- 1 Clinical outcomes and response to treatment of patients receiving topical treatments for 2 pyoderma gangrenosum: a prospective cohort study 3 Running Head: Pyoderma gangrenosum: a prospective cohort study 4 Kim S Thomas PhD1*, Anthony D Ormerod MD2, Fiona E Craig3, Nicola Greenlaw4, John Norrie5, Eleanor Mitchell 5 BA (Hons)⁶, James M Mason PhD⁷, Graham Johnston⁸, Shyamal Wahie⁹, and Hywel C Williams DSc¹ on behalf of 6 the UK Dermatology Clinical Trials Network's STOP GAP team. 7 ¹Centre of Evidence Based Dermatology, University of Nottingham, NG7 2NR, UK 8 ²Division of Applied Medicine, Aberdeen University, Aberdeen, AB24 2ZD, UK 9 ³Department of Dermatology, Aberdeen Royal Infirmary, Aberdeen, AB24 2ZD, UK 10 ⁴Robertson Centre for Biostatistics, University of Glasgow, Glasgow, G12 8QQ, UK 11 ⁵Centre for Healthcare Randomised Trials (CHaRT), Aberdeen University, Aberdeen, G12 8QQ, UK 12 ⁶Nottingham Clinical Trials Unit, University of Nottingham, Nottingham, NG7 2UH, UK 13 ⁷ School of Medicine, Pharmacy and Health, Durham University, Durham, TS17 6BH, UK 14 Department of Dermatology, Leicester Royal Infirmary, Infirmary Square, Leicester, LE1 5WW,UK 15 ⁹ County Durham & Darlington NHS Foundation Trust, Durham, Northumberland, UK 16 17 * Corresponding Author: KS Thomas Centre of Evidence Based Dermatology, King's meadow Campus, University 18 of Nottingham, Nottingham NG7 2NR <u>kim.thomas@nottingham.ac.uk</u> +44(0) 115 846 8632 19 20 Conflicts of interest: None 21 Funding: This publication presents independent research funded by the National Institute for Health Research 22 (NIHR) under its Programme Grants for Applied Research Programme (RP-PG-0407-10177). The views 23 expressed in this publication are those of the author(s) and not necessarily those of the NHS, the NIHR or the 24 Department of Health. 25 Copyright statement: This work is subject to Crown Copyright. 26 Word count: 2,475 27 Abstract: 194 28 Capsule summary: 49 29 Main text: 2600 30 Tables: 2 31 Figures: 4 32 Attachments: 33 1. Protocol and statistical analysis plan 34 2. STROBE checklist 35
- 37 Products Regulatory Agency: 19162/0213/001)

IRB statement: Ethics and regulatory approvals were obtained (ethics: 09/H0903/5, Medicines and Healthcare

- Trial registration: This study was conducted as part of an RCT of systemic treatments for pyoderma
- 39 gangrenosum (Controlled-Trials.com ISRCTN35898459 (registered 20th April 2009)

36

- 40 **Funding:** This publication presents independent research funded by the National Institute for Health Research
- 41 (NIHR) under its Programme Grants for Applied Research Programme (RP-PG-0407-10177). The views

42	expressed in this publication are those of the authors and not necessarily those of the NHS, the NIHR or the
43	Department of Health.
44	
45	Competing interests: All authors have completed the ICMJE uniform disclosure form at
46	www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; no
47	financial relationships with any organisations that might have an interest in the submitted work in the previous
48	three years; no other relationships or activities that could appear to have influenced the submitted work.
49	
50	The lead authors affirms that this manuscript is an honest, accurate, and transparent account of the study
51	being reported; that no important aspects of the study have been omitted; and that any discrepancies from
52	the study as planned (and, if relevant, registered) have been explained.

53 54

55

56

57

58

59 60

61

62

63 64

65

66

67

Capsule summary (50 words max)

What is already known on this topic

Pyoderma gangrenosum is a painful ulcerating disease. The current evidence base for treatment is very limited.

What this article adds to our knowledge

the study as planned (and, if relevant, registered) have been explained.

This prospective cohort study of topical therapies included 66 participants and is the largest study to date.

How this info impacts clinical practice

Topical therapies appear effective for patients with mild disease, but not all patients respond and recurrence is common.

69	Background: pyoderma gangrenosum (PG) is an uncommon dermatosis with a limited evidence base for
70	treatment.
71	Objective: to estimate the effectiveness of topical therapies in the treatment of PG.
72	Methods: prospective cohort study of UK secondary care patients with a clinical diagnosis of PG suitable for
73	topical treatment (recruited July 2009 to June 2012). Participants received topical therapy following normal
74	clinical practice (mainly Class I-III topical corticosteroids, tacrolimus 0.03% or 0.1%). Primary outcome: speed
75	of healing at 6 weeks. Secondary outcomes: proportion healed by 6 months; time to healing; global
76	assessment; inflammation; pain; quality-of-life; treatment failure and recurrence.
77	Results: Sixty-six patients (22 to 85 years) were enrolled. Clobetasol propionate 0.05% was the most commonly
78	prescribed therapy. Overall, 28/66 (43.8%) of ulcers healed by 6 months. Median time-to-healing was 145 days
79	(95% CI: 96 days, ∞). Initial ulcer size was a significant predictor of time-to-healing (hazard ratio 0.94 (0.88;
80	1.00); p = 0.043). Four patients (15%) had a recurrence.
81	Limitations: No randomised comparator
82	Conclusion: Topical therapy is potentially an effective first-line treatment for PG that avoids possible side-
83	effects associated with systemic therapy. It remains unclear whether more severe disease will respond
84	adequately to topical therapy alone.
85	
86	Key words: pyoderma gangrenosum, topical therapy, corticosteroid, tacrolimus, side-effects, cohort
87	

Abstract

88	Abbreviations
89	Pyoderma Gangrenosum (PG)
90	Randomised controlled trial (RCT)
91	EuroQol 5 Dimensions, 3 Levels (EQ-5D-3L)
92	Dermatology Life Quality Index (DLQI)
93	Tumour Necrosis Factor (TNF)
94	

