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Abstract 1 

Watermelon [Citrullus lanatus (Thunb.) Matsum. &Nakai var. lanatus] is an economically 2 

important vegetable belonging to the Cucurbitaceae family. Genotypes that exhibit 3 

agronomically important traits are selected for the development of elite cultivars. 4 

Understanding the genetic diversity and the genotype population structure based on 5 

molecular markers at genome level can speed up the utilization of diverse genetic resources 6 

for varietal improvement. In the present study, we carried out an analysis of genetic diversity 7 

based on 3882 SNP markers across 37core watermelon genotypes including the most widely 8 

used watermelon varieties and wild watermelon. Based upon the SNP genotyping data of the 9 

37 watermelon genotypes screened, gene diversity and polymorphism information content 10 

values across chromosomes varied between 0.03-0.5 and 0.02-0.38, with averages of 0.14 and 11 

0.13, respectively. The two wild watermelon genotypes were distinct from cultivated varieties 12 

and the remaining thirty-five cultivated genotypes were differentiated into three major 13 

clusters. Twenty genotypes were grouped in cluster I. Eleven genotypes were grouped in 14 

cluster II. Three advanced breeding lines of yellow fruit flesh and genotype SW043 were 15 

grouped in cluster III.The results from Neighbor-Joining (NJ) dendrogram, principal 16 

coordinate analysis and STRUCTURE analysis approaches were consistent and the grouping 17 

of genotypes was generally in agreement with their origins. Here we reveal the genetic 18 

relationships among the core watermelon genotypes maintained at Jiangsu Academy of 19 

Agricultural Sciences, China. The molecular and phenotypic characterization of the existing 20 

core watermelon genotypes, together with specific agronomic characteristics can be utilized 21 

by researchers and breeders for future watermelon improvement. 22 
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Introduction 1 

Watermelon [Citrullus lanatus (Thunb.) Matsum. &Nakai var. lanatus, 2n = 2x = 22] is an 2 

economically important vegetable crop that is grown on approximately 7% of the world’s 3 

cultivated land area with an annual production of about 109 million tons (FAO Statistics 2013, 4 

http://faostat.fao.org/). China is the leading watermelon producing country accounting for 5 

71% of the world’s production. More recently, in China, the economic and nutraceutical 6 

importance of watermelon has increased thus challenging breeders to develop new varieties 7 

combining high fruit quality with enhanced resistance to biotic and abiotic stresses. 8 

A number of watermelon genotypes and cultivars possess good morphological and 9 

horticultural traits, and some of them have been selected as core breeding materials and used 10 

extensively as parental lines in watermelon breeding programs. A major challenge for 11 

breeders is to be able to accurately estimate the relationship between parents prior to 12 

initiating hybridization. This is particularly important since cultivated watermelon has been 13 

shown to exhibit narrow genetic diversity (Levi et al. 2001a; 2001b), resulting in progenies 14 

displaying undesirable agronomic characteristics obtained from the crosses. Knowledge of 15 

the genetic relationships and characterization of watermelon diversity including core 16 

genotypes that are being used as parents in the current watermelon breeding programs can 17 

facilitate efficient management and improved utilization of available genotype resources. 18 

Generally, genetic variation in plants can be characterized using morphological and 19 

molecular methods. However, the use of molecular markers has the advantage of improved 20 

reliability and repeatability (Powell et al., 1996). Molecular markers previously used for 21 

characterization of genetic diversity in watermelon genotypes include random amplified 22 

polymorphic DNA (RAPD) (Mujaju et al., 2010), amplified fragment length polymorphism 23 

(AFLP) (Che et al., 2003),simple sequence repeat (SSR) (Kwon et al., 2010) and expressed 24 

sequence tags-SSRs (EST-SSR) (Mujaju et al., 2013). However, these marker systems utilize 25 
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limited molecular markers and are primarily gel-based, costly and time consuming. In 1 

contrast, single nucleotide polymorphism (SNP) markers, offer substantial advantages over 2 

PCR-based methods such as large-scale genotyping, the generation of  high abundance 3 

sequence information and whole genome coverage to allow genetic studies (Gupta et al., 4 

2008; Singh et al., 2013). The method has been widely applied to various crop species for 5 

genetic variability analysis, such as rice (Singh et al., 2013), maize (Van Inghelandt et al., 6 

2010), wheat (Nielsen et al., 2014) and melon (Esteras et al., 2013).With the falling costs of 7 

