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Abstract. Determining the best initial parameter values for an algo-
rithm, called parameter tuning, is crucial to obtaining better algorithm
performance; however, it is often a time-consuming task and needs to be
performed under a restricted computational budget. In this study, the
results from our previous work on using the Taguchi method to tune the
parameters of a memetic algorithm for cross-domain search are further
analysed and extended. Although the Taguchi method reduces the time
spent finding a good parameter value combination by running a smaller
size of experiments on the training instances from different domains as
opposed to evaluating all combinations, the time budget is still larger
than desired. This work investigates the degree to which it is possible
to predict the same good parameter setting faster by using a reduced
time budget. The results in this paper show that it was possible to pre-
dict good combinations of parameter settings with a much reduced time
budget. The good final parameter values are predicted for three of the
parameters, while for the fourth parameter there is no clear best value, so
one of three similarly performing values is identified at each time instant.
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1 Introduction

Many real-world optimisation problems are too large for their search spaces
to be exhaustively explored. In this research we consider cross-domain search
where the problem structure will not necessarily be known in advance, thus can-
not be leveraged to produce fast exact solution methods. Heuristic approaches
provide potential solutions for such complex problems, intending to find near
optimal solutions in a significantly reduced amount of time. Metaheuristics are
problem-independent methodologies that provide a set of guidelines for heuristic
optimization algorithms [18]. Among these, memetic algorithms are highly effec-
tive population-based metaheuristics which have been successfully applied to
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a range of combinatorial optimisation problems [2,8,10,11,14]. Memetic algo-
rithms, introduced by Moscato [12], hybridise genetic algorithms with local
search. Recent developments in memetic computing, which broadens the concept
of memes, can be found in [13]. Both the algorithm components and parameter
values need to be specified in advance [17], however determining the appropri-
ate components and initial parameter settings (i.e., parameter tuning) to obtain
high quality solutions can take a large computational time.

Hyper-heuristics are high-level methodologies which operate on the search
space of low-level heuristics rather than directly upon solutions [4], allowing
a degree of domain independence where needed. This study uses the Hyper-
heuristics Flexible Framework (HyFlex) [15] which provides a means to imple-
ment general purpose search methods, including meta/hyper-heuristics.

In our previous work [7], the parameters of a memetic algorithm were tuned
via the Taguchi method, under a restricted computational budget, using a limited
number of instances from several problem domains. The best parameter setting
obtained through the tuning process was observed to generalise well to unseen
instances. A drawback of the previous study was that even testing only the
25 parameter combinations indicated by the L25 Taguchi orthogonal array, still
takes a long time. In this study, we further analyse and extend our previous
work with an aim to assess whether we can generalise the best setting sooner
with a reduced computational time budget. In Sect. 2, the HyFlex framework
is described. Our methodology is discussed in Sect. 3. The experimental results
and analysis are presented in Sect. 4. Finally, some concluding remarks and our
potential future work are given in Sect. 5.

2 Hyper-Heuristics Flexible Framework (HyFlex)

Hyper-heuristics Flexible Framework (HyFlex) is an interface proposed for the
rapid development, testing and comparison of meta/hyper-heuristics across dif-
ferent combinatorial optimisation problems [15]. There is a logical barrier in
HyFlex between the high-level method and the problem domain layers, which
prevents hyper-heuristics from accessing problem specific information [5]. Only
problem independent information, such as the objective function value of a solu-
tion, can pass to the high-level method [3].

HyFlex was used in the first Cross-domain Heuristic Search Challenge
(CHeSC2011) for the implementation of the competing hyper-heuristics. Twenty
selection hyper-heuristics competed at CHeSC2011. Details about the competi-
tion, the competing hyper-heuristics and the tools used can be found at the
CHeSC website1. The performance comparison of some previously proposed
selection hyper-heuristics including one of the best performing ones can be found
in [9]. Six problem domains were implemented in the initial version of HyFlex:
Maximum Satisfiability (MAX-SAT), One Dimensional Bin Packing (BP), Per-
mutation Flow Shop (PFS), Personnel Scheduling (PS), Traveling Salesman
(TSP) and Vehicle Routing (VRP). Three additional problem domains were
1 http://www.asap.cs.nott.ac.uk/external/chesc2011/.
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added by Adriaensen et al. [1] after the competition: 0-1 Knapsack (0-1 KP),
Max-Cut, and Quadratic Assignment (QAP). Each domain contains a number
of instances and problem specific components, including low level heuristics and
an initialisation routine which can be used to produce an initial solution. In
general, this routine creates a random solution.

