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Abstract. Selection hyper-heuristics perform search over the space
of heuristics by mixing and controlling a predefined set of low level
heuristics for solving computationally hard combinatorial optimisation
problems. Being reusable methods, they are expected to be applicable
to multiple problem domains, hence performing well in cross-domain
search. HyFlex is a general purpose heuristic search API which sepa-
rates the high level search control from the domain details enabling rapid
development and performance comparison of heuristic search methods,
particularly hyper-heuristics. In this study, the performance of six previ-
ously proposed selection hyper-heuristics are evaluated on three recently
introduced extended HyFlex problem domains, namely 0–1 Knapsack,
Quadratic Assignment and Max-Cut. The empirical results indicate the
strong generalising capability of two adaptive selection hyper-heuristics
which perform well across the ‘unseen’ problems in addition to the six
standard HyFlex problem domains.

Keywords: Metaheuristic · Parameter control · Adaptation · Move
acceptance · Optimisation

1 Introduction

Many combinatorial optimisation problems are computationally difficult to solve
and require methods that use sufficient knowledge of the problem domain. Such
methods cannot however be reused for solving problems from other domains. On
the other hand, researchers have been working on designing more general solu-
tion methods that aim to work well across different problem domains. Hyper-
heuristics have emerged as such methodologies and can be broadly categorised
into two categories; generation hyper-heuristics to generate heuristics from exist-
ing components, and selection hyper-heuristics to select the most appropriate
heuristic from a set of low level heuristics [3]. This study focuses on selection
hyper-heuristics.
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A selection hyper-heuristic framework operates on a single solution and iter-
atively selects a heuristic from a set of low level heuristics and applies it to the
candidate solution. Then a move acceptance method decides whether to accept
or reject the newly generated solution. This process is iteratively repeated until
a termination criterion is satisfied. In [5], a range of simple selection methods are
introduced, including Simple Random (SR) that randomly selects a heuristic at
each step, and Random Descent which works similarly to SR, but the selected low
level heuristic is applied repeatedly until no additional improvement in the solu-
tion is observed. Most of the simple non-stochastic basic move acceptance methods
are tested in [5]; includingAll Moves (AM), which accepts all moves, Only Improv-
ing (OI), which accepts only improving moves and Improving or Equal (IE), which
accepts all non-worsening moves. Late acceptance [4] accepts an incumbent solu-
tion if its quality is better than a solution that was obtained a specific number of
steps earlier. More on selection hyper-heuristics can be found in [3].

HyFlex [14] (Hyper-heuristics Flexible framework) is a cross-domain heuris-
tic search API and HyFlex v1.0 is a software framework written in Java, pro-
viding an easy-to-use interface for the development of selection hyper-heuristic
search algorithms along with the implementation of several problem domains,
each of which encapsulates problem-specific components, such as solution repre-
sentation and low level heuristics. We will refer to HyFlex v1.0 as HyFlex from
this point onward. HyFlex was initially developed to support the first Cross-
domain Heuristic Search Challenge (CHeSC) in 20111. Initially, there were six
minimisation problem domains implemented within HyFlex [14]. The HyFlex
problem domains have been extended to include three more of them, including
0–1 Knapsack Problem (KP), Quadratic Assignment Problem (QAP) and Max-
Cut (MAC) [1]. In this study, we only consider the ‘unseen’ extended HyFlex
problem domains to investigate the performance and the generality of some pre-
viously proposed well performing selection hyper-heuristics.

2 Selection Hyper-heuristics for the Extended HyFlex
Problem Domains

In this section, we provide a description of the selection hyper-heuristic meth-
ods which are investigated in this study. These hyper-heuristics use different
combinations of heuristic selection and move acceptance methods.

Sequence-based selection hyper-heuristic (SSHH) [10] is a relatively new
method which aims to discover the best performing sequences of heuristics
for improving upon an initially generated solution. The hidden Markov model
(HMM) is employed to learn the optimum sequence lengths of heuristics. The
hidden states in HMM are replaced by the low level heuristics and the observa-
tions in HMM are replaced by the sequence-based acceptance strategies (AS).
A transition probabilities matrix is utilised to determine the movement between
the hidden states; and an emission probabilities matrix is employed to determine

1 http://www.asap.cs.nott.ac.uk/external/chesc2011/.
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whether a particular sequence of heuristics will be applied to the candidate solu-
tion or will be coupled with another LLH. The move acceptance method used
in [10] accepts all improving moves and non-improving moves with an adaptive
threshold. The SSHH showed excellent performance across CHeSC 2011 prob-
lem domains achieving better overall performance than Adap-HH which was the
winner of the challenge.

