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Abstract 

Concrete structures are routinely monitored to detect changes in their characteristics in the field 

of engineering surveying and other disciplines such as structural and civil engineering. There is 

growing demand for the development of reliable Non-Destructive Testing (NDT) techniques 

for concrete structures in the assessment of the deteriorating condition of infrastructures or in 

an event of fire-damaged structures. In this paper, the feasibility of using Terrestrial Laser 

Scanning (TLS) technology for change detection and assessment of fire-damaged concrete has 

been investigated through measurements and analysis of laboratory size concrete specimens 

that underwent heating up to 1000°C. The TLS technique employed in detecting fire-damaged 

concrete involved modelling and analysis of the TLS intensity returns as well as RGB image 

analysis. The results obtained clearly demonstrate the feasibility of using TLS to detect fire-

damaged concrete. Although the laser scanners used in the study have different wavelengths, 

the results obtained in both cases are promising for a detection technique of fire-damaged 

concrete structures. 
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1. Introduction 

Concrete is the most extensively used construction material worldwide with an average global 

yearly consumption of 1m
3
 per person [1, 2] and many engineering structures are made of 

concrete. Fire is one of the most serious potential risks to many buildings and structures. Most 

research work that has been carried out addressing the effects of fire-damaged concrete has 

been motivated by the extensive use of concrete as a construction material [3] around the 

world. According to Ergün et al. [4] one of most damaging environmental effects for concrete 

structures is exposure to elevated temperatures and concrete structures such as bridges, 

viaducts, tunnels, buildings and parking garages are examples of structures at risk of fire 

damage [5]. Even though concrete is known to be a material with high fire resistance and 

capable of retaining much of its load-bearing capacity, it undergoes severe modifications in its 

physical, chemical and mechanical properties when subjected to high temperatures [6].  

 

The first and most cardinal task for structural safety appraisal of a concrete structure that has 

been subjected to fire is damage assessment [6]. A damage assessment in such a case aims at 

providing the relevant information needed to evaluate the residual bearing capacity and 

durability of the fire-damaged structure and to propose appropriate repair methods or to decide 

if demolition is more appropriate [7]. A thorough assessment of a fire-damaged structure 

consists of a combination of field and laboratory investigations which are explained in detail 

below. These investigations are carried out so as to determine the extent of fire damage and in 

order to devise proper and cost effective repair measures. In particular, Gosin et al. [8] state 

that the assessment process should quantify the magnitude and degree of damage to structural 

elements since this will determine the repair costs. The primary field (on-site) investigation 

method is visual inspection, which records features such as collapse, distortion, deflections, 

degree of damage to materials and smoke damage. A tapping survey of element surfaces may 
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be conducted. Simple invasive investigation techniques such as using a hammer and chisel may 

also be used. In terms of laboratory (off-site) investigations, samples of damaged material and 

undamaged references may also be removed for laboratory testing and examinations [5]. These 

tests would for instance include: core strength, ultrasonic pulse velocity, Windsor probe, BRE 

internal fracture and petrographic examinations [9]. Table 1 below shows a summary of the 

existing methods for the assessment of fire-damaged structures. Normally, a damage 

classification chart for the elements involved in a fire is prepared as an output from the 

assessment process and such a chart can be used in the selection of appropriate repair 

techniques [8, 10]. 

 
                  Table 1: Methods for assessment of fire-damaged structures  

Test Location  Test Type Test Method  Structural Material 

Concrete Masonry 

On-site Non  

destructive 

Visual Inspection     

Endoscope survey    

Hammer soundings     

Rebound hammer     

Ultrasonic testing     

Partially 

destructive 

Breakout / drilling     

Laboratory Load test     

Petrographic 

examination 

    

Compressive strength     
                Source: Ingham [5] and Short et al. [9]. 

 

Within the field of civil engineering, various studies have been conducted aimed at 

investigating the effects of heating rate, elevated temperature exposure and the exposure 

duration on the residual strength of concrete [6, 11, 12]. It has been reported that when concrete 

is heated between 200°C and 250°C it begins to undergo loss in its compressive strength. 

Furthermore, the compressive strength of concrete at temperatures between 300°C and 500°C 

is reduced to about 15 to 70% of that of unheated concrete [4]. The temperature of 300°C is 

commonly taken to be the benchmark temperature above which concrete is considered to have 

been significantly damaged [13]. Several techniques that assess fire-damaged concrete have 

been presented as mentioned above and colour change is also one of them as investigated by 

several researchers and results have shown that concrete containing siliceous aggregate when 

heated at elevated temperatures undergoes colour changes from normal to pink/red at 

temperatures between 300°C and 600°C to whitish grey/black round 600°C to 900°C and buff 

at 900°C to 1000°C [14-16].  