The low-level heuristics (operators) in HyFlex are categorised as mutation,
ruin and re-create, crossover and local search [15]. Mutation makes small ran-
dom perturbations to the input solution. Ruin and re-create heuristics remove
parts from a complete solution and then rebuild it, and are also considered as
mutational operators in this study. A crossover operator is a binary operator
accepting two solutions as input unlike the other low level heuristics. Although
there are many crossover operators which create two new solutions (offspring)
in the scientific literature, the Hyflex crossover operators always return a single
solution (by picking the best solution in cases where the operator produces two
offspring). Local search (hill climbing) heuristics iteratively perform a search
within a certain neighbourhood attempting to find an improved solution. Both
local search and mutational heuristics come with parameters. The intensity of
mutation parameter determines the extent of changes that the mutation or ruin
and re-create operators will make to the input solution. The depth of search para-
meter controls the number of steps that the local search heuristic will complete.
Both parameter values vary in [0,1]. More details on the domain implementa-
tions, including low level heuristics and initialisation routines can be found on
the competition website and in [1,15].

3 Methodology

Genetic algorithm are well-known metaheuristics which perform search using
the ideas based on natural selection and survival of the fittest [6]. In this study,
a steady state memetic algorithm (SSMA), hybridising genetic algorithms with
local search is applied to a range of problems supported by HyFlex, utilising the
provided mutation, crossover and local search operators for each domain.

SSMA evolves a population (set) of initially created and improved individuals
(candidate solutions) by successively applying genetic operators to them at each
evolutionary cycle. In SSMA, a fixed number of individuals, determined by the
population size parameter, are generated by invoking the HyFlex initialisation
routine of the relevant problem domain. All individuals in the population are
evaluated using a fitness function measuring the quality of a given solution. Each
individual is improved by employing a randomly selected local search operator.
Then the evolutionary process starts. Firstly, two individuals are chosen one at a
time for crossover from the current population. The generic tournament selection
which chooses the fittest individual (with the best fitness value with respect to
the fitness function) among a set of randomly selected individuals of tournament
size (tour size) is used for this purpose. A randomly chosen crossover operator
is then applied producing a single solution which is perturbed using a randomly
selected mutation and then improved using a randomly selected local search.
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Finally, the resultant solution gets evaluated and replaces the worst individual
in the current population. This evolutionary process continues until the time
limit is exceeded.

SSMA has parameters which require initial settings and influence its perfor-
mance. Hence, the Taguchi orthogonal arrays method [16] is employed here to
tune these parameter settings. Firstly, control parameters and their potential
values (levels) are determined. Four algorithm parameters are tuned: popula-
tion size (PopSize), tournament size (TourSize), intensity of mutation (IoM)
and depth of search (DoS). The parameter levels of {0.2, 0.4, 0.6, 0.8, 1.0} are
used for both IoM and DoS. PopSize takes a value in {5, 10, 20, 40, 80}. Finally,
{2, 3, 4, 5} are used for TourSize. HyFlex ensures that these are problem inde-
pendent parameters, i.e. common across all of the problem domains. Based on
the number of parameters and levels, a suitable orthogonal array is selected to
create a design table. Experiments are conducted based on the design table using
a number of ‘training’ instances from selected domains and then the results are
analysed to determine the optimum level for each individual control parameter.
The combination of the best values of each parameter is predicted to be the best
overall setting.