95 Introduction 96 Pyoderma Gangrenosum (PG) is an uncommon, painful ulcerative inflammatory dermatosis that is associated with considerable morbidity^{1, 2} and a reported three-fold increased risk of death³. 97 98 The most commonly prescribed treatments for PG are systemic therapies (e.g. prednisolone, ciclosporin, 99 intravenous immunoglobulin or biologic therapies). Nevertheless, topical treatments (e.g. corticosteroids and 100 calcineurin inhibitors) have also been recommended for localised disease^{4,5} and may be a useful first-line 101 therapy for some patients. 102 We conducted a multi-centre prospective cohort study to investigate the efficacy of topical therapy as a first-103 line treatment for PG. This cohort study was conducted alongside a randomised controlled trial (RCT) of systemic 104 treatments for PG (STOP GAP Trial), in which oral prednisolone was compared to ciclosporin.⁶ 105 Our objective was to provide prospectively collected estimates of treatment response for patients receiving 106 topical therapy for their PG. 107 Methods 108 Ethics and regulatory approvals were obtained; participants gave written informed consent. Independent Trial 109 Steering Committee and Data Monitoring Committees provided oversight. 110 Study design 111 Prospective cohort study of patients with a clinical diagnosis of PG, for whom topical therapy was indicated. 112 Patients with more severe PG (requiring systemic therapy) were enrolled into the parallel RCT⁶ but were eligible 113 for inclusion in the topical therapy cohort study if systemic therapy was contra-indicated, or if patient preference 114 was to receive topical treatment. 115 Participants were enrolled for up to 6 months, or until the target PG ulcer had healed. Medications were 116 prescribed as per local practice at the recruiting hospital. 117 **Research questions** 118 1. What is the typical treatment response in patients for whom topical therapy is indicated? 119 2. What proportion of participants require escalation of treatment to systemic medication?

3. What is the impact of PG on patient-reported quality of life?

120

4. What factors predict treatment response?

121

122 **Participants** 123 Recruitment took place in 28 secondary care hospitals throughout the UK. Participants were identified from 124 dermatology, rheumatology, gastroenterology and general medicine clinics. 125 Participants were aged 18 years or older and had a clinical diagnosis of PG (confirmed by the recruiting 126 dermatologist, with biopsy to exclude alternative aetiologies if clinically indicated), and at least one measureable 127 ulcer. The decision over whether to treat with topical therapy or not was based on the views of the dermatologist 128 in discussion with patients. 129 Patients were excluded if they had pustular or granulomatous PG variants (as they may respond differently to 130 therapy and measurement of a single ulcer was not possible); if they had received oral prednisolone, ciclosporin 131 or intravenous immunoglobulin for the treatment of PG in the previous month, or were participating in another 132 clinical trial. 133 Ongoing treatment with systemic therapies for the management of underlying co-morbidities (e.g. rheumatoid 134 arthritis) was permitted. 135 Interventions 136 Patients received topically applied interventions for the treatment of PG. The dermatologist was free to 137 prescribe whichever therapy and dosage regimen they preferred according to local practice. In the UK, normal 138 practice would be to apply topical interventions to the inflammatory edge of the ulcer. Systemic therapies for 139 the treatment of PG were prohibited, but were continued if taken for other conditions. 140 **Assessments and outcomes** 141 Study visits took place at 2 weeks, 6 weeks and 6 months (or at time of healing if sooner). Other unscheduled 142 consultations took place as per normal practice. 143 A target lesion was used for outcome assessment. Lesion size was captured by the treating dermatologist based 144 on maximal longitudinal length and maximum perpendicular length, converted to area by the formula (length x 145 width x 0.785), which approximates an ellipse.

Outcomes: i) speed of healing at 6 weeks (primary outcome in-line with RCT primary outcome); ii) proportion healed by 6 months; iii) time to healing; iv) global assessment of improvement at 6 weeks and final visit; v) inflammation assessment at 6 weeks and final visit⁷; vi) pain in the first 6 weeks (scored daily 0 to 4); vii) quality-of-life (EuroQol 5 Dimensions, 3 Levels – EQ-5D-3L⁸ & Dermatology Life Quality Index - DLQl⁹. Healing was defined as the point at which dressings were no longer required. This was reported by the

participants, and a clinic visit was arranged to confirm healing as soon as possible thereafter. In cases where the date on which dressings were stopped was unavailable, healing was assumed to have taken place on the day that the ulcer was confirmed as healed by the recruiting dermatologist. Pain scores and use of dressings were collected using daily diaries.

Measures taken to control bias

This was an open study, with no control group. In order to mitigate the risk of bias, consecutive participants were enrolled into the study and followed up prospectively. Outcomes were assessed using standard methods and clinicians' and patients' views were compared where appropriate. Every effort was made to maintain follow-up of all participants.

Sample size

This was a pragmatic cohort study. No formal sample size calculation was performed, as this was a descriptive study without formal between-treatment comparisons.

Statistical analysis

The primary analysis included all participants who received at least one topical medication and had available data at both the baseline and the 6 week visit. Pre-defined sub-groups were i) participants who received clobetasol propionate 0.05%, and ii) participants who received a topical calcineurin inhibitor (tacrolimus or pimecrolimus).

Data are presented descriptively and data relating to participants of the STOP GAP RCT are included alongside those of the topical therapy cohort, but no formal comparisons have been made.