DNA sequencing and availability of whole genome sequence of watermelon (Guo et al., 8 

2013), a new SNP-based marker platform known as DArTseq was developed recently by 9 

combination Diversity Array Technology (DArT) marker system with Illumina short read 10 

sequencing method (Sansaloni et al., 2011). 11 

Here we used DArTseq-based SNP markers on whole genome level to analyze the genetic 12 

diversity of core watermelon genotypes that have been widely and commonly used in 13 

watermelon breeding programs of China. Our results will facilitate further exploitation of 14 

these genotypes by researchers and breeders for watermelon improvement. 15 

Materials and Methods 16 

Plant materials and DNA extraction 17 

In the present study, a set of 37 watermelon core genotypes including elite watermelon 18 

cultivars, inbred lines and wild watermelon genotypes were evaluated. Single seed of each 19 

watermelon genotype was first pre-germinated and then transferred into pots (15 cm x 15 cm) 20 

filled with compost mix of sand and peat1:1 (v:v) Levington M1 compost (Monro Group) for 21 

growing.At four-leaf stage, one or two leaf pieces for each plant were collected for DNA 22 

extraction. The leaf samples were first placed in plastic bags with tiny holes and then 23 

vacuum-dried in SuperModulyo freeze dryer (Thermo Savant, USA) for 7 days, and stored 24 

before DNA extraction. Seedlings were grown under controlled growth room conditions with 25 
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a 16/8 h light/dark cycle and temperature of 28°C day and 20°C night.The main 1 

characteristics obtained from trials carried out over the last two years (2011 and 2012) at the 2 

watermelon breeding Research Station, Jiangsu Academy of Agricultural Sciences (JAAS), 3 

are given in Table S1. 4 

Freeze-dried leaf samples (0.1g) of were ground completely in a 2 mL Eppendorf tube 5 

with added garnet sand (0.15mm/0.7 mm) using FastPrep®-24 Instrument (MP Biomedicals 6 

Inc., UK). DNA extraction was performed using modified cetyltrimethylammonium bromide 7 

(CTAB) method (Ren et al. 2012). The quality and quantity of DNA samples were 8 

determined by agarose gel analysis and DNA concentration was adjusted to 50-100 ng μL-1. 9 

DArTseq based SNP analysis 10 

Based on the preliminary tests for appropriate enzyme combinations in cucurbits, restriction 11 

enzymes combination PstI-MseI was chosen for the digestion of a mixture of DNA samples. 12 

After digestion, DNA samples are processed in digestion/ligation reactions principally as per 13 

Kilian et al. (2012) but replacing a single PstI-compatible adaptor with two different adaptors 14 

corresponding to two different Restriction Enzyme (RE) overhangs. The PstI-compatible 15 

adapter was designed to include Illumina flowcell attachment sequence, sequencing primer 16 

sequence and “staggered”, varying length barcode region, similar to the sequence reported by 17 

Elshire et al, (2011). Reverse adapter contained flowcell attachment region and MseI-18 

compatible overhang sequence. Only “mixed fragments” (PstI-HpaII) are effectively 19 

amplified in 30 rounds of PCR using the following reaction conditions: 1 min at 94℃for 20 

initial denaturation; 30 cycles each consisting of 20 sec at 94℃ for denaturation, 30 sec at 21 

58 ℃ for annealing, 45 sec at 72 ℃ for extension; and finally a 7 min extension step at 72 ℃. 22 

After PCR equimolar amounts of amplification products from each sample of the 96-well 23 

microtiter plate are bulked and applied to c-Bot (Illumina) bridge PCR followed by 24 

sequencing on Illumina Hiseq2500. The sequencing (single read) was run for 77 cycles. 25 
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Sequences generated from each lane are processed using proprietary DArT analytical 1 

pipelines and the corresponding fastq files are first processed to filter away poor quality 2 

sequences, applying more stringent selection criteria to the barcode region compared to the 3 

rest of the sequence. Accordingly, the assignments of the sequences to specific samples 4 

carried in the “barcode split” step are very reliable. Approximately 2,500,000 (+/- 7%) 5 

sequences per barcode/sample are used in marker calling. Finally, identical sequences are 6 

collapsed into “fastqcall files”. These files are used in the secondary pipeline for DArT PL’s 7 

proprietary SNP and Silico DArT (presence/absence of restriction fragments in representation) 8 

calling algorithms (DArTsoft14). 9 

Data Analysis 10 

Marker attributes for each marker locus were calculated using software PowerMarker 11 