4 Experimentation and Results

In [7], experiments were performed with a number of configurations for SSMA
using 2 training instances from 4 HyFlex problem domains. An execution time
of 415 seconds was used as a termination criterion for those experiments, equiv-
alent to 10 nominal minutes on the CHeSC2011 computer, as determined by the
evaluation program provided by the competition organisers. Each configuration
was tested 31 times, the median values were compared and the top 8 algorithms
were assigned scores using the (2003–2009) Formula 1 scoring system, awarding
10, 8, 6, 5, 4, 3, 2 and 1 point(s) for the best to the 8th best, respectively. The
best configuration was predicted to be IoM = 0.2, DoS = 1.0, TourSize = 5 and
PopSize = 5, and this was then applied to unseen instances from 9 domains and
found to perform well for those as well. A similar process was then applied to
predict a good parameter configuration across 5 instances from each of the 9
extended HyFlex problem domains, and the same parameter combination was
found, indicating some degree of cross-domain value to the parameter setting.
With 31 repetitions of 25 configurations, this was a time-consuming process.

The aim of this study is to investigate whether a less time consuming analysis
could yield similar information. All 25 parameter settings indicated by the L25

Taguchi orthogonal array were executed with different time budgets, from 1
to 10 min of nominal time (matching the CHeSC2011 termination criterion),
the Taguchi method was used to predict the best parameter configuration for
each duration and the results were analysed. 2 arbitrarily chosen instances from
each of the 6 original HyFlex problem domains were employed during the first
parameter tuning experiments. Figure 1 shows the main effect values for each
parameter level, defined as the mean total Formula 1 score across all of the



16 D.B. Gümüş et al.

Fig. 1. Main effects of parameter values at different times using 2 training instances
from 6 problem domains

settings where the parameter took that specific value. It can be seen that a
population size of 5 has the highest effect in each case during the 10 nominal
minutes run time. Similarly, the intensity of mutation parameter value of 0.2
performs well at each time. For the tour size parameter, 5 has the highest effect
throughout the search except at one point: at 10 nominal minutes, the tour size
of 4 had a score of 19.58 while tour size 5 had a score of 19.48, giving very
similar results. The best value for the depth of search parameter changes during
the execution; however, it is always one of the values 0.6, 0.8 or 1.0. 0.6 for depth
of search is predicted to be the best parameter value for a shorter run time.

The analysis of variance (ANOVA) is commonly applied to the results in
the Taguchi method to determine the percentage contribution of each factor
[16]. This analysis helps the decision makers to identify which of the factors
need more control. Table 1 shows the percentage contribution of each factor.
It can be seen that intensity of mutation and population size parameters have

Table 1. The percentage contribution of each parameter obtained from the Anova test
for 6 problem domains

par. \n.t.b. 1 2 3 4 5 6 7 8 9 10
(min.)

IoM 37.6% 22.6% 28.8% 24.6% 28.2% 29.9% 32.4% 32.6% 34.1% 36.3%

DoS 14.8% 13.2% 9.3% 11.0% 9.5% 6.6% 6.3% 6.4% 5.4% 4.0%

PopSize 20.5% 34.0% 35.6% 38.2% 38.5% 38.3% 37.7% 39.4% 39.4% 35.1%

TourSize 10.7% 3.7% 3.2% 5.0% 2.8% 3.0% 2.0% 0.8% 0.8% 0.5%

Residual 16.3% 26.5% 23.0% 21.1% 21.0% 22.2% 21.5% 20.8% 20.2% 24.1%
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Table 2. The p-values of each parameter obtained from the Anova test for 6 domains.
The parameters which contribute significantly are marked in bold.

par. \n.t.b. 1 2 3 4 5 6 7 8 9 10
(min.)

IoM 0.019 0.191 0.090 0.105 0.078 0.077 0.060 0.054 0.045 0.060

DoS 0.171 0.406 0.497 0.384 0.450 0.633 0.635 0.614 0.669 0.825

PopSize 0.090 0.086 0.056 0.037 0.036 0.042 0.041 0.033 0.031 0.065

TourSize 0.188 0.746 0.741 0.568 0.757 0.749 0.836 0.945 0.947 0.977

Fig. 2. Main effects of parameter values at different time using 2 training instances
from 9 problem domains

highest percentage contribution to the scores. P-values lower than 0.05 means
that the parameter is found to contribute significantly to the performance with
a confidence level of 95 %. Table 2 shows the p-values of the parameters at each
time. The contribution of the PopSize parameter is found to be significant in 6
out of 10 time periods, whereas the intensity of mutation parameter contributes
significantly in only 2 out of 10 time periods and the contribution of the other
parameters was not found to be significant.