170 If a participant received more than one topical medication, they were included in all relevant study populations. 171 Participants who withdrew due to lack of treatment response, or who started a systemic medication during the 172 period of the study were classed as treatment failures for the topical medication. 173 Exploratory analyses adjusting for lesion size at baseline, presence of underlying autoimmune disease, age, 174 weight, sex and size of recruiting centre were conducted to determine possible factors associated with 175 treatment response. Linear regression models were used for continuous outcomes, logistic regression for binary 176 outcomes and cox proportional hazards for time to event outcomes. 177 **Results** 178 Participants and treatment allocation 179 Recruitment took place between July 2009 and June 2012. 180 In total, 67 participants were enrolled in the study, but one was subsequently excluded from the analysis 181 having received oral prednisolone for PG (Figure 1). 182 Forty-nine (74.2%) participants received clobetasol propionate 0.05% (Dermovate™, GlaxoSmithKline); 10 183 (15.2%) received tacrolimus 0.03% or 0.1% (Protopic*; Astellas Pharma); and eight received other topical 184 interventions including other topical corticosteroids (n=6), fludroxycortide impregnated tape (Haelan® Tape, 185 Typharm) (n=1), and lymecycline (Tetralysal® 300, Galderma) (n=1). One participant received both clobetasol 186 propionate and tacrolimus and was therefore included in both sub-groups. Five participants in the clobetasol 187 propionate group were taking concurrent anti-inflammatory/immune modifying medications for the treatment 188 of other conditions including azathioprine (n = 2), tetracyclines (n = 2) and anti-TNF (n = 1). 189 The reason for choosing systemic or topical therapy (and therefore eligibility for the cohort study or the RCT), 190 were: topical treatment failure - for those opting for systemic therapy (n=47); features of the disease (n=43); 191 and patient's preference (n=6). 192 Details of demographic and baseline characteristics are summarised (Table 1: Baseline characteristics of 193 participants in STOP GAP RCT and topical therapies cohort study 194 Table 2: Treatment response (RCT participants and observational cohort)

195	List of Figures
196	Figure 1: Participant flow
197	Figure 2: Kaplan-Meier plot of time to healing
198	Figure 3: Global treatment response at final visit (clinician assessed)
199	Figure 4: Global treatment response at final visit (patient assessed)
200	
201). The majority of participants were identified through dermatology services (47; 71.2%); others were
202	identified from gastroenterology (7; 10.6%), rheumatology (1; 1.5%), general medicine (2.0; 3%) and other
203	sources (9; 13.6%).
204	Baseline characteristics for participants in the cohort study were broadly similar to those enrolled in the
205	parallel RCT, with the exception that the mean lesion size was smaller (4.7cm² versus 9cm²), the mean number
206	of ulcers was lower (1.6 versus 2.4), and fewer participants had had PG previously (18% versus 31%) (Table 1).
207	Adherence to medication
208	Only 12/66 (18.2%) participants provided data on adherence to their prescribed treatments at the end of the
209	study. Nevertheless, the levels of treatment response achieved would suggest that the participants were using
210	their medications broadly as prescribed. Nine participants in the clobetasol propionate group used systemic
211	medication for comorbidities during the study (azathioprine n=2; anti-TNF n=1; tetracyclines n=2).
212	Treatment response
213	Details of the clinical outcomes are summarised (Table 2).
214	Mean speed of healing was -0.1 cm ² per day (SD 0.3). This is approximately half that observed in the RCT patient
215	receiving systemic therapy, but the method of assessment was different for the two studies (physical
216	measurements by clinician versus planimetry from digital images), and so direct comparison is difficult. The
217	mean change from baseline in area of the lesion at the final visit was -4.2 (SD 11.5)cm², with similar change
218	reported in the clohetasol and tacrolimus sub-groups (-4.0 (SD 11.9) and -3.9 (SD 6.0), respectively)

Overall, 28 (43.8%) participants healed on topical therapy alone within the 6-month study period. Twenty two (33.3%) required systemic therapy, and of these 13 (59.1%) went on to be enrolled into the RCT (Figure 1). For

those that entered the RCT, 8 (61.5%) healed by 6 months, with 3 of the 13 (23.1%) healing by 6 weeks.

Ulcers healed in a median duration of 145 days (95% CI: 96 days, ∞) (Table 2, Figure 2). Cox proportional hazards model suggested that size of initial lesion was an important predictive factor in determining time to healing (HR 0.94 (95% CI: 0.88, 1.00); p = 0.043). Presence of underlying autoimmune disease was not predictive (HR 0.90 (95% CI: 0.41, 1.95); p = 0.786).

Global disease severity, as reported by clinicians and patients, is summarised (Figure 3, Figure 4). Self-reported pain gradually reduced during the first 6 weeks of treatment, and quality of life scores improved for both disease specific (DLQI) and general health status (EQ-5D-3L) questionnaires (Table 2). No covariates were predictive of scores at final visit for any of these outcomes, other than baseline scores for DLQI and EQ-5D VAS (DLQI estimate -0.47 (95% CI -0.77, -0.17); p = 0.003. EQ-5D VAS estimate -0.40 (95% CI: -0.65, -0.15); p = 0.003).

Recurrence

Of the 28 participants whose ulcer had healed, 27 had recurrence data available (minimum follow-up from time of healing 5.5 months; maximum follow-up 37.2 months). Overall 4/27 (14.8%) participants had a recurrence subsequent to their initial episode.

Discussion

Main findings

This prospective cohort study of patients receiving topical therapy for the treatment of PG suggests that many patients with limited PG can be managed effectively with topical therapy alone. For almost half of the participants, healing was achieved within the 6-month study window and most of these had healed within 2 months. This is similar to the proportions healed in the STOP GAP RCT, where again roughly half of the ulcers had healed by 6 months. Care should be taken when comparing healing rates between the RCT and the cohort study as participants in the RCT had more severe disease, as demonstrated by the increased number of ulcers, larger ulcer size at baseline, and greater impact on quality of life. Of those who failed to heal on topical therapy, one third subsequently received systemic therapy; suggesting that not all patients can be adequately treated with topical therapy alone.

The most important predictor of time to healing was size of the ulcer at presentation. This is consistent with previous findings¹⁰.

Given the increased mortality risk for patients with PG compared to patients with inflammatory bowel disease and apparently healthy individuals,³ it is important to evaluate the role of topical therapies for the management of PG. Similar concerns about increased mortality and morbidity in bullous pemphigoid patients (that could be partly due to systemic therapies such as prednisolone), led to an RCT by Joly *et al.* who found that mortality was reduced in those treated with potent topical steroids compared to those receiving systemic steroids.¹¹

The potential impact of PG on patients' quality of life is high. Baseline EQ-5D-3L scores of 0.59 (cohort study) and 0.48 (RCT) are comparable to patients with mild to severe heart failure; where EQ-5D-3L scores of 0.78 (SD 0.18) to 0.51 (SD 0.21) respectively have been reported.¹²

One of the objectives of this study was to maintain contact with potential trial participants in order to improve recruitment into the RCT. In this regard, the cohort study was extremely effective, and resulted in an additional 13/121 (11%) patients being enrolled into the RCT. For trials of rare conditions, where the evidence base is limited, the added complexities and expense of running a parallel study of this kind can often be warranted.¹³

Strengths and limitations

This multi-centre study is much larger than any of the previously published prospective cohort studies of PG patients.^{4, 5, 14} Clinicians prescribed topical medication in line with local practice, but treatment allocations were not randomised. As a result, it is not possible to make formal comparison of different topical treatments such as corticosteroids versus tacrolimus. Data on sub-groups of patients are presented for interest, but should be interpreted cautiously. Tacrolimus may be an effective treatment for PG, but further evaluation in comparison to topical corticosteroids is required. Very little is known about the natural history of PG if left untreated. In the absence of placebo control arm, it is not possible to say whether or not the lesions would have healed without intervention, although clinical experience would suggest that this is unlikely.