 

In this study, Terrestrial Laser Scanning (TLS) was investigated for detection of fire-damaged 

concrete and with the motivation based on the following: with laser scanning the whole 

concrete element can be scanned and an average intensity value over the area concerned can be 

determined which would represent the whole element overcoming the challenge of cores drilled 

in limited areas for some conventional techniques; scanning is quick with millions of points 

measured in a few seconds and this is advantageous for engineering structures considering their 

scale or magnitude; scanning of a fire-damaged structure can be done from a distance which 

improves safety; and laser scanning is a non-destructive technique for detecting fire-damaged 

concrete. Laser scanner intensity values have been used in different applications and one of the 

prominent one is change detection and classification of different material [17-19]. This 

evidence for detecting and classifying various materials based on the laser scanner intensity 

values has necessitated an investigation into the idea of using the TLS intensity values to 

collect data about unheated and heated concrete and interpret that data with regard to the 

condition of the concrete as a non-destructive technique for detecting and assessing fire-

damaged concrete. 
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The addition of intensity data to the geometric data has proved useful in several applications 

[19, 26, 27] and a study by Teza et al. [20] showed a successful method based on curvature 

analysis of TLS geometric data and aimed at recognizing surface defects of a concrete bridge 

due to mass loss. However, laser scanner intensity data is not often utilised, because it is 

affected by several factors such as scanning distance and incidence angle, water content, 

ambient light, humidity, type of laser and object surface properties [21, 22]. Therefore, 

according to the authors of this paper in a preliminary study of detecting fire-damaged concrete 

using laser scanning, it is stated that the ability to effectively identify concrete that has been 

heated to certain temperatures implies modelling these factors that have an influence on 

returned intensity [23]. In this study the influencing factors on intensity were incidence angle 

and distance as the experiments were carried out in a controlled environment and the concrete 

was dry.  

 

An overview review of existing assessment methods of fire-damaged concrete has been 

presented above and this paper focuses on investigating the use of laser scanning intensity to 

detect fire-damaged concrete as a non-destructive technique. The experimental design and 

testing procedure for the proposed laser scanning technique and a colourimetry approach to 

detecting fire-damaged concrete are explained in detail. The results of the proposed technique 

are presented to demonstrate its feasibility and validity. 

 

2. Experimental Design and Testing Procedure 

2.1 Materials and Experimental Specimens 

Ordinary materials were used to make concrete specimens and these included: cement, water, 

sand and aggregate. The cement used was Composite Portland (P.C32.5). Natural siliceous 

river sand with a maximum grain size of 5mm was used as a fine aggregate whereas crushed 

siliceous aggregate with diameter ranging from 5 to 20mm was the coarse aggregate. Ordinary 

normal strength concrete specimens of prism type with dimensions 400 x 100 x 100mm were 

prepared. The mix proportion and the properties are given in Table 2. 

 
                              Table 2: Material and Properties of Concrete Specimens  

Material Water, Sand, Aggregate and Composite 

Portland Cement 

Mix Proportions                               0.44:1:1.42:3.17 

(Water/cement/sand/aggregate) 

Water–Cement ratio     0.44 

Curing Period               28days  

 

The concrete specimens were cast in steel moulds (Fig. 1) and consolidated using a high 

frequency vibrating table. After 24 hours of casting, the specimens were removed from the 

moulds and then cured in a fresh water tank where the temperature and humidity were kept at 

20±2°C and 40% respectively for 28 days.  

 

 
                                     Fig. 1: Concrete specimens cast in steel moulds 
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2.2 Scanning Room and Equipment Specifications 

In order to isolate and focus only on the scanning geometry (incidence angle and distance) as 

the influencing factors for poor return signal i.e. TLS intensity, the experiment was conducted 

in a controlled environment. Table 3 shows the technical specifications of two phase shift 

terrestrial laser scanners (Leica HDS 7000 and FARO Focus
3D

 120) that were used to scan the 

specimens before and after heating. The DT-8820 digital multifunction environment meter was 

used to measure temperature and relative humidity in the room where experiments were 

conducted. The measured temperature was 14°C whereas the relative humidity was 42%.  