Version 3.25 (Liu and Muse, 2005), including major allele frequency, gene diversity, 12 

polymorphic information content, gene diversity and heterozygosity. Based on genetic 13 

similarity, a dendrogram was constructed by application of the unweighted pair group method 14 

with Neighbor-Joining (NJ) cluster analysis using software Darwin Version 5.0 (Perrier et al., 15 

2003). It was also used to perform principal coordinate analysis (PCoA) to visualize the 16 

genetic relationships among individual watermelon genotypes. 17 

Software program STRUCTURE v2.3 (Pritchard et al., 2000) was used to infer 18 

population structure. Estimation of the best K value (the number of clusters) was performed 19 

by evaluating K=1 to 8 with the admixture and correlated allele frequency models. Five 20 

independent runs were done for each K. Each run consisted of a burn-in period of 10,000 21 

iterations followed by 10,000 Monte Carlo Markov Chain (MCMC) iterations. Both LnP(D) 22 

in STRUCTURE output and its derived ΔK method (Evanno et al., 2005) were used to 23 

determine the K value.  24 

Results 25 
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Characterization of SNP markers 1 

A total of 4808 polymorphic SNP markers that have a scoring reproducibility of 99.7% and a 2 

call rate of 98.8% were identified by genotyping of 37 watermelon genotypes using the 3 

DArTseq platform. In order to make subsequent analysis more reliable, SNP markers with a 4 

missing proportion of > 5% were excluded and a total of 3882 SNP markers were used for 5 

further analysis. The physical position along the chromosome of SNP markers were 6 

determined based on results of the alignment to the reference watermelon genome of 97103 7 

(minimum base identity > 90% and E-value < 10-5, Guo et al., 2013). The number of SNP 8 

markers was not evenly distributed across the 11 chromosomes and it ranged from 204 for 9 

chromosome 04 to 478 for chromosome 05, with an average number of 352 (Fig.S1).  10 

Based upon the SNP genotyping data of the 37 watermelon genotypes screened, gene 11 

diversity and polymorphism information content values across chromosomes ranged from 12 

0.03 to 0.5 and from 0.02 to 0.38, respectively (Fig.S2).The mean gene diversity and PIC 13 

values were 0.14 and 0.13, respectively and their distributions showed that 91% (for gene 14 

diversity) and 93% (for PIC value) of the markers were both in the range from 0.05 to 0.2 15 

(Fig.S2). 16 

Genetic diversity analysis 17 

A Neighbor-joining (N-J) dendrogram of 37 watermelon genotypes based on the Jaccard's 18 

similarity matrix data obtained with the 3882 SNP markers was shown in Fig.1. The N-J 19 

dendrogram broadly separated 2 wild genotypes from the 35 cultivated genotypes (Fig.1a). In 20 

order to visualize the relationships among the 35 cultivated genotypes more clearly, a new 21 

dendrogram was generated by excluding the 2 wild genotypes and the results showed that the 22 

SNP markers were able to detect a high variability among the 35 watermelon cultivars (Fig 23 

1b). In this dendrogram, the 35 cultivars were classified into 3 clusters. Cluster I contained 11 24 

genotypes in total and all of the 11 genotypes were either elite cultivars from US or breeding 25 
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lines with known US racial background. Cluster II consisted of 20genotypes, of which 2 were 1 

from US, 1 were from Korea, 2 were from Australia, 2 were from Japan, 1 was from Taiwan 2 

and 12 were from China (3 were from Xinjiang, 6 were from Jiangsu, 3 were from Beijing). 3 

The third main group was formed by three Jiangsu-derived breeding lines, and one breeding 4 

line from Taiwan was also included in this cluster. 5 

Principal Coordinate analysis 6 

The Jaccard's similarity matrix generated from marker scores was also used for Principal 7 

Coordinate Analysis (PCoA) to visualize the genetic relationships between the watermelon 8 

genotypes and the results showed that the 37 genotypes were clearly classified into two 9 

groups. Group I included only 2 wild genotypes and Group II only cultivated genotypes 10 

