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Abstract: Remotely sensed imagery is an attractive source of information for mapping and monitoring
land cover. Fine spatial resolution imagery is typically acquired infrequently, but fine temporal
resolution systems commonly provide coarse spatial resolution imagery. Sub-pixel land cover
change mapping is a method that aims to use the advantages of these multiple spatial and temporal
resolution sensing systems. This method produces fine spatial and temporal resolution land cover
maps, by updating fine spatial resolution land cover maps using coarse spatial resolution remote
sensing imagery. A critical issue for sub-pixel land cover change mapping is downscaling coarse
spatial resolution fraction maps estimated by soft classification to a fine spatial resolution land
cover map. The relationship between a historic fine spatial resolution map and a contemporary
fine spatial resolution map to be estimated at a more recent date plays an important role in the
downscaling procedure. A change strategy based on the assumption that the change for each land
cover class in a coarse spatial resolution pixel is unidirectional was shown to be a promising means
to describe this relationship. This paper aims to assess this change strategy by analyzing the factors
that affect the accuracy of the change strategy, using six subsets of the National Land Cover Database
(NLCD) of USA. The results show that the spatial resolution of coarse pixels, the time interval of the
previous fine resolution land cover map and the current coarse spatial resolution images, and the
thematic resolution of the used land cover class scheme have considerable influence on the accuracy
of the change strategy. The accuracy of the change strategy decreases with the coarsening of spatial
resolution, an increase of time interval, and an increase of thematic resolution. The results also
indicate that, when the historic land cover map has a 30 m resolution, like the NLCD, the average
accuracy of the change strategy is still as high as 92% when the coarse spatial resolution data used
had a resolution of ~1000 m, confirming the effectiveness of the change strategy used in sub-pixel
land cover change mapping for use with popular remote sensing systems.

Keywords: sub-pixel mapping; spatial scale; temporal change pattern; land cover change;
change strategy

1. Introduction

Land cover change has been considered as one of the most important drivers of the global
environmental change [1–3]. Timely and accurate monitoring of these changes is crucial for many
scientific research fields such as ecology, agriculture and hydrology. Presently, it has been widely
recognized that remote sensing is an attractive source of information on land cover change [4–6].
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Remote sensing provides the ability to acquire images of the Earth’s surface at a range of scales,
notably in the spatial and temporal domains. Systems such as the Moderate Resolution Imaging
Spectroradiometer (MODIS) provide data at a fine temporal resolution but coarse spatial resolution,
while others such as Landsat sensors provide imagery with a relatively fine spatial but coarse temporal
resolution. By using a variety of remote sensing systems it should be possible to use multi-scale data
to monitor land cover at fine spatial and temporal scales [7]. Generally, once a baseline fine spatial
resolution land cover map has been generated from fine spatial resolution images, it then should be
possible to update it in a timely manner through the use of coarse spatial resolution images, if the
limitation of their coarse spatial resolution can be reduced.

When coarse spatial resolution remote sensing images are used to generate land cover data,
a critical issue is the mixed pixel problem [8–11]. Because the sensor’s instantaneous field-of-view
(IFOV) includes more than one land cover class on the ground, the spectral characteristics of mixed
pixels are not representative of any single land cover class. In this situation, a mixed pixel cannot be
appropriately represented by conventional hard classification technologies that consider a pixel to be
a unit comprised of a single land cover class. Soft classification can overcome this problem to some
extent, by indicating the class composition (e.g., the areal percentage cover of land cover classes in each
coarse resolution pixel) [12–14]. The comparison of a time series of soft classifications allows a richer
representation of land cover change, as it allows fractional land cover conversions and modifications
to be characterized. However, a fuller appreciation of land cover change needs not only information
on the quantity of land cover class coverage in the area represented by pixels but also on the spatial
configuration of landscapes in the region mapped [15,16]. In practice, when a coarse spatial resolution
image is used to detect land cover change by comparing with a previous fine spatial resolution image,
a popular method is applying soft classification on the coarse spatial resolution image and spatially
degrading the fine spatial resolution image to generate two coarse spatial resolution area proportion
images. By comparing the bi-temporal area proportion images, the change in the class proportions of
each coarse spatial resolution pixel is detected. However, with this approach, only the coarse spatial
resolution area change instead of the fine spatial resolution location change was detected, and the
spatial information included in the fine spatial resolution image is not used. Thus, in order to better
understand the nature and impacts of land cover change, it is necessary to determine the spatial
configuration of land cover classes at the fine spatial resolution.