Generalisability

This was a pragmatic study that reflected current practice. For an uncommon condition such as PG it was necessary to recruit across many hospitals, which aids the generalisability of the results. Nevertheless, this cohort of patients was recruited alongside an RCT of systemic treatments for PG and this may have impacted on the

273 type of patients agreeing to take part. Patients with more severe disease were randomised into the RCT and 274 those with milder or more localised disease entered the cohort study. 275 **Clinical conclusions** 276 Mild PG may be controlled effectively using topical agents without incurring the side-effects associated with 277 systemic treatments. The importance of ulcer size on presentation in determining treatment response, and the 278 relatively high recurrence rates are findings that will assist clinicians in optimising the management of PG, and 279 in managing patients' expectations with regards to the potential effectiveness of treatments. 280 281 **Contributors** 282 The UK Dermatology Clinical Trials Network's STOP GAP Trials team consisted of: 283 284 Trial Management Group: Julie Barnes, Brian Barnes, Fiona Craig, Katharine Foster, Nicola Greenlaw, Ellie 285 Harrison, Sally Kucyj, Alan Maplethorpe, James Mason, Eleanor Mitchell, John Norrie, Anthony Ormerod, Aisha 286 Shafayat, Daniel Simpkins, Kim Thomas, Diane Whitham and Hywel Williams 287 288 Recruiting investigators: 289 Aberdeen Royal Infirmary, NHS Grampian: Anthony Ormerod (PI), Fiona Craig, Linda Lawson 290 Aneurin Bevan Health Board: Alex Anstey (PI), Catherine Watkins, Sarah Mitchell, Richard Goodwin, Cilla Benge 291 Basildon & Thurrock University Hospitals NHS Foundation Trust: Gosia Skibinska, (PI), N Ariffin, Janice Armitt, 292 Nhlanhla Mguni, Maxwell Masuku, Kerry Goodsell, Linda Johnson 293 Cardiff & Vale University Health Board: John Ingram (PI), Girish Patel, Mabs Chowdhury, Richard Motley, Anne 294 Thomas, Colin Long, Anew Morris, Vincent Piguet, Manju Kalavala, Ru Katugampla 295 City Hospitals Sunderland NHS Foundation Trust: Catherine Blasdale (PI), Stephanie Lateo, Neil Rajan, Anne 296 Thomson, Sivakumar Natarajan 297 County Durham & Darlington NHS Foundation Trust: Shyamal Wahie (PI), Therese Sripathy, Maneesha Vatve, 298 Vrinda Bajaj, Anne Thomson, Keith Freeman, Mary Carr 299 Derby Hospitals NHS Foundation Trust: Adam Ferguson (PI), Katherine Riches

300	East Kent Hospitals University NHS Foundation Trust: Susannah Baron (PI), Claire Fuller, Anthea Potter, Laura
301	Brockway, Ashley Cooper, Susan Thompson, Emilia Duarte-Williamson
302	Guys' & St Thomas' NHS Foundation Trust: Catherine Smith (PI), Gemma Minifie, Naomi Hare, Kate Thornberry,
303	Shika Gupta, Sinead Langan
304	Harrogate & District NHS Foundation Trust: Alison Layton (PI), Angela Wray, Benjamin Walker, Gayle Law,
305	Elizabeth Marshall
306	Hull & East Yorkshire Hospitals NHS Trust: Shernaz Walton (PI), Katherine Ashton, Angela Oswald, Deborah
307	Graham, Peter Jones, Vanessa Smith
308	Hywel Dda Health Board: Debbie Shipley (PI), Claire Duggan, Sarah Jones, Carol Thomas, Sally-Ann Rolls, Emma
309	Veysey
310	Newcastle Upon Tyne Hospitals NHS Foundation Trust: Simon Meggitt (PI)
311	Norfolk & Norwich University Hospitals NHS Foundation Trust: Nick Levell (PI), Kevin Lee, Pariyawan Rakvit,
312	George Millington, Karen Banks-Dunnell, Natasha Chetty, Clive Grattan, Syed Shah, Donna Butcher
313	North Cumbria University Hospitals NHS Trust: Marinela Nik (PI), Kathleen Gilbanks, Neil Cox
314	Nottingham NHS Treatment Centre (Circle Partnership UK): John English (PI), Ruth Murphy, William Perkins,
315	Hywel Williams, Sheelagh Littlewood, Jan Bong, Moona Malik, Jonathan Batchelor, Catriona Wootton, Sue
316	Davies-Jones, Joanne Llewellyn, Suzanne Cheng, Maulina Sharma, Janet Angus, Sandeep Varma, Stuart Cohen
317	Nottingham University Hospitals NHS Trust: John English (PI), Ruth Murphy, William Perkins, Hywel Williams,
318	Sheelagh Littlewood, Jan Bong, Moona Malik, Jonathan Batchelor, Catriona Wootton, Sue Davies-Jones, Joanne
319	Llewellyn, Suzanne Cheng, Maulina Sharma, Janet Angus, Sandeep Varma, Stuart Cohen
320	Oxford University Hospitals NHS Trust: Graham Ogg (PI), Susan Burge, Vanessa Venning, Susan Cooper, Tess
321	McPherson, Lisa Matter
322	Royal Devon & Exeter NHS Foundation Trust: Christopher Bower (PI), Robert James
323	Sandwell & West Birmingham Hospitals NHS Trust: Shireen Velangi (PI), Weronika Szczecinska, Tinomuda
324	Shumba
325	Sherwood Forest Hospitals NHS Foundation Trust: Jane Ravenscroft (PI), John English, Jan Bong, Azaharry
326	Yaakub, Hong Trinh
327	South London Healthcare NHS Trust: Anna Chapman (PI), Natalie Miller, Yana Estfan, Gwendoline Reeves
328	Taunton & Somerset NHS Foundation Trust: Rachel Wachsmuth (PI), Victoria Lewis