 
                                       Table 3: Specification of TLS Instruments 

Instrument Leica HDS7000  FARO Focus
3D

 120 

Ranging method Phase Phase 

Wavelength 1500nm 905nm 

Field of View (Ver/Hor) 320˚ x 360˚ 300˚ x 360˚ 

Laser Class 1 3R 

Range 0.3-187m 0.6-120m 

Samples/sec 1016000 976000 

Beam diameter ~3.5mm @ 0.1m Typical 3mm @ exit, circular 

Beam divergence < 0.3 mrad Typical 0.19 mrad 

Colour external integrated 

Temp Range 0-45˚C  5-40˚C  

                      Source: Leica Geosystems [24] and FARO Technologies [25]. 

 

2.3 Experiment Setup and Concrete Scanning 

The planned distances for investigation between the scanner and concrete blocks were 1, 2, 3, 

4, 5 and 6 metres and the total station (TS 11) was used in the measurement setup and in 

particular marking out the scanning distances. The geometry of the experiment in terms of 

scanning measurement setup is shown in Fig. 2.  
 

 
Fig. 2: Steel Frame and Blocks at Different Levels. The letters A, B, C, D and 

E stand for shelves. 

 

With reference to Fig. 2, the planar surface of each concrete block was properly aligned with 

the frame edge. The concrete blocks were placed at different heights on shelves of the steel 
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frame with the control block on the centre shelf at the same height as the scanner with its front 

face approximately vertical and perpendicular to ensure that scanning was done at roughly 

normal angle of incidence. The experiment was set-up this way in order to only focus on the 

scanning geometry as the factor influencing the poor laser returned signal. The scanning 

parameters used in the experiments are shown in Table 4 and involved a comparative analysis 

of scanning resolutions for the two scanners used as compiled from the user manuals courtesy 

of Leica Geosystems and FARO Technologies. 

 
                  Table 4: Scanning Parameters 

Leica HDS7000 Scanner FARO Focus 120 Scanner 

Middle resolution: 12.6mm/10m 1/8 resolution, Quality 4X: 12.272mm/10m 

High resolution: 6.3mm/10m 1/4 resolution, Quality 4X: 6.136mm/10m 

Super high resolution: 3.1mm/10m 1/2 resolution, Quality 4X: 3.068mm/10m 

                  Source: Leica Geosystems [24] and FARO Technologies [25]. 

 

Fig. 3a and 3b below show the experiment setup when the HDS7000 and the FARO scanners 

were used to scan the concrete specimens. The whole essence of using two types of scanners 

was to investigate the behaviour of two different scanners and investigate their relationships 

since the two scanners that were used have different wavelengths for instance. 

 

        
  Fig. 3a: Scanning using the HDS7000 scanner            Fig. 3b: Scanning using the FARO scanner  

 

 

2.4 Heating Exposure Technique 

After scanning the unheated concrete specimens with the two laser scanners, the specimens had 

to then be heated. A Carbolite CWF 12/23 electric furnace was used for the thermal treatment 

of the specimens. The specimens at an age of 98 days were placed in the furnace chamber and 

thereafter heated at designated temperatures of 250, 400, 700, and 1000°C with a ramping rate 

of 10°C/min. For each heated specimen, thermal cycles were followed as depicted in (Fig. 4)  

for the specimen that was heated to 1000°C because rapid heating rate can also result in higher 

vapour pressure and cause cracks in concrete [4]. The peak temperatures were maintained for 1 

hour and then after an exact period of 1 hour, the furnace was switched off with the specimen 

inside and left to cool down to room temperature in order to avoid thermal shock. For 

comparison purpose with the other heated specimens, one specimen was left unheated. 
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               Fig. 4: Thermal cycle for the concrete block heated to 1000°C  

 

The concrete specimens were then scanned immediately after cooling the same way as prior to 

heating since heated concrete undergoes the re-hydration processes [28]. 

 

 

3. Scan Data Pre-processing  

The FARO Scene proprietary data processing software was used to batch convert and export 

the FARO scans (.fls) files to text files (.pts) format, which is an ASCII format, simple text file 

and can be edited by many programs as the files are adapted to move freely between multiple 

software packages. The exported text files contained 3D points and the intensity value for each 

of the points since the result of a scan involves a point cloud with several observations  

[𝑥𝑖,𝑦𝑖,𝑧𝑖,]𝑖……𝑛  consisting of 3D positions of the points in a Cartesian coordinate system and the 

intensity. Since the scanned data were exported to .pts format, the intensity values were ranging 

from -2047 to +2048. The HDS7000 scans (.zfs) were also converted to text files (.pts) using 

the batch conversion function of zfs files in Z + F laser control software. The alignment and 

rotation of data was performed using developed Matlab scripts applying the polyfit and polyval 

functions and where the rotation matrix R, (Eq. 1) was implemented. 