In the remote sensing community, the method used to determine the spatial land cover
configuration at a finer spatial resolution than that at which the source imagery were acquired is
often called as sub-pixel mapping [17]. Sub-pixel mapping can be considered to be a post-processing
stage of soft classification, in which the fraction images produced by soft classification are used as
input to estimate a hard land cover map with fine spatial resolution [18]. A variety of sub-pixel
mapping algorithms have been proposed, such as Hopfield neural networks [19–21], pixel-swapping
algorithm [22], Markov random field [23], spatial attraction algorithms [24–28], vectorial boundary
based algorithms [29,30], computational intelligence algorithms [31–33], and spatial regularization
algorithm [34–37]. Sub-pixel mapping has been successfully used in many applications, such as the
mapping urban trees [38], lakes [39], burned area [40] as well as in the refinement of ground control
point location [41] and in the calculation of landscape pattern indices [42].

Most sub-pixel mapping algorithms have been applied to single date remotely sensed imagery.
Thus, to update a historic fine resolution land cover map with contemporary coarse fraction map,
an intuitive method is to directly generate a fine resolution land cover map from the coarse fraction
map using sub-pixel mapping algorithms and undertaking a post-classification comparison to indicate
the change. Although this approach seems sensible, it fails to take account of the initial land cover
pattern in the historic dataset.

When a historic fine resolution map is available, generating a new fine resolution map from
contemporary coarse resolution fraction images is similar with the issue of downscaling coarse
resolution land use scenarios, which is a topic of considerable interest in the field of land use change



Remote Sens. 2016, 8, 642 3 of 23

modeling [43,44]. In land use change models, such as the CLUE-S model [45], land use scenarios
are simulated by using socio-economical and biophysical driving factors. The simulated land use
scenarios typically have a very coarse spatial resolution and need to be downscaled to a fine resolution.
For a typical downscaling algorithm, the relationships between driving factors (such as elevation,
distance to river, etc.) and land use patterns are first estimated. The relationships are then used when
simulating the competition between land use types for a specific location at the fine spatial resolution.
Special land use type or location specific decision rules can also be specified by the user according
to the historic fine resolution land use map. Finally, the historic fine resolution map is updated with
these relationship and the simulated land use map at a more recent date obtained.

The advantages of the scenario downscaling algorithms in land use change modeling lies in the
relationships between driving factors and land cover patterns, and the decision rules. However,
for sub-pixel mapping algorithms used with remote sensing imagery, this relationship is often
unavailable and the land cover change rules are often difficult to specify. In order to overcome
this problem, Ling et al. [46] proposed a sub-pixel land cover change mapping model, which aims to
generate a new fine spatial resolution land cover map, by updating a historic fine resolution land cover
map using contemporary coarse resolution fraction images directly. This approach not only exploits
the general concept of sub-pixel mapping, but also relates the target fine spatial resolution land cover
map that we aim to estimate with available historic fine resolution land cover map, through a land
cover change strategy.

A sub-pixel land cover change mapping model generally consists of two different sub-models [46,47].
The first is the spatial sub-model, which is the spatial prior model used to describe the spatial
pattern of land cover classes in traditional sub-pixel mapping algorithms. The second is the temporal
sub-model, which is used to describe the relationship between the historic and current fine resolution
land cover maps. In order to construct a suitable temporal sub-model in the sub-pixel land cover
change mapping model, an effective land cover change strategy is required. At present, the change
strategy proposed by Ling et al. [46] is widely used [47–54]. This change strategy is referred to as the
unidirectional change strategy in this paper; because it is generally based on an assumption that the
landscape keeps relative stability, and supposes that only unidirectional change exists within a small
area. With this unidirectional change strategy, various temporal sub-models can be constructed and
used in sub-pixel land cover change mapping [46–54].

Both the spatial and temporal sub-models play important roles in the sub-pixel land cover
change mapping model. Compared with the spatial sub-model that has been widely studied in
sub-pixel mapping, however, the temporal sub-model has attracted relatively little attention in the
literatures. Although previous studies have illustrated the effectiveness of sub-pixel land cover change
mapping, the individual impact of the temporal sub-model on the result has not been reported.
Regarding the significant role of the temporal sub-model in sub-pixel land cover change mapping, and
the unidirectional change strategy is again the basis of most exiting temporal sub-models, this paper
aims to assess the unidirectional change strategy thoroughly. By analyzing the fundamental principle
behind the unidirectional change strategy, the main factors that influence the accuracy of the change
strategy were explored, in order to provide guidance for its practical application.