329	The Royal Liverpool & Broadgreen University Hospitals NHS Trust: Hazel Bell (PI), Richard Azurdia, Maeve
330	Walsh, Caroline Angit, Kok Ngan, Anea Young, Julie Murgaza, Paula Taylor, Hamish Hunter
331	University Hospitals Birmingham NHS Foundation Trust: Agustin Martin-Clavijo (PI), Renuga Raghavenan, Lucy
332	Evriviades, Helen Lewis
333	University Hospitals Bristol NHS Foundation Trust: Giles Dunnill (PI), Adam Bray, David De Berker
334	University Hospitals of Leicester NHS Trust: Graham Johnston (PI), John McKenna, Catherine Shelley,
335	Mohammad Ghazavi, Alison Hill
336	Weston Area Health NHS Trust: Maggie Kirkup (PI), Glenn Saunders, Hugh Lloyd-Jones, Dawn Simmons, Donna
337	Cotterill
338	
339	Centres that recruited into the STOP GAP RCT, but did not recruit participants to the cohort study:
340	Barts & The London NHS Trust: Frances Lawlor (PI)
341	Betsi Cadwaladr University Health Board: Diane Williamson (PI), Richard Williams, Ewa Turczanska, Alison
342	Devine, Angela Steen, Val Loftus, Corrina Marsden
343	Brighton & Sussex University Hospitals NHS Trust: Paul Farrant (PI), Mary Flowerdew, Wendy Harman, Lindsay
344	Atkinson, Jessie Felton, Claudia deGiovanni
345	Chesterfield Royal Hospital NHS Foundation Trust: Francisca Ezughah (PI), Graham Colver, Amanda Whileman,
346	Amanda Gascoigne
347	NHS Lanarkshire Monklands Hospital: Christopher Evans (PI), Suzanne Clements, Gayle Moreland, Margaret
348	Nisbet
349	Northern Devon Healthcare NHS Trust: Karen Davies (PI), Nick Lawton
350	Raigmore Hospital, NHS Highland: James Vestey (PI), Paula Martin, Sue Ross, Charlotte Barr
351	Royal Berkshire NHS Foundation Trust: Daron Seukeran (PI), Helena Malhomme (PI), Jennie King, Janet Dua,
352	Karen Wilmott
353	South Devon Healthcare NHS Foundation Trust: Alison Clegg (PI), Jill Adams, Sarah Burns, Tessa Frost
354	Whipps Cross University Hospital NHS Trust: Anthony Bewley (PI), Michael Galivo, Jane Watts, Karen Gibbon,
355	Anshoo Sahota
356	York Teaching Hospital NHS Foundation Trust: Calum Lyon (PI), Jill Green, Julia Stainforth
357	

358	
359	
360	Acknowledgements
361	
362	We are grateful to all of the patients who participated in the STOP GAP trial and the hospitals, doctors and
363	nurses who ensured that the study was a success (see full list of contributors).
364	
365	We are also indebted to our independent oversight committees, who guided this work with professionals and
366	care. Trial Steering Committee – independent members: John Ingram, Calum Lyon, Sarah Meredith, Paul
367	Mussell, Frank Powell and Daniel Wallach. Data Monitoring Committee: Angela Crook, Alison McDonald and
368	Julie Schofield
369	
370	The trial was managed by the Nottingham Clinical Trials Unit, the UK Dermatology Clinical Trials Network, the
371	Robertson Centre for Biostatistics and the Centre for Healthcare Randomised Trials (CHaRT) in Aberdeen.
372	
373	Research nurses and administrators were provided through the National Institute for Health Research (NIHR)
374	Clinical Research Networks in England, CRC Cymru Research Network in Wales, and NHS Research Scotland
375	(NRS) for Scotland.
376	
377	Writing assistance was provided by Dr Natasha Rogers, and additional statistical support in preparation of this
378	paper was provided by Dr Sally Wilkes.
379	

380	List of Tables
381	Table 1: Baseline characteristics of participants in STOP GAP RCT and topical therapies cohort study
382	Table 2: Treatment response (RCT participants and observational cohort)
383	List of Figures
384	Figure 1: Participant flow
385	Figure 2: Kaplan-Meier plot of time to healing
386	Figure 3: Global treatment response at final visit (clinician assessed)
387	Figure 4: Global treatment response at final visit (patient assessed)
388	
389	

Table 1: Baseline characteristics of participants in STOP GAP RCT and topical therapies cohort study