 

                                                   R = [
cos𝜃 −𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃

]                                                             [1] 

 

After the alignment stage each scan dataset was limited by the distance at which it was scanned 

and then written to a new file using Matlab functions. The preceding steps were helpful in 

devising a proper way of selecting and clipping the blocks from the point cloud. The points that 

belonged to the blocks were selected from the resulting point cloud of each scan using Matlab 

scripts. Based on the Cartesian coordinates, the horizontal angle θ, vertical angle ϕ and the 

range, p from the scanner to the target object were calculated using Eq. (2) [29, 30]. 
 

                                        [ 

𝑝𝑖

𝜃𝑖

𝜙
𝑖

]

𝑖=1….𝑛

     =  

[
 
 
 
 
 
 

  

√𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2

tan−1 (
𝑦𝑖

𝑥𝑖
)

tan−1 (
𝑧𝑖

√𝑥𝑖
2+𝑦𝑖

2
)

  

]
 
 
 
 
 
 

𝑖=1…...𝑛

                                             [2] 
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Incidence angles can be computed by determining the normal of a point with the aid of points 

around its neighbourhood. However, since the measurement setup in terms of the scanning 

geometry was optimised, it was discovered that the incidence angle at the centre of each block 

was the same as the scanning vertical angle. Statistics for each block such as intensity means 

and standard deviations were also calculated. It is worth mentioning that intensity values are 

dimensionless and that the mean intensity value for the area selected around each block was 

used for the analysis. 

 

4. Intensity Data Correction  

The intensity correction method by Fang et al. [31] based on the laser transmission function 

and the radar (range) equation was adopted and applied in this study to correct concrete 

intensity data acquired using the HDS7000 laser scanner for near distance effects. An overview 

of the intensity correction is presented and detailed information can be found in Fang et al. 

[31]. First and foremost, the simplified radar (range) equation (Eq. (3)) can be written as:  

 

                                                   𝑃𝑟 =
𝑃𝑡𝐷𝑟

2𝑝

4𝑅2 ƞ𝑠𝑦𝑠ƞ𝑎𝑡𝑚𝑐𝑜𝑠𝛼                                                        [3] 

 

Where Pr is the received power, Pt is the power transmitted, Dr is the receiver aperture, p is the 

reflectance of the object, R is the range, α is the incidence angle, ηsys and ηatm are system and 

atmospheric factors respectively [17, 32].  

 

Under the assumption of the target object with Lambertian scattering properties and covering 

the entire hemisphere implies a solid angle of π steradian and so the effective aperture  𝐷𝑟
2 = 4  

is equivalent to π. With these assumptions considered, Eq. (3) can be rewritten as described in 

Eq. (4) [22]: 

 

                                                     𝑃𝑟 =
𝑃𝑡cos𝛼

𝑅2 𝜋𝑝ƞ𝑠𝑦𝑠ƞ𝑎𝑡𝑚                                                         [4] 

 

For close-range terrestrial laser scanners Eq. (4) can be written as: 

 

                                                          𝑃𝑟 =
𝐶𝐸𝑝cos𝛼

𝑅2                                                                       [5] 

 

Where the term CE = (𝑃𝑡𝐷𝑟
2/4)η𝑆𝑦𝑠η𝐴𝑡𝑚  in Eq. (3) is taken to be a constant. Pr (power 

received) is taken to be equivalent to the recorded laser returned intensity [31]. Eq. (5) is a 

suitable physical based model under the assumptions mentioned above. However, in reality 

different relations have been observed between intensity and range for TLS than described by 

the physical model at near distances due to factors such as instrumental effects [27, 33, 26, 31] 

causing the physical model to be inapplicable at all scanning distances. Theoretically, the 

effects of the range and the angle of incidence on the intensity have been found to be 

independent, implying that it is possible to solve each one of them separately. In the analysis of 

the near-distance effects, Fang et al. [31] state that for a coaxial laser scanner, the near-distance 

effect can be described as the ratio of the input laser signal that the detector captures between 

the limited range (R) and unlimited range (∞) as shown in Eq. (6): 

 