Dominance-based and random descent hyper-heuristic (DRD) [16] is an iter-
ated multi-stage hyper-heuristic that hybridises a dominance-based and random
descent heuristic selection strategies, and uses a näıve move acceptance method
which accepts improving moves and non-improving moves with a given prob-
ability. The dominance-based stage uses a greedy-like method aiming to iden-
tify a set of ‘active’ low level heuristics considering the trade-off between the
delta change in the fitness and the number of iterations required to achieve that
change. The random descent stage considers only the subset of low level heuris-
tics recommended by the dominance-based stage. If the search stagnates, then
the dominance-based stage may kick in again aiming to detect a new subset
of active heuristics. The method has proven to perform relatively well in the
MAX-SAT and 1D bin-packing problem domains as reported in [16].

Robinhood (round-robin neighbourhood) hyper-heuristic [11] is an iterated
multi-stage hyper-heuristic. Robinhood contains three selection hyper-heuristics.
They all share the same heuristic selection method but differ in the move
acceptance. The Robinhood heuristic selection allocates equal time for each
low level heuristic and applies them one at a time to the incumbent solu-
tion in a cyclic manner during that time. The three move acceptance crite-
ria employed by Robinhood are only improving, improving or equal, and an
adaptive move acceptance method. The latter method accepts all improving
moves and non-improving moves are accepted with a probability that changes
adaptively throughout the search process. This selection hyper-heuristic outper-
formed eight ‘standard’ hyper-heuristics across a set of instances from HyFlex
problem domains. A detailed description of the Robinhood hyper-heuristic can
be found in [11].

Modified choice function (MCF) [6] uses an improved version of the tradi-
tional choice function (CF) heuristic selection method used in [5] and has a
better average performance than CF when compared across the CHeSC 2011
competition problems. The basic idea of a choice function hyper-heuristic is to
choose the best low level heuristic at each iteration. Hence, move acceptance is
not needed and all moves are accepted. In the traditional CF method, each low
level heuristic is assigned a score based on three factors; the recent effectiveness
of the given heuristic (f1), the recent effectiveness of consecutive pairs of heuris-
tics (f2), and the amount of time since the given heuristic was used (f3) where
each factor within CF is associated with a weight; α, β, and δ respectively [5].
It was also stated in the CF study that the hyper-heuristic was insensitive to
the parameter settings for solving Sales Summit Scheduling problems and are
consequently fixed throughout the search. MCF extends upon CF by control-
ling the weights of each factor for improving its cross-domain performance [6].
In MCF, the weights for f1 and f2 are equal as defined by the parameter φt,
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and the weight for f3 is set to 1−φt. φt is controlled using a simple mechanism.
If an improving move is made, then φt = 0.99. If a non-improving move is made,
then φt = max{φt−1 − 0.01, 0.01}.

Fuzzy late acceptance-based hyper-heuristic (F-LAHH) [8] was implemented
for solving MAX-SAT problems and showed promising results. F-LAHH utilises
a fitness proportionate selection mechanism (RUA1-F1FPS) [7] for the heuristic
selection method and uses late acceptance, whose list length is adaptively con-
trolled using a fuzzy control system, for its move acceptance method. In RUA1-
F1FPS, the low level heuristics are assigned scores which are updated based on
acceptance of the candidate solution as defined by the RUA1 scheme. A heuristic
is chosen using a fitness proportionate (roulette wheel) selection mechanism util-
ising Formula 1 (F1) ranking scores (F1FPS). Each low level heuristic is ranked
based on their current scores using F1 ranking and are assigned probabilities to
be selected proportional to their F1 rank. The fuzzy control system, as defined
in [8], adapts the list length of a late acceptance move acceptance method at the
start of each phase each to promote intensification or diversification within the
subsequent phase of the search based on the amount of improvement over the
current phase. The F1FPS scoring mechanism used in this study is the RUA1
method as used in [7,8]. The parameters of the fuzzy system are the same as
those used in [8] with the universe of discourse of the list length fuzzy sets
U = [10000, 30000], the initial list length of late acceptance L0 = 10000, and the
number of phases equal to 50.

Simple Random-Great Deluge (SR-GD) is a single-parameter selection hyper-
heuristic method. At each step, a random heuristic will be selected and applied to
the current solution. Great deluge move acceptance method [9] accepts improving
solutions by default. A non-improving solution is only accepted if its quality is
better than a threshold level at each iteration. Initially, the threshold level is
set to the cost of the initially constructed solution. The threshold level is then
updated at each iteration with a linear rate given by the following formula:

Tt = c + ΔC ×
(

1 − t

N

)
(1)

where Tt is the value of the threshold level at time t, N is the time limit, ΔC is
the expected range for the maximum change in the cost, and c is the final cost.