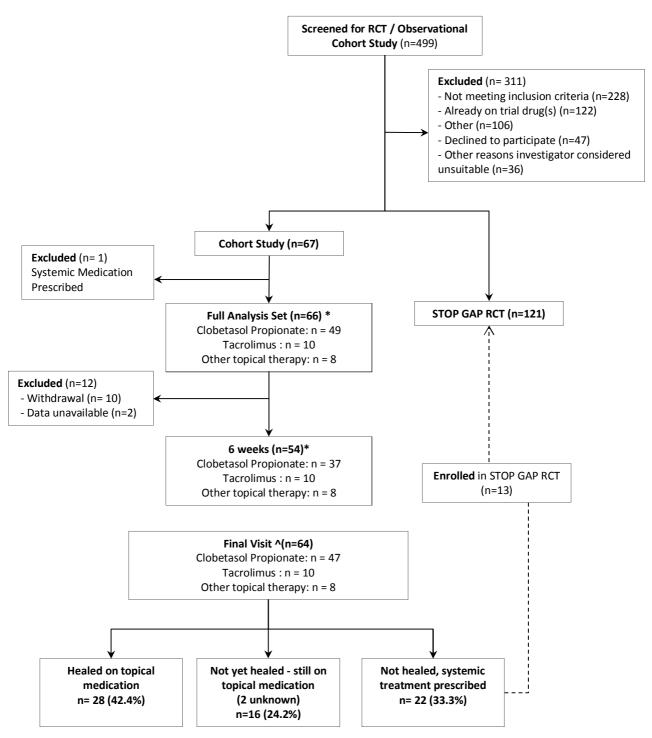
		RCT	Cohort study	Cohort sul	b-groups
		n= 112	n = 66	clobetasol propionate n=49	tacrolimus n= 10
Demographics		Ţ			_
Age: years Mean (SI	D)	54.4 (16.3)	57.3 (17.3)	57.5 (17.9)	53.0 (13.0)
Sex: n (%)	Female	73 (65.2)	44 (66.7)	34 (69.4)	6 (60.0)
Ethnicity: n (%)	White	108 (96.4)	64 (97.0)	47 (95.9)	10 (100.0)
Weight: kg Mean (S	D)	90.7 (25.8)	80.4 (20.3)	77.8 (17.2)	86.2 (29.7)
Medical History					
	Crohn's Disease	8 (7.1)	6 (9.1)	2 (4.1)	2 (20.0)
	Ulcerative colitis	15 (13.4)	8 (12.1)	7 (14.3)	1 (10.0)
	Rheumatoid arthritis	8 (7.1)	2 (3.0)	2 (4.1)	0 (0.0)
	Other inflammatory arthritis	6 (5.4)	5 (7.6)	3 (6.1)	2 (20.0)
Underlying co- morbidities: n (%)	Monoclonal gammopathy	0 (0.0)	1 (1.5)	1 (2.0)	0 (0.0)
morbialties. II (%)	Myeloma	0 (0.0)	1 (1.5)	1 (2.0)	0 (0.0)
	Haematological malignancy	0 (0.0)	1 (1.5)	1 (2.0)	0 (0.0)
	Other malignancy	4 (3.6)	6 (9.1)	5 (10.2)	0 (0.0)
	Diabetes	13 (11.6)	7 (10.6)	5 (10.2)	2 (20.0)
	Renal impairment	2 (1.8)	3 (4.5)	2 (4.1)	0 (0.0)
	Epilepsy	1 (0.9)	1 (1.5)	1 (2.0)	0 (0.0)
Characteristics of Po	G				
	Classical	97 (86.6)	55 (83.3)	43 (87.8)	9 (90.0)
Type of PG: n (%)	Cribriform	6 (5.4)	1 (1.5)	0 (0.0)	0 (0.0)
Type of Pd. II (%)	Peristomal	4 (3.6)	6 (9.1)	3 (6.1)	1 (10.0)
	Bullous	1 (0.9)	2 (3.0)	2 (4.1)	0 (0.0)
	Unsure	4 (3.6)	2 (3.0)	1 (2.0)	0 (0.0)
Previous episode of PG:	Yes n (%)	31 (27.7)	18 (27.3)	12 (24.5)	3 (30.0)
Area of target	n	112	65	48	10
lesion: cm ²	Median (Q1; Q3)	9.0 (3.2, 24.4)	4.7 (2.4; 11.0)	4.4 (1.6; 10.5)	6.8 [2.8, 11.0]
Location of	Upper limb	3 (2.7)	7 (10.6)	6 (12.2)	0 (0.0)
lesion: n (%)	Lower limb	75 67.0)	39 (59.1)	29 (59.2)	6 (60.0)
	Other	34 (30.4)	20 (30.3)	14 (28.6)	4 (40.0)
Number of lesions		n=110	n = 65	(n = 48)	(n=10)
	Mean (SD)	2.4 (2.1)	1.6 (1.2)	1.6 (1.1)	1.8 (1.1)
	n	112	66	49	10
Erytherma	None	6 (5.4)	0 (0.0)	0 (0.0)	0 (0.0)
n (%)	Slight	5 (4.5)	9 (13.6)	10 (20.4)	1 (10.0)
	Moderate	36 (32.1)	10 (15.2)	15 (30.6)	8 (80.0)
	Severe	39 (34.8)	32 (48.5)	16 (32.7)	1 (10.0)
	Very Severe	26 (23.2)	15 (22.7)	8 (16.3)	0 (0.0)
	n=	112	65	49	10
Border Elevation	None	5 (4.5)	14 (21.5)	6 (12.2)	0 (0.0)
n (%)	Slight	53 (47.3)	23 (35.4)	24 (49.0)	1 (10.0)

	Moderate	36 (32.1)	23 (35.4)	17 (34.7)	8 (80.0)
	Severe	13 (11.6)	4 (6.2)	1 (2.0)	1 (10.0)
	Very Severe	5 (4.5)	1 (1.5)	1 (2.0)	0 (0.0)
Exudate	n=	112	66	49	10
n (%)	None	4 (3.6)	8 (12.1)	9 (18.4)	0 (0.0)
	Slight	16 (14.3)	13 (19.7)	12 (24.5)	1 (10.0)
	Moderate	59 (52.7)	27 (40.9)	22 (44.9)	8 (80.0)
	Severe	15 (13.4)	11 (16.7)	4 (8.2)	1 (10.0)
	Very Severe	18 (16.1)	7 (10.6)	2 (4.1)	0 (0.0)

Table 2: Treatment response (RCT participants and cohort participants)