                                 𝜂(𝑅) =
𝑃(𝑅)

p(∞)
= 1 − 𝑒𝑥𝑝 {

−2𝑟𝑑
2(𝑅+𝑑)2

𝐷2[(1−
𝑠𝑑
𝑓

)𝑅+𝑑−
𝑑𝑠𝑑
𝑓

+𝑠𝑑]
2}                                       [6]    

 

Where rd is the radius of the circular laser detector, d is the offset between the measured range 

R and the object distance from the lens plane, D is the diameter of the lens, Sd is the fixed 

distance of the detector from the lens and f is the focal length. All of which are parameters of 
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the laser scanner. Combining Eq. (6) with Eq. (5) and taking into account the near-distance 

effect, the intensity value can be written as: 

 

                                             𝐼(𝑅, 𝛼, 𝑝) ∝ 𝑃(𝑅, 𝛼, 𝑝) = 𝜂(𝑅)
𝐶𝐸𝑝𝑐𝑜𝑠𝛼

𝑅2                                          [7] 

 

In a case of constant reflectance of a target and with an incidence angle of 0°, then the term y = 

CEpcosα is regarded a constant and the relation between intensity and range can be written as 

[31]: 

                                  𝐹(𝑅) =
𝑦

R2 = {1 − 𝑒𝑥𝑝 {
−2𝑟𝑑

2(𝑅+𝑑)2

𝐷2[(1−
𝑠𝑑
𝑓

)𝑅+𝑑−
𝑑𝑠𝑑
𝑓

+𝑠𝑑]
2}}                                    [8]    

 

In their study, Fang et al. [31] used a Z+F Imager 5006i laser scanner and it has been reported 

that the parameters in Eq. (8) have a physical basis and that these parameters as shown in Table 

5 were estimated in accordance with observed values such as the receiver’s diameter and the 

detector’s distance from the lens plane by iterative curve fitting using a nonlinear least squares 

method and robust Gauss-Newton algorithm. 

 
                  Table 5: Values of Estimated Parameters 

Parameters y(inc) rd(m) d(m) D(m) sd(m) f(m) 

Lower 0.0 0.0 -1.0 0.03 0.01 0.05 

Upper Inf 0.005 0.2 0.6 0.9 0.5 

Initials 3e+8 1e-3 -0.18 0.05 0.18 0.15 

Optimized 4.678e+8 2.5e-3 -0.7538 0.05035 0.1608 0.1704 

               Source: Fang et al. [31]. 

 

The concrete intensity data from the FARO scanner showed insignificant near distance effects 

and no correction was applied. For both scanners used, the data analysed for incidence angles 

were below 12° and concrete was fairly smooth. Though the estimated parameters in Table 5 

were obtained using the Z+F Imager 5006i laser scanner, the procedure and parameters were 

tested for the HDS7000 laser scanner since the two instruments are coaxial and basically the 

same in terms of their physical characteristics as designed by the manufacturer. The concrete 

intensity data acquired using the HDS7000 scanner could be corrected for all other distances 

with the exception of the 1m distance (see Fig. 13). 

 

 

5. Colourimetry Approach 

The approach to assessing colour change of heated concrete as explained in detail below was 

twofold. Firstly, a flatbed scanner was employed to scan the heated concrete samples. The 

concrete image capture procedure employed is similar to that of Hager [15]. After heating and 

cooling the concrete, images were captured from the specimen surfaces using a flatbed scanner 

(HP Scanjet G2410). Images of concrete specimens were taken using the scanner at a 

resolution of 600ppi and saved as TIF files. Sizeable images were then cropped for analysis. 

The images were normalised for effects of intensity using Matlab scripts. The normalised 

images were then analysed using ImageJ software. The image processing procedure involved 

splitting the RBG image into individual channels and analysing the channels in terms of their 

intensities of the normalised maximum values [15] so as to draw some statistical trends. 

Secondly, an attempt was also made to capture concrete pictures using the M-Cam attached to 

the Leica HDS7000 laser scanner but the images obtained were not of good resolution and 

were not used in data processing and analysis.  
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6. RESULTS AND ANALYSIS 

6.1 Colour Change of Heated Concrete 

Visual inspection of colour change is for instance one of the initial steps in assessment of fire-

damaged concrete [12] which may then be followed by detailed investigations [9]. Visual 

inspection of colour change of heated gives an idea of the modification in the properties of 

concrete [28] and shown in Fig. 5 are the concrete specimens and their respective colour 

change after heating.  
 