2. The Unidirectional Change Strategy

2.1. Sub-Pixel Mapping

Suppose that the original coarse spatial resolution remotely sensed image has Mˆ N pixels and
the fraction images F for all classes have been estimated by soft classification. Sub-pixel mapping aims
to generate a fine spatial resolution land cover map using F as input. By setting the zoom factor to
be S, each coarse spatial resolution pixel is divided into Sˆ S fine spatial resolution pixels. All fine
spatial resolution pixels are considered to be pure pixels and each one should be assigned to a single
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land cover class. The resulting fine spatial resolution land cover map thus contains pSˆMq ˆ pSˆ Nq
pixels, whose labels are defined to a unique land cover class.

The objective of sub-pixel mapping is to make the fine spatial resolution land cover map honor
a pre-defined spatial pattern model, according to the number of fine spatial resolution pixels within
each coarse spatial resolution pixel provided by the input fraction images. Therefore, the final fine
spatial resolution land cover map should be produced according to an area constraints and a spatial
model. The area constraints is used to restrict the estimated fine spatial resolution land cover map
to the input coarse spatial resolution fraction images, and the spatial model is used to incorporate
prior information about the land cover distribution. From the viewpoint of optimization, the sub-pixel
mapping problem can be expressed as the following minimization problem:

Min Epxq “ Eareapxq ` λEspatialpxq (1)

where Eareapxq is the area constraints term and Espatialpxq is the spatial model term. λ is the parameter
used to balance the area constraints term and the spatial model term.

Various methods have been proposed to construct both terms, leading to different sub-pixel
mapping models. For the area constraints term, in some models, the number of sub-pixels for each
land cover class in each mixed pixel is restricted so that it corresponds with input area fractions [22,55],
while other models relax the constraints caused by fraction images in order to eliminate the fraction
errors caused by soft classification [19,21,34]. For the spatial model term, the spatial dependence model
that aims to make the fine spatial resolution land cover map have the maximal spatial dependence
is widely used [19,22,34,56]. The spatial model can also be constructed through the incorporation
of information provided by additional dataset [57,58], or learned from the training image [59–61].
A comprehensive review of these models is beyond the scope of this paper, and more information can
be found in relative literatures.

2.2. Sub-Pixel Land Cover Change Mapping

Sub-pixel land cover change mapping is an extension of sub-pixel mapping. Suppose that there is
another historic fine spatial resolution land cover map of the region available, besides the current coarse
spatial resolution fraction images generated via a soft classification analysis. The aim of sub-pixel
land cover change mapping is to determine the change information of each pixel in the historic fine
resolution map with the aid of current coarse resolution fraction images. If the current coarse resolution
fraction images can be downscaled to a fine resolution map, the land cover change information can
be simply obtained by directly comparing both fine resolution land cover maps. In other words,
sub-pixel land cover change mapping is also a sub-pixel mapping problem. A special feature is that,
when producing the current fine spatial resolution map, not only the current coarse spatial resolution
fraction images, but also the land cover information included in the historic fine spatial resolution map
are considered.

Generally, in order to use the information provided by the historic fine resolution land cover map,
a temporal model needs to be defined to represent the relationship between the historic fine resolution
land cover map and the current coarse resolution fraction images. Based on the sub-pixel mapping
model as shown in Equation (1), the sub-pixel land cover change mapping problem can be extended as
the following minimization problem:

Min Epxq “ Eareapxq ` λEspatialpxq ` γEtemporalpxq (2)

where Etemporalpxq is the temporal model term and γ is the balance parameter.
Different methods can be applied to use the temporal model. For example, the temporal model

can be considered as additional constraints on the result of sub-pixel mapping [46]. Before the
implementation of sub-pixel land cover change mapping, fine spatial resolution pixel labels of the
unchanged fraction and increased fraction classes are directly copied from the previous map. These fine
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resolution pixel labels are not allowed to change as the analysis proceeds, and remaining fine spatial
resolution pixel labels are estimated by traditional sub-pixel mapping algorithms. An alternative
approach first generated transfer probabilities between all land cover classes in each coarse spatial
resolution pixel, which was then used to produce the temporal model term used in the optimization
model [47].

In general, the relationship between the historic fine spatial resolution land cover map and the
current spatial coarse resolution fraction images can be described by a land cover change strategy,
because the spatial land cover configuration at the current time is affected by the historic configuration.
The unidirectional change strategy [46], which is widely used at present, is presented as follow.