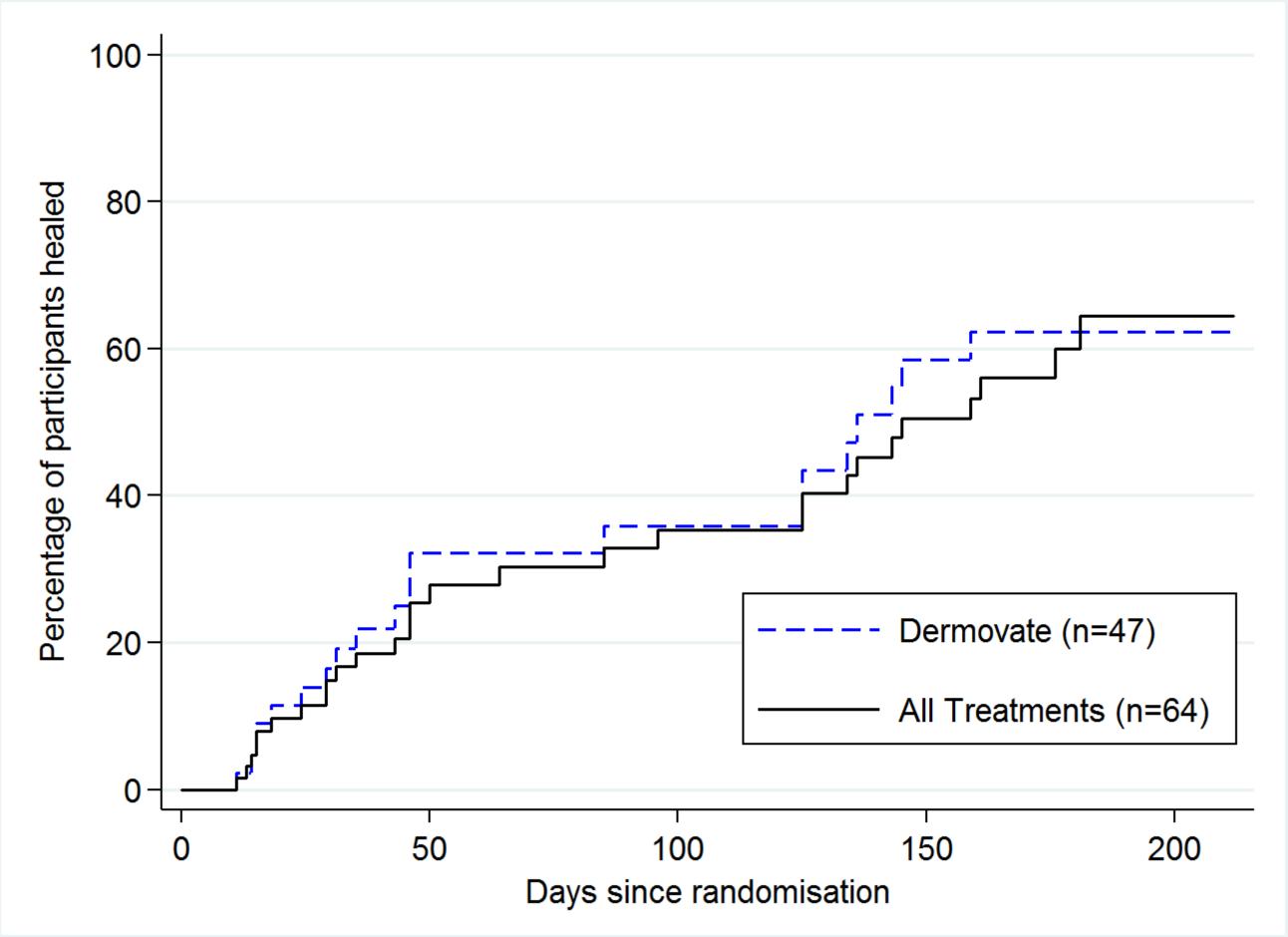
			Sub-groups	
	RCT participants	All cohort participants	clobetasol propionate	tacrolimus
	n=112	n = 66	n=49	n= 10
Speed of healing	n= 108	n = 54	n = 37	n = 10
Mean (SD) cm ² /day	-0.2 (0.8)	-0.1 (0.3)	-0.1 (0.2)	-0.1 (0.1)
% healed by final visit	n=112	n=64	n=47	n= 10
(up to 6 months)				
n (%)	53 (47.3)	28 (43.8)	20 (42.6)	5 (50.0)
Time to healing (days)	n=112	n=64	n=47	n= 10
Median (95% CI)	169 days (113; ∞)	145 days (96; ∞)	136 days (46; ∞)	161 days (13; ∞)
Area of lesion: cm ² *	n = 108	n=55	n=38	n= 10
Baseline: median (Q1; Q3)	9.0 (3.2; 24.8)	5.9 (1.8; 13.6)	6.4 (1.6; 14.0)	6.8 (2.8; 11.0)
Final visit: median (Q1; Q3)	0.0 (0.0; 8.1)	0.0 (0.0; 9.0)	0.0 (0.0; 9.0)	1.2 (0.0; 3.5)
Mean change from baseline at final visit (SD)	-9.1 (51.1)	-4.2 (11.5)	-4.0 (11.9)	-3.9 (6.0)
Median change (Q1; Q3)	-5.0 (-15.8; -1.5)	-3.4 (-8.7; -0.3)	-1.7 (-7.4; -0.2)	-3.3 (-8.5; -0.3)
Resolution of inflammation#	n=107	n=54	n=49	n= 10
6 weeks: n (%)	11 (10.3)	8 (14.8)	6 (16.2)	0 (0.0)
	n= 108	n=55	n=38	n=10
Final visit: n (%)	20 (18.5)	12 (21.8)	10 (26.3)	1 (10.0)
AUC for weekly pain in 1st six weeks (range 0 to 20);	n=77	n=37	n=24	n= 7
high score = worse				
Mean (SD)	7.6 (5.2)	5.4 (5.2)	5.6 (5.2)	7.3 (6.3)
DLQI (range 0 to 30); high score = worse	n = 111	n=66	n=49	n= 10
Baseline: mean (SD)	11.7 (8.2)	8.4 (6.0)	8.5 (6.0)	8.8 (4.6)
	n = 66	n=49	n=32	n= 10
Final visit: mean (SD)	5.5 (7.2)	6.2 (6.8)	7.6 (7.5)	4.6 (5.4)
EQ-5D* (range 0 to 1); high score = better	n=108	n= 66	n= 49	n= 10
Baseline: mean (SD)	0.48 (0.4)	0.59 (0.3)	0.60 (0.3)	0.51 (0.3)
	n = 69	n= 51	n= 34	n= 10
Final visit: mean (SD)	0.71 (0.4)	0.69 (0.3)	0.65 (0.3)	0.73 (0.3)
EQ-5D VAS (range 0 to 100); high score = better	n =110	n= 66	n= 49	n= 10