                                            

                               
               (a) Concrete block heated at 250°C                    (b) Concrete block heated at 400°C 

 

                               
                (c) Concrete block heated at 700°C                   (d) Concrete block heated at 1000°C 

Fig. 5: Colour Change of Heated Concrete.  

 

The concrete colour changes in Fig. 5 generally show the same widely reported colours of 

concrete containing siliceous aggregate when it is heated to high temperatures as mentioned 

above. Importantly, colour changes as observed in Fig. 5 can be useful in identifying the 

extents of fire-damaged concrete [5] and it has been widely reported that a significant loss in 

strength occurs when concrete is heated above 300°C and that normally this coincides with a 

concrete colour change of red or pink [13] as in Fig. 5 (b). RGB Image analysis of concrete 

specimens captured by a flatbed scanner was done on small cropped image sections of size 

7x7cm in order to reduce computational intensity and Fig. 6 shows the results. 
 

 
Fig. 6: Flatbed Scanner RGB Grayscales of intensity of maximum normalised 

values against the temperature to which each block was heated to. 
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Fig. 6 above shows the intensities of the three primary colours i.e. red, green and blue colours 

at different designated temperatures for concrete specimens. It can be observed that the red and 

green colours start at almost around the same point. Throughout the temperature range 

investigated the red and green colour intensities were higher than the blue colour.  However, 

the blue colour like the green and red colours, showed a significant raise in intensity for the 

concrete specimen heated to 1000°C. The variations in intensity for the RGB channels in Fig. 6 

were explained by the colour changes of the heated concrete (Fig. 5). 

 

6.2 Relation of Incidence Angle and Distance 

The measurement of the incidence angles for the blocks in the experiments (see measurement 

setup in section 2.3) varied with distance. As the scanning distance increased, the incidence 

angle decreased and both scanners used showed the same trend as shown in Fig. 7 and 8 below: 

 

 
 Fig. 7: Incidence Angle against Distance – HDS7000 Scanner 

 

 
 

 
Fig. 8: Incidence Angle against Distance – FARO Scanner 

 

 

In line with the above findings, Krooks et al. [26] also investigated the relation between 

incidence angle and distance (range) and it has been reported that in several fieldwork 

applications of static TLS where a survey is conducted with the scanner mounted on the tripod, 

changes in the angle of incidence occur as the measurement range increases.  
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6.3 Effects of Incidence Angle and Distance on Intensity  

In theory, the closer the laser beam incidence angle is to 0° the more the returned intensity. It 

has been reported that higher incidence angles of for instance 20° and more lead to diminished 

returned intensity [26]. The results presented below are for blocks that were scanned at 

incidence angles less than 12° and with the scanning distance held fixed. Fig. 9 and 10 show 

the relationship between intensity and incidence angle and it can be seen that the effect of the 

incidence angle on the intensity is insignificant as the graphs for all the blocks tend to 

straighten across the whole range of the incidence angles.  

 

 
                                       Fig. 9: Intensity against Incidence Angle at 5m – HDS7000  

  

 
                                     Fig. 10: Intensity against Incidence Angle at 6m - FARO 

 

In order to assess the effects of the distance on the intensity for the HDS7000 and FARO 

scanner data, the scanning incidence angle for the blocks was kept constant at 0° and only the 

distance was varied. The intensity-distance relationships for the concrete intensity data for all 

the blocks as scanned with the HDS7000 scanner are as shown in Fig. 11. The distance effects 

can be clearly observed for the uncorrected intensity as the expected theoretical trend where 

intensity return decreases with an increase in distance does not hold. The possible explanation 

for this is attributed to the instrumental effects of the scanner such as near distance reducers 

and logarithmic amplifiers which influence the laser measurements as documented in literature 

for various scanners [33]. 
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Fig. 11: Intensity against Distance at 0° Incidence Angle – HDS7000 

 

 

The intensity-distance relationship for the FARO scanner data (Fig. 12) followed the 

theoretical trend of intensity decreasing with an increase in scanning distance. However, a 

slight amplification of the intensity was observed after 5m. 