3 Empirical Results

The methods presented in Sect. 2 are applied to 10 instances from each of the
recently introduced HyFlex problem domains. The experiments are conducted on
an i7-3820 CPU at 3.60 GHz with a memory of 16.00 GB. Each run is repeated 31
times with a termination criteria of 415 s corresponding to 600 nominal seconds of
the CHeSC 2011 challenge test machine2. The following performance indicators
are used for ranking hyper-heuristics across all three domains:

2 http://www.asap.cs.nott.ac.uk/external/chesc2011/benchmarking.html.

http://www.asap.cs.nott.ac.uk/external/chesc2011/benchmarking.html
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– rank: rank of a hyper-heuristic with respect to μnorm.
– μrank: each algorithm is ranked based on the median objective values that

they produce over 31 runs for each instance. The top algorithm is assigned to
rank 1, while the worst algorithm’s rank equals to the number of algorithms
being considered in ranking. In case of a tie, the ranks are shared by taking
the average. The ranks are then accumulated and averaged over all instances
producing μrank.

– μnorm: the objective function values are normalised to values in the range [0,1]
based on the following formula:

norm(o, i) =
o(i) − obest(i)

oworst(i) − obest(i)
(2)

where o(i) is the objective function value on instance i, obest(i) is the best
objective function value obtained by all methods on instance i, and oworst(i)

is the worst objective function value obtained by all methods on instance i.
μnorm is the average normalised objective function value.

– best: is the number of instances for which the hyper-heuristic achieves the
best median objective function value.

– worst: the number of instances for which the hyper-heuristic delivers the
worst median objective function value.

As a performance indicator, μrank focusses on median values and does not
consider how far those values are from each other for the algorithms in consid-
eration, while μnorm considers the mean performance of algorithms by taking
into account the relative performance of all algorithms over all runs across each
problem instance.

Table 1 summarises the results. On KP, SSHH delivers the best median values
for 8 instances including 4 ties. Robinhood achieves the best median results in 5
instances including a tie. SR-GD, F-LAHH and DRD show comparable perfor-
mance. On the QAP problem domain, SR-GD performs the best in 6 instances
and F-LAHH shows promising results in this particular problem domain. This
gives an indication that simple selection methods are potentially the best for solv-
ing QAP problems. SSHH ranked as the third best based on the average rank on
QAP problem. On MAC, SSHH clearly outperforms all other methods, followed
by SR-GD and then Robinhood. The remaining hyper-heuristics have relatively
poor performance, with MCF being the worst of the 6 hyper-heuristics. Overall,
SSHH turns out to be the best with μnorm = 0.16 and μrank = 2.28. SR-GD
also shows promising performance, scoring the second best. MCF consistently
delivers weak performance in all the instances of the three problem domains.
Table 1 also provides the pairwise average performance comparison of SSHH
versus (DRD, Robinhood, MCF, F-LAHH and SR-GD) based on the Mann-
Whitney-Wilcoxon statistical test. SSHH performs significantly better than any
hyper-heuristic on all MAC instances, except Robinhood which performs better
than SSHH on four out of ten instances. On the majority of the KP instances,
SSHH is the best performing hyper-heuristic. SSHH performs poorly on QAP
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Table 2. The performance comparison of SSHH, Adap-HH, FS-ILS, NR-FS-ILS, EPH,
SR-AM and SR-IE

when compared to F-LAHH and SR-GD and both hyper-heuristics produce sig-
nificantly better results than SSHH on almost all instances. SSHH performs
statistically significantly better than the remaining hyper-heuristics on QAP.

The performance of the best hyper-heuristic from Table 1, SSHH is com-
pared to the methods whose performances are reported in [1], including Adap-
HH, which is the winner of the CHeSC 2011 competition [13], an Evolutionary
Programming Hyper-heuristic (EPH) [12], Fair-Share Iterated Local Search with
(FS-ILS) and without restart (NS-FS-ILS), Simple Random-All Moves (SR-AM)
(denoted as AA-HH previously) and Simple Random-Improving or Equal (SR-
IE) (denoted as ANW-HH previously). Table 2 summarises the results based on
μrank, μnorm, best and worst counts. Adap-HH performs better than SSHH in
KP and QAP while SSHH performs the best on MAC. Overall, SSHH is the
best method based on μnorm with a value of 0.113, however Adap-HH is the top
ranking algorithm based on μrank with a value of 2.53 and SSHH is the second
best with a value of 3.20.

4 Conclusion

A hyper-heuristic is a search methodology, designed with the aim of reducing
the human effort in developing a solution method for multiple computationally
difficult optimisation problems via automating the mixing and generation of
heuristics. The goal of this study was to assess the level of generality of a set
of selection hyper-heuristics across three recently introduced HyFlex problem
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domains. The empirical results show that both Adap-HH and SSHH perform
better than the previously proposed algorithms across the problem domains
included in the HyFlex extension set. Both adaptive algorithms embed different
online learning mechanisms and indeed generalise well on the ‘unseen’ problems.
It has also been observed that the choice of heuristic selection and move accep-
tance combination could lead to major performance differences across a diverse
set of problem domains. This particular observation is aligned with previous
findings in [2,15].

Open Access. This chapter is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, a link is provided to the Creative Commons license and any changes made
are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such mate-
rial is not included in the work’s Creative Commons license and the respective action
is not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.
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