In order to investigate the effect of Depth of Search (DoS) further, we
increased the number of domains considered to 9 (and thus used 18 training
instances). The main effects of the parameter values are shown in Fig. 2 and
Tables 3 and 4 show the percentage contributions and p-values for each para-
meter. It can be observed from Fig. 2 that the best parameter value does not
change over time for the PopSize, TourSize and IoM parameters. The best para-
meter setting could be predicted for these three parameters after only 1 nominal
minute of run time. However, for the depth of search parameter, the best setting
indicated in [7] is found only when the entire run time has been used. The best
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Table 3. The percentage contribution of each parameter obtained from the Anova test
for 9 domains

par. \n.t.b. 1 2 3 4 5 6 7 8 9 10
(min.)

IoM 27.7% 23.6% 24.0% 20.3% 26.3% 30.0% 39.1% 37.3% 43.4% 46.0%

DoS 7.1% 12.3% 9.6% 11.7% 12.4% 10.4% 10.1% 12.3% 12.5% 10.8%

PopSize 47.3% 44.5% 40.8% 38.2% 35.3% 35.6% 30.9% 28.3% 25.0% 25.5%

TourSize 8.5% 7.3% 9.9% 14.0% 8.9% 7.2% 4.8% 4.1% 3.2% 2.6%

Residual 9.4% 12.3% 15.7% 15.8% 17.1% 16.7% 15.1% 18.1% 15.9% 15%

Table 4. The p-values of each parameter obtained from the Anova test for 9 problem
domains. The parameters which contribute significantly are marked in bold.

par. \n.t.b. 1 2 3 4 5 6 7 8 9 10
(min.)

IoM 0.009 0.032 0.057 0.086 0.056 0.038 0.013 0.026 0.011 0.008

DoS 0.232 0.144 0.317 0.241 0.248 0.310 0.278 0.274 0.217 0.251

PopSize 0.002 0.005 0.013 0.017 0.026 0.024 0.027 0.054 0.053 0.044

TourSize 0.109 0.219 0.201 0.112 0.263 0.336 0.453 0.587 0.628 0.677

setting for DoS at different times still changes between 0.6, 0.8 and 1.0. When all
9 domains are used, the number of times that the parameters settings contribute
significantly is increased. Again it seems that the best setting for DoS depends
upon the runtime, but the effect of the parameter is much greater at the longer
execution times with the addition of the new domains.

These three values combining with the best values of other parameters were
then tested separately on all 45 instances from 9 domains, with the aim of find-
ing the best DoS value on all instances. According to the result of experiments,
each of these three configurations found the best values for 18 instances (includ-
ing ties), considering their median performances over 31 runs. This indicates
that these three configurations actually perform similarly even though there are
small differences overall. Hence, using only one nominal minute and 2 instances
from 6 domains was sufficient to obtain the desired information about the best
configuration, reducing the time needed for parameter tuning significantly.

5 Conclusion

This study extended and analysed the previous study in [7], applying the Taguchi
experimental design method to obtain the best parameter settings with different
run-time budgets. We trained the system using 2 instances from 6 and 9 domains
separately and tracked the effects of each parameter level over time. The exper-
imental results show that good values for three of the parameters are relatively
easy to predict, but the performance is less sensitive to the value of the fourth
(DoS), with different values doing well for different instances and very similar,
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“good”, overall performances for three settings, making it hard to identify a sin-
gle “good” value. In summary, these results show that it was possible to predict
a good parameter combination by using a much reduced time budget for cross
domain search.

Open Access. This chapter is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, a link is provided to the Creative Commons license and any changes made
are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such mate-
rial is not included in the work’s Creative Commons license and the respective action
is not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.
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18. Sörensen, K., Glover, F.W.: Metaheuristics. In: Gass, S.I., Fu, M.C. (eds.) Ency-
clopedia of Operations Research and Management Science, pp. 960–970. Springer,
New York (2013)


	An Analysis of the Taguchi Method for Tuning a Memetic Algorithm with Reduced Computational Time Budget
	1 Introduction
	2 Hyper-Heuristics Flexible Framework (HyFlex)
	3 Methodology
	4 Experimentation and Results
	5 Conclusion
	References


