our algorithm. And Selective Labelling will select the first
window at random from wk ∈ P (containing both background and foreground)
while the next n−1 will be selected by our active learning based query strategy.
All different patterns are trained only on the selected windows of the training
volume (with the full model) and tested in the whole testing volume. The 3
random patterns are averaged from 100 runs. It can be seen that our extracted

Table 2. DICE coefficient of the simulated retrieval methods. Percentages indicate
fractions of total training data.

Random
User

Random
Oracle

Selective
Random

Selective
Labelling

3 sub-volumes (< 1%) 0.305 0.671 0.652 0.788
5 sub-volumes (1%) 0.533 0.736 0.740 0.792
10 sub-volumes (2%) 0.608 0.762 0.761 0.810
30 sub-volumes (5%) 0.691 0.805 0.803 0.841

windows without the active learning achieve similar performance to the random
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oracle (which assumes ground truth is known). This proves the quality of our
windows as our unsupervised method is able to represent properly all the textu-
ral elements of the volume. With the active learning, our method outperforms
all the others and is able to obtain similar performance to the baseline trained
in the whole volume (table 1) with much fewer training data (up to 5%).

6 Conclusions and future work

We have presented a fully unsupervised approach to select the most representa-
tive windows of the volume, which combined with a novel active learning pro-
cedure obtain similar accuracy than fully automatic methods by using only 5%
of the data for training. The presented segmentation pipeline achieves similar
performance to the state-of-the-art in a publicly available EM dataset, while be-
ing much faster and efficient. The results demonstrate that with the assistance
of the proposed algorithm, a human expert could segment large volumes much
faster and easier. It also makes the segmentation task much more intuitive by
giving the user small portions of the volume, which are much easier to annotate.
Extension to multi-label interactive segmentation is straight forward as all the
methods here presented are inherently multi-label.
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