(Fig.S3a).The 35 cultivated genotypes assigned to Group II were further arranged in three 11 

separated clusters (Fig.S3b), which was generally consistent with the Neighbor-Joining 12 

analysis above. The first and the second principal axis explain 25.9% and 11.2% of the 13 

variation, respectively.  14 

Population Structure Analysis 15 

For all the 37 genotypes, the sharp division of LnP(D) score and the peak value of delta K 16 

score were both obtained at K = 2 (Fig.2a, 2b and Fig. 4a).This means that the 37 genotypes 17 

were partitioned into two groups, which corresponded to the two wild genotypes and the 35 18 

cultivated genotypes. When the 35 genotypes were examined, the LnP(D) score increased 19 

continuously with the increase of K from 1 to 8, but the most apparent change appeared when 20 

K increased from 2 to 3 (Fig. 3a). Delta K also peaked at a K-value of three (Fig.3b).These 21 

results mean that the 35 genotypes should be divided into three populations. The results 22 

obtained from the STRUCTURE analysis are in good agreement with those obtained from 23 

Neighbor-Joining dendrogram and the principal coordinate analysis. Each genotype is 24 

represented by a vertical column and different colors represent different subpopulations. The 25 



9 
 

proportion of a given genotype's color bar represents the proportion that genotype belongs to 1 

the corresponding subpopulation (Fig. 4b). 2 

Discussion 3 

Polymorphism of SNP markers  4 

A total of 3882 SNP markers were used in the present study to provide detailed molecular 5 

characterization of core watermelon genotypes. The number distribution of markers on the 11 6 

chromosomes varied greatly and their distribution was also reflective of chromosome size in 7 

watermelon (Guo et al., 2013). 8 

Polymorphic information content (PIC) refers to the usefulness of a marker for 9 

detecting polymorphism. Due to the bi-allelic nature of SNPs, PIC values range between 0 to 10 

0.5, which are lower than PIC values for multi-allelic markers, such as SSR, AFLP and 11 

RAPD that can range between 0.5 to 1.0. Although with a low average PIC value (0.13), the 12 

SNP markers in the present study have greater abundance and co-dominant inheritance 13 

pattern increasing their effectiveness in discriminating the genotypes compared to RAPDs, 14 

SSRs and AFLPs markers used in previous watermelon genetic diversity studies.  15 

Genetic diversity of wild and cultivated germplasm 16 

Selection of genetically diverse parents with high genetic variability is a key step in 17 

hybridization programs. In the present study, the genetic relationship based on three different 18 

approaches (NJ dendrogram, principal coordinate analysis and population structure analysis) 19 

gave similar results. The 37 watermelon genotypes in the present study can be classified into 20 

two differentiated clusters: wild genotypes and cultivated genotypes. Similar distinct 21 

clustering pattern of wild and cultivated watermelon genotypes has also been reported by 22 

Hwang et al. (2011) who clustered the 32 watermelon genotypes into two major clusters 23 

based on AFLP and EST-SSR markers. Cluster I included all adapted watermelon cultivars 24 

and Cluster II included the four wild-type species (PI 189225, PI 386024, PI 494817 and PI 25 
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632755). These wild-type PIs are known to exhibit high levels of resistance against various 1 

diseases, for example, PI 189225, PI 632755 and PI 386024 have been reported to be resistant 2 

to powdery mildew (Podsphaera xanthii race 2W) (Tetteh et al., 2010), whilst PI 494817 is 3 

moderately resistant to bacterial fruit blotch (Acidovorax citrulli),  a significant threat to 4 

watermelon around the world (Hopkins and Thompson, 2002). Using molecular markers-5 

based introgression, breeders can develop new cultivated varieties with superior  disease 6 

resistance from the wild-type germplasm described above. Gichimu et al. (2009) also 7 

reported high morphological diversity between unimproved accessions (wild accession and 8 

landrace) and commercial cultivars. 9 

The narrow genetic base of cultivated watermelon (Levi et al., 2001a; Levi et al., 10 

2001b) poses a challenge for watermelon breeding programs combining specific quality 11 

characteristics, such as high fruit and sugar yield and pest and disease resistance. Thus, the 12 

exploitation of the wild watermelon genotypes as genetic source to improve resistance and 13 

tolerance to biotic and abiotic stress is essential for the development of new varieties (Thies 14 

and Levi, 2007). Indeed, the wild watermelon genotype PI 189225 that is included in our 15 

studies is a known source of resistance to various diseases such as powdery mildew (Tetteh et 16 

al., 2010, 2013), anthracnose (Boyhan et al., 1994), gummy stem blight (Gusmini et al., 17 