 

 
Fig. 12: Intensity against Distance at 0° Incidence Angle - FARO 

 
 

The HDS7000 concrete intensity data was corrected for near distance effects by applying the 

correction method proposed in Fang et al. [31]. The intensity-distance relationship results after 

the correction was applied are as presented in Fig. 13 and it can be clearly seen that the 

correction is valid for distances greater than 1m as the rest of the scanning distances 

investigated follow the theoretical trend where a decreasing course for the intensity is observed 

over the whole range of scanning distances as the distance increases. Several researchers such 

as Kaasalainen et al. [27] have reported that scanning measurements taken at short ranges of 

1m for instance have their intensities reduced in order to avoid overexposure of the scanner’s 

photo-detector. In a similar vein Antilla et al. [18] used the HDS6000 scanner and reported that 

for the first 5m distances, the intensity is reduced so as to keep the level of the intensity within 

the realm of the sensor’s dynamic range and from 5m and above, the intensity roughly follows 

the range squared inverse as described in the radar range equation.  
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Fig. 13: Intensity against Distance at 0° Incidence Angle – HDS7000 

 

 

6.4 Intensity and Block Heated Temperature  

An analysis of the intensity recorded by the laser scanners for the heated blocks was carried out 

with the aim of studying the relationship between intensity and the temperature to which the 

blocks were heated. The data analysed and the results presented below are for blocks that were 

scanned at incidence angles less than 12° and with the scanning distance held fixed. Results of 

the relationship between intensity and the temperature to which the blocks were heated are as 

shown in Fig. 14 for the HDS7000 data and Fig. 15 for the FARO data. It can be observed that 

the intensity grows with the exposure temperature for the blocks. Several scanning distances 

were tested in an effort to find distances at which the relationship fits reasonably well and the 

result was such that the graphs (Fig. 14 and 15) converged to almost a straight line at a 

scanning distance of 5m for the HDS7000 scanner and 6m for the FARO scanner due to a 

reduction in the incidence angles (<12°) which was observed at these scanning distances. With 

reference to Fig. 14 and 15, the levels of fire-damaged concrete from the two scanners were 

assessed as shown in Table 6. 

 

 
Fig. 14: Intensity against Block Heated Temperature at 5m – HDS7000 
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Fig. 15: Intensity against Block Heated Temperature at 6m – FARO 

 

 

                              Table 6: Intensity Levels of Fire-Damaged Concrete 

Block Temperature Intensity Interval 

HDS7000 Scanner (5m) FARO Scanner (6m) 

Unheated 623 - 662 777 - 806 

250˚C 786 - 829 855 - 873 

400°C 833 - 881 888 - 922 

700˚C 1169 - 1225 1021 - 1053 

1000°C 2002 - 2019 1483 - 1502 

 

 

After correcting the HDS7000 concrete intensity data for near distance effects, the relationship 

between intensity and the temperature to which the blocks were heated was investigated for 

blocks that were scanned constantly at 0° incidence angle and only varying the distances. The 

results of this relationship (Fig. 16) showed that the intensity grows with the exposure 

temperature for the blocks. The highest intensities were recorded at a distance of 2m and then a 

decreasing course for the intensities was observed over the whole range of scanning distances 

as the distance increased. Lowest intensities were recorded at a distance of 1m and this was 

attributed to be due to the instrumental effects which cause an intensity reduction at near 

distances to avoid sensor overexposure as mentioned above. However, even at 1m distance it 

can be seen that the intensity increases as the exposure temperature increases for all the blocks.  

 

 
                                Fig. 16: Intensity against Block Heated Temperature at 0° Incidence Angle  
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6.5 Comparison of Unheated and Heated Concrete 

A comparison of the intensities of the concrete blocks before and after heating was investigated 

aimed at assessing if there were any differences and recognisable patterns rather trends that 

could be drawn in relation to exposure temperature that each block was heated to.  The results 

of the comparison are shown in Fig. 17 for the HDS7000 scanner data and in Fig. 18 for the 

FARO scanner data. The results presented are for scans that were taken at a scanning distance 

of 3m and at various incidence angles. It can clearly be seen from both Fig. 17 and 18 that the 

intensity values of the blocks increase after heating. Furthermore, an upward trajectory trend 

can be seen where the intensities of the blocks increase in relation to the increase in exposure 

temperatures of the blocks i.e. block 1 (250°C), block 2 (400°C), block 3 (700°C) and block 4 

(1000°C). The observations held true for all the incidence angles and other scanning distances 

investigated though an optimised scanning geometry produced better results.  
 

 
                              Fig. 17: Comparison of Unheated and Heated Concrete at 0° Incidence Angle - HDS7000 

 

                         

 
                                Fig. 18: Comparison of Unheated and Heated Concrete at 0° Incidence Angle – FARO 
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HDS7000 scanner for near distance effects. In a similar vein, Krooks et al. [26] also reported 

that distance and incidence angle effects on the intensity do not mix, implying that a correction 

of both effects is possible by using different models that are independent of the measurement.  