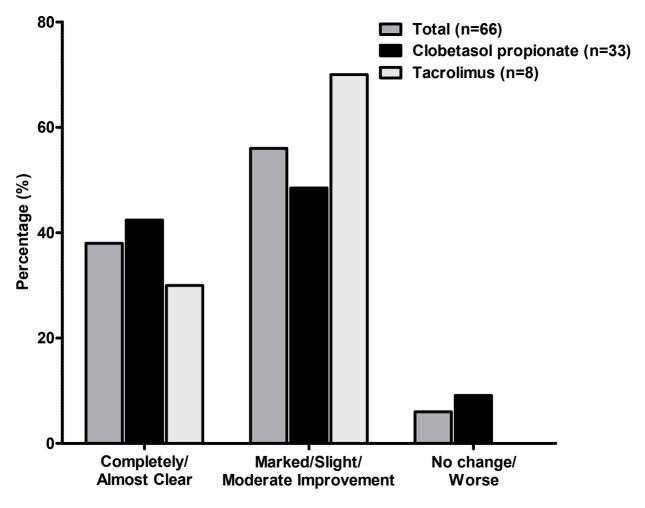
Recurrence (in those who had healed by 6 months) ^{\$} n (%)	n=52 15 (28.8)	n=27 4 (14.8)	n=19 4 (21.1)	n= 5 0 (0.0)
Final visit: mean (SD)	72.1 (21.2)	73.6 (20.5)	69.3 (22.2)	78.2 (13.1)
:	n = 70	n= 50	n= 33	n= 10
Baseline: mean (SD)	62.0 (21.8)	67.0 (20.4)	65.6 (21.9)	64.4 (15.9)

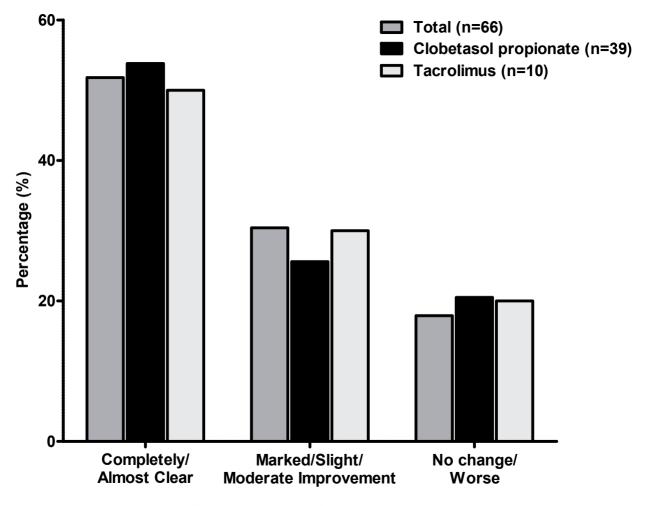

Assessed by clinician, resolution of inflammation defined as erythema and border elevation reduced to "none" – as per Foss ⁷. \$ Minimum follow-up after healing: RCT (0 to 40.3 months); cohort (5.5 months to 37.2), depending on when recruited. * Captures health utility based on responses (0 to 2) for mobility, self-care, usual activities, pain/discomfort, anxiety/depression.

References

- Binus AM, Qureshi AA, Li VW, Winterfield LS. Pyoderma gangrenosum: a retrospective review of patient characteristics, comorbidities and therapy in 103 patients. Br J Dermatol. 2011;165(6):1244-50.
- 2. Brooklyn T, Dunnill G, Probert C. Diagnosis and treatment of pyoderma gangrenosum. BMJ. 2006;333(7560):181-4.
- 3. Langan SM, Groves RW, Card TR, Gulliford MC. Incidence, mortality, and disease associations of pyoderma gangrenosum in the United Kingdom: a retrospective cohort study. J Invest Dermatol. 2012;132(9):2166-70.
- Marzano AV, Trevisan V, Lazzari R, Crosti C. Pyoderma gangrenosum: study of 21 patients and proposal of a 'clinicotherapeutic' classification. J Dermatolog Treat.
 2011;22(5):254-60.
- 5. Lyon CC, Stapleton M, Smith AJ, Mendelsohn S, Beck MH, Griffiths CE. Topical tacrolimus in the management of peristomal pyoderma gangrenosum. J Dermatolog Treat. 2001;12(1):13-7.
- Ormerod AD, Thomas KS, Craig FE, et al. Comparison of the two most commonly used treatments for pyoderma gangrenosum: results of the STOP GAP randomised controlled trial. BMJ. 2015;350:h2958.
- 7. Foss CE, Clark AR, Inabinet R, Camacho F, Jorizzo JL. An open-label pilot study of alefacept for the treatment of pyoderma gangrenosum. J Eur Acad Dermatol Venereol. 2008;22(8):943-9.
- 8. Kind P, Dolan P, Gudex C, Williams A. Variations in population health status: results from a United Kingdom national questionnaire survey. BMJ. 1998;316(7133):736-41.
- 9. Finlay AY, Khan GK. Dermatology Life Quality Index (DLQI)--a simple practical measure for routine clinical use. Clin Exp Dermatol. 1994;19(3):210-6.


- 10. Craig F, Thomas KT, Williams H, et al. Treatments and predictors of response in pyoderma gangrenosum: a retrospective review of 136 cases. in press.
- 11. Joly P, Roujeau JC, Benichou J, et al. A comparison of two regimens of topical corticosteroids in the treatment of patients with bullous pemphigoid: a multicenter randomized study. J Invest Dermatol. 2009;129(7):1681-7.
- 12. Dyer MT, Goldsmith KA, Sharples LS, Buxton MJ. A review of health utilities using the EQ-5D in studies of cardiovascular disease. Health Qual Life Outcomes. 2010;8:13.
- Recruitment into trials of rare conditions experiences from the STOP GAP trial.
 MRC Trials Methodology Conference; 2011 4th -5th Oct 2011; Bristol.
- 14. Rice SA, Woo PN, El-Omar E, Keenan RA, Ormerod AD. Topical tacrolimus 0.1% ointment for treatment of cutaneous Crohn's Disease. BMC Res Notes. 2013;6:19.


Figure 1: Participant flow observational study


Could be receiving more than one treatment

^ Number of patients who had information on whether the lesion had healed at any point during the study up to 6 months after randomisation (main Secondary outcome of time to healing)

Clinician Assessed Improvement

Patient Assessed Improvement