2005). ‘G10’ is another wild watermelon genotype that is characterized by its good resistance 18 

to Fusarium wilt (unpublished data). The wide differences observed between the wild and 19 

cultivated genotypes can provide valuable information for the utilization of wild watermelon 20 

in improving disease resistance by interspecific backcross between the wild germplasm and 21 

cultivated breeding lines (Levi et al., 2010). The identification and the use of the molecular 22 

markers linked to resistance genes in the wild-type germplasm will speed up the introgression 23 

of desirable traits into new varieties. 24 

 Cluster I of cultivated germplasm 25 
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Cluster analysis revealed the presence of genetic diversity according to origin and 1 

evidence of relationships between genotypes from different origins. For example, Cluster I 2 

was constituted mainly by cultivars from US and Cluster II was constituted mainly from East-3 

Asia or Austria. 4 

Cultivars with moderate fruit characteristics but good resistance to Fusarium wilt, 5 

such as ‘All Sweet’, ‘Charleston Gray’, ‘Smokylee’, ‘Sugarlee’ and ‘Crimson Sweet’ were 6 

differentiated in Cluster I. In addition to the good fruit quality, they can all be used to derive 7 

lines with resistance to Fusarium wilt. ‘LW022’and ‘LW023’were two advanced breeding 8 

lines and were bred and selected from US cultivars. ‘9 Jiu’ has good resistance to Fusarium 9 

wilt and should make it an excellent parent in hybrid crosses, especially for producing 10 

unprotected cultivars. ‘SSD’ was a large icebox variety with an attractive striped rind pattern, 11 

good internal red pigmentation, and higher soluble sugar content than other icebox varieties. 12 

SSD could be crossed with a small parent to produce an icebox-sized fruit or with a large-13 

fruited breeding line to produce a standard-size fruit (Cralll et al. 1994). ‘AU-GSC’ and ‘AU-14 

RS’, both have multiple-disease resistance (resistance to anthracnose, gummy stem blight, 15 

and Fusarium wilt) and they can be used as resistant materials for developing or enhancing 16 

disease resistance in watermelon cultivars. 17 

Cluster II of cultivated germplasm 18 

Among the cultivars in cluster II, ‘P1-3’and ‘P3-1’ are two inbred lines with dark skin, 19 

good quality and early maturity, and they can be used to synthesize hybrids with small fruits 20 

under the protected green house condition. The two inbred lines ‘SW055-1’ and ‘SW057’, 21 

which had high soluble sugar content, can be used for development of hybrids with good fruit 22 

quality. The inbred line ‘P4’ had considerable yield advantage over other watermelon plants; 23 

thus, it should be useful in breeding programs aiming to develop good fruit quality, resistance 24 

and high fruit yield cultivars. ‘Red flesh 8424’ has a solid dark green rind and red flesh and 25 
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was used as the maternal parent to produce the most popular commercial cultivar ‘8424’ in 1 

East China. ‘K3’ is elongate, with sweet, flavorful red flesh and thick rind. Many breeders 2 

have made use of ‘K3’ as sources of good fruit quality for the development of new hybrids. 3 

In previous studies, we selected some breeding lines, including ‘MW022’, ‘J2’, ‘P4’, ‘Hong 4 

5-2’, ‘SW055-1’, ‘MW097’, ‘MW099’, ‘MW095’, ‘MW096’, ‘Furong F8’, ‘MW026’, 5 

‘MW089’, with excellent fruit quality. However, they were much less resistant to diseases. 6 

Thus, these breeding lines with different fruit and plant characteristics were selected in order 7 

to synthesize hybrids with a range of fruit and plant patterns to attend to the farmers´ and 8 

consumers´ preferences. Particularly, cultivar ‘Sugarbaby’ and ‘Calhoun Gray’ were apart 9 

from other US cultivars and were grouped into Cluster II. This could be ascribed to the more 10 

frequent use of these two elite cultivars for the watermelon breeding programs resulting in 11 

close genetic relationships with the cultivars from East Asia.  12 

Cluster III of cultivated germplasm 13 

Interestingly, three advanced breeding lines (‘R-1-3’, ‘R-1-2’and ‘R-2-1-2’) from 14 

Jiangsu province and one advanced breeding line (‘SW043’) from Taiwan were located in an 15 

independent cluster (Cluster III), suggesting a unique genetic background to other cultivated 16 

genotypes. ‘R-1-3’, ‘R-1-2’, ‘R-2-1-2’and ‘SW043’were the four advanced breeding lines 17 

with the same yellow color of fruit flesh. The color of fruit flesh has been shown to be an 18 

important indicator of genetic relationships among watermelon types and most wild 19 

watermelon types have white, light green or yellow flesh while most cultivated have red flesh 20 