 

The relationship between intensity and the blocks which were heated to various temperatures 

was investigated by scanning the blocks at the respective distances and varying the incidence 

angles. The results of this relationship from both scanners showed that the intensity grows with 

the exposure temperature for the blocks. The results of the near distance corrected HDS7000 

concrete intensity data also showed that the intensity grows with the exposure temperature for 

the blocks when the scanning incidence angle is fixed and the distances are varied. The 

achieved positive results relating intensity to exposure temperature of concrete demonstrate 

that laser scanning can be applied to assess levels of fire-damaged concrete and provide an 

understanding of the condition of concrete in relation to the strength changes of concrete when 

it is heated to elevated temperatures. It is worth stating that the influence of colour change of 

the heated concrete specimens on the intensity return did play a role to a certain extent as 

colour change is as a result of concrete composition and heating the concrete to elevated 

temperatures. Laser scanner intensity gave better results compared to intensity of RGB 

channels in terms of relating intensity to concrete exposure temperature. However, the results 

of RBG image analysis have shown that RGB can indeed be useful in roughly assessing the 

maximum temperature attained in fire-damaged concrete. From a colourimetry point of view 

laser scanners have an advantage as most of them have an external or internal camera which 

can be used to capture concrete images if good resolution can be achieved. 

 

A comparison of heated and unheated concrete based on the laser scanner intensity to assess if 

there was a difference between heated and unheated concrete proved successful. Results from 

the two scanners clearly showed that there is a remarkable difference in the intensity values of 

heated and unheated concrete and it was observed that the intensity values increased with an 

increase in exposure temperature. The results of this comparative analysis are valuable in that 

they have shown that it is possible to use laser scanning to identify differences in the state of 

concrete before and after heating as a change detection technique. 

 

8. Conclusion and Recommendations 

A method that employs TLS for detection of fire-damaged concrete was investigated. The 

concrete specimens were exposed to various temperatures since the core issue to consider in an 

investigative experiment on the effects of fire-damaged concrete is the temperature attained 

during the heating period. The influences of scanning geometry on the laser returned intensity 

was examined. The following conclusions were drawn from the study: 

i. There is a positive correlation between the laser intensity and the various temperatures 

to which the blocks were heated. 

ii. The laser intensity recorded for heated concrete is higher than that of unheated concrete, 

and this difference is greater when the concrete exposure temperature is higher. This 

makes it possible to detect heated and unheated concrete. 

iii. Among other factors such as scanning geometry and instrumental effects, the concrete 

composition and the effects of heating concrete to elevated temperatures influence the 

resultant concrete physical features, colour change and the eventual laser returned 

intensity. 

iv. Although the laser scanners used in this study have different wavelengths, the results 

obtained in both cases clearly demonstrate the feasibility of using TLS to detect fire-

damaged concrete as a new technique. 

v. The study has also shown that indeed RGB data improve the visual identification of 

features and provide a rough idea of the concrete condition after a fire. However, 

instead of using a flatbed scanner, a laser scanner internal or external camera can be 

used to capture concrete images. The challenge with the laser scanner cameras as used 
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in this study is that they are of poor resolution for image analysis purposes. If the design 

of the laser scanner cameras can be of good resolution, then TLS can be applied as a 

standalone technique capable of detecting fire-damaged concrete from both analysis of 

intensity return and analysis of images captured by the scanner camera.  

vi. The proposed detection technique for fire-damaged concrete can work on both the TLS 

and Airborne Laser Scanning (ALS) platforms as the scanning principle is generally the 

same. Actually it would be very ideal for ALS in cases of detecting high-rise fire-

damaged concrete structures and there are proven intensity correction algorithms for 

ALS intensity data. 

 

A brief account on the areas planned for further research concerning the use of laser scanning 

to detect fire-damaged concrete is provided below: 

i. Replicate the same proposed detection technique but outdoor and at baselines longer 

than the ones tested in this study and use a spectrometer for extracting spectral 

characteristics of the concrete specimens so as to check the results at the wavelengths 

ranges of the laser scanners used. 

ii. Experiment the proposed detection technique with different types of concrete and with 

different physical characteristics for instance smooth, rough or painted concrete and 

also integrate methods of quantifying the colour development of heated concrete.  
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