(Wang et al., 2011).Thus, this genetic clustering reflected that the color of fruit flesh may be 21 

one of the main causes for this clustering, but other influencing causes for this clustering need 22 

to be investigated further.  23 

In conclusion, this study using DArTseq based SNP markers revealed the 24 

relationships and genetic diversity among 37 core watermelon genotypes. The new 25 
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information will be useful to breeders to maximize the parental diversity for new crosses 1 

within breeding programs and development of varieties with improved resistance to abiotic 2 

and biotic stress.  3 

Conclusions 4 

In this study, we used 3882 SNP markers to evaluate the genetic diversity and population 5 

structure of watermelon genotypes and our results showed that apart from distinct grouping 6 

of wild genotypes from cultivated watermelon genotypes, there are also three main groups in 7 

the 35 cultivated genotypes. The grouping of genotypes based on the large number of SNP 8 

markers will also be useful in providing a theoretical foundation for effectively utilizing these 9 

genotypes in future watermelon breeding programs. 10 
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 1 

Fig. 1.Neighbor-Joining dendrogram showing the genetic relationships among 37 (a) and 35 (b) watermelon cultivars based on 3882 single 2 

nucleotide polymorphism (SNP) markers.  3 
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 1 

Fig. 2. Determination of the optimal value of K, based on five independent runs and K ranging from 1 to 8 based on 37 watermelon genotypes. 2 

(a) Evolution of the natural logarithm probability (LnP(D)); and (b) its derived statistics ΔK for each K value.  3 
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 1 

Fig. 3. Determination of the optimal value of K, based on five independent runs and K ranging from 1 to 8 based on 35 watermelon genotypes. 2 

(a) Evolution of the natural logarithm probability (LnP(D)); and (b) its derived statistics ΔK for each K value.  3 
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 1 

Fig. 4.  Structure structure of the genotypes based on 3882 single nucleotide polymorphism (SNP) markers. (a) Optimal population structure 2 

(K=2) for the 37 watermelon genotypes and (b) Optimal population structure (K=3) for the 35 watermelon genotypes. Each individual is 3 

represented by a narrow vertical bar , which is partitioned into coloured segments in proportion to the estimated membership to the 3 populations.  4 
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 1 

Fig. S1. Distribution of DArTseq based SNP markers on different watermelon chromosomes. The x axis represents the number of each 2 

watermelon chromosome. The y axis is the number of SNP markers and the number of SNPs on each chromosome was shown by the height of 3 

the bars. 4 



23 
 

 1 

Fig. S2. Distribution of gene diversity and polymorphism information content values for 3882 single nucleotide polymorphism (SNP) markers 2 

used in the study. 3 

 4 
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 1 

Fig. S3. Principal coordinate analysis of 37 (a) and 35 (b) watermelon genotypes based on Dice’s distance calculated from 3882 single 2 

nucleotide polymorphism (SNP) markers.  3 
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Table S1. Details of breeding history, major characteristic traits and origin of the genotypes evaluated in the diversity study.  1 

   Fruit characteristics  

No

. 

Genotype 

name 
Character 

weight 

(kg) 

Rind 

colora 

Stripe 

typeb 
Shape 

Fruit 

Colour 
Width(cm) Length(cm) 

Rind 

thickness(cm) 
SSCCc SSCEd Source 

1 Hong 5-2 Inbred line 2.60 GR NS Round Red 16.9 16.4 0.5 10.5 8.7 Taiwan 

2 SW043 Inbred line 1.72 GR NS Round Yellow 15.0 14.5 0.5 11.9 9.6 Taiwan 

3 
Red flesh 

8424 
Inbred line 3.64 LR No stripe Round Red 18.7 17.1 1.0 10.8 8.7 Xinjiang 

4 MW095 Inbred line 2.80 GR SS Round Red 18.2 16.8 0.9 9.6 8.4 Xinjiang 

5 MW099 Inbred line 3.80 GR WS Round Red 19.8 18.5 1.2 10.4 9.5 Xinjiang 

6 G10 Wild type 2.15 GR No stripe Round White 16.7 15.5 1.5 2.2 2.0 Xinjiang 

7 P4 Inbred line 4.82 DG No stripe Round Red 21.0 20.7 1.3 10.9 7.3 Jiangsu 

8 K3 Variety 2.08 GR NS Round Pink 16.3 15.9 0.6 10.5 8.4 Jiangsu 

9 J2 Inbred line 2.90 GR NS Round Pink 18.9 18.1 0.4 10.0 8.8 Jiangsu 

10 P1-3 Inbred line 3.04 DG No stripe Elongated Red 22.8 15.6 0.9 11.7 10.2 Jiangsu 

11 R-1-2 Inbred line 1.40 GR No stripe Elongated Yellow 22.1 10.9 0.5 8.8 7.6 Jiangsu 

12 R-1-3 Inbred line 1.60 GR No stripe Round Yellow 15.0 14.0 0.6 9.5 8.8 Jiangsu 

13 R-2-1-2 Inbred line 0.89 GR NS Round Yellow 12.4 11.5 0.5 9.0 8.7 Jiangsu 

14 MW026 Inbred line 5.00 GR NS Round White 21.9 20.4 1.0 8.4 7.1 Jiangsu 

15 P3-1 Inbred line 4.32 DG No stripe Round Red 22.5 20.4 1.1 11.1 8.7 Jiangsu 

16 MW022 Inbred line 3.50 GR NS Round Red 19.3 18.6 0.9 11.0 10.0 Beijing 

17 MW096 Inbred line 2.30 DG No stripe Round Red 16.7 15.9 0.8 10.3 9.0 Beijing 

18 MW097 Inbred line 3.70 GR NS Round Red 19.0 18.6 1.0 11.0 8.6 Beijing 

19 
Crimson 

sweet 
Variety 3.00 YG NS Round Pink 17.3 17.1 1.0 10.6 9.0 USA 

20 LW023 Inbred line 5.20 GR NS Round Red 22.5 20.9 1.1 11.1 9.0 USA 

21 9 jiu Variety 3.10 LR No stripe Elongated Red 24.8 14.5 0.8 9.0 6.7 USA 

22 LW022 Inbred line 5.46 LR No stripe Elongated Red 33.7 16.2 1.3 10.8 9.5 USA 

23 Sugarbaby Variety 2.10 Black No stripe Round Red 15.6 16.0 1.1 9.6 7.9 USA 

24 SSD variety 2.50 LR NS Round Red 17.7 16.6 0.6 10.0 7.6 USA 

25 Charleston Variety 3.10 LR No stripe Elongated Pink 23.8 16.1 1.2 9.0 6.9 USA 
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Gray 

26 Calhoun Gray Variety 5.00 LR No stripe Elongated Pink 30.7 19.0 1.1 9.0 8.0 USA 

27 Smokylee Variety 8.10 DG No stripe Elongated Red 34.6 20.4 1.7 11.1 8.6 USA 

28 Au-GSC Variety 2.34 GR NS Round Red 15.0 15.6 0.7 9.6 6.2 USA 

29 All Sweet Variety 2.34 GR NS Elongated Red 21.8 14.7 0.7 8.2 5.9 USA 

30 Au-RS Variety 2.60 GR NS Round Red 16.4 16.7 0.6 7.2 5.7 USA 

31 Sugarlee Variety 5.2 GR NS Round Red 22.5 20.9 1.1 11.1 9.0 USA 

32 PI 189225 Wild type 0.58 GR No stripe Round White 9.2 10.2 1.1 4.0 2.0 Zaire 

33 MW089 Inbred line 3.50 GR NS Round Red 19.1 18.3 0.9 10.5 9.0 Japan 

34 FurongF8 Inbred line 2.70 GR NS Round Red 17.4 16.9 0.6 10.3 9.0 Japan 

35 Fuxing F8 Inbred line 1.80 GR NS Elongated Red 22.3 12.3 0.5 11.2 9.6 Korea 

36 SW055-1 Inbred line 2.55 LR No stripe Elongated Red 23.0 14.2 0.8 10.2 9.6 Australia 

37 SW057 Inbred line 1.90 GR NS Elongated Red 21.4 13.0 0.6 11.0 9.0 Australia 
a GR, Green; LR, Light green; YG, Yellow green; DG, Dark green 1 
b NF, Narrow stripes; SS, Straight stripe; WS, Wide stripes  2 
c SSCC, soluble sugars content in center position (%) 3 
d SSCE, soluble sugar content in edge position (%) 4 
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