2.3. The Unidirectional Change Strategy

Given S is the scale factor, which is the ratio between the coarse and fine resolution pixels, there are
S2 fine resolution pixels within the area represented by a coarse resolution pixel. Let L be a current
coarse resolution pixel and H be its corresponding historic S2 fine resolution pixels. For each coarse
resolution pixel, there is a set of fraction values representing the area percentage for each land cover
class contained in the pixel. The current land cover fractions f pLq can be estimated by soft classification,
and the historic land cover fractions f pHq can also be extracted through spatially degrading H using a
mean filter with an Sˆ S fine resolution window.

By comparing the fractions in f pHq and f pLq, three categories of fractional change can be defined:
class(es) of unchanged fraction, class(es) that decrease in fractional coverage and class(es) that
increase in fractional coverage of the geographical area represented by a coarse resolution pixel.
The unidirectional change strategy then defines different change rules for each of these three land cover
change categories. For the class of unchanged fraction, no change is permitted. Thus, fine resolution
pixels belonging to this class in H should be absolutely preserved. For a class that decreases in
fractional coverage, fine resolution pixels belonging to this class in H can be changed to other classes,
and fine resolution pixels belonging to other classes in H should not be changed to this class. Finally,
for the class that increases in fractional coverage, fine resolution pixels belonging to this class are all
preserved, and some fine resolution pixels belonging to other classes are changed to this class.

A simple example is used to illustrate the change strategy in Figure 1. In this example, the scale
factor is 10 and hence a coarse resolution pixel contains 10 ˆ 10 fine resolution pixels. There are three
land cover classes: A, B and C. By considering those fine resolution pixels as a coarse resolution pixel,
the fractions of class A, B and C are 12%, 52% and 36%, respectively. Accordingly, there are 12 fine
resolution pixels labeled as class A, 52 fine resolution pixels labeled as class B and 36 fine resolution
pixels labeled as class C (Figure 1a). With the passage of time, land cover may change from that
depicted in the historic fine resolution pixels. Suppose that the current fractions of class A, B and
C become 12%, 33% and 55% (Figure 1b). The fraction changes of each class are computed using
the fractions in the historic and current coarse resolution pixels (Figure 1c). However, the result in
Figure 1c can show only the fractional coverage and not the geographical distribution of the classes.
To study land cover change in detail, the geographical location of the fractions and their change in
time needed to be determined by sub-pixel land cover change mapping.

According to the change strategy, the fine resolution pixel locations of class A, which has
unchanged fraction, are determined to be the location of class A depicted in the historic fine resolution
pixels (Figure 1d). The potential fine resolution pixel locations of class B, which has decreased in
extent, are determined to be the historic fine resolution pixels of class B in the coarse resolution pixel
(Figure 1e); some will need to relabeled to a class that has increased in extent. The fine resolution pixel
locations of class C, which has increased fraction, are determined to be the historic fine resolution
pixels of class C (Figure 1f) plus potentially some of the locations labeled as class B in the historic data.
In addition, as the fraction of class C increases, the historic fine resolution pixels of classes that have
decreased fraction (i.e., class B) are taken to be potential fine resolution pixel locations for cases of the
increased class (i.e., class C). Therefore, the potential fine resolution locations of all land cover classes
should be determined by the change strategy.
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corresponding current coarse resolution mixed pixel, where class fractions of each class are denoted; 
(c) fraction change of each class; (d) fine resolution pixel locations of class A marked in yellow color 
in the current fine resolution map; (e) potential fine resolution pixel locations of class B marked in 
light blue color in the current fine resolution map; and (f) fine resolution pixel locations of class C 
marked in dark green color and potential fine resolution pixel locations for the rest of class C marked 
in light green color in the current fine resolution map.  
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changed-in and changed-out pixels do not appear within the area of a coarse resolution pixel at the 
same time. The scale factor between the coarse and fine resolution pixels is expected to strongly 
affect the performance of the change strategy. In extreme cases, if the scale factor equals to 1, which 
means the historic fine resolution map and current coarse resolution map have the same spatial 
resolution, all fine resolution pixels obey the change strategy. Conversely, if the scale factor is 
extremely high, a coarse resolution pixel may cover thousands of kilometers and millions of fine 
resolution pixels, increasing the possibility of change within the pixel area not being unidirectional. 
Therefore, in which situation the change strategy is obeyed becomes a critical issue for its practical 
application.  

3. Dataset and Methods 

The National Land Cover Database (NLCD) was used to assess the change strategy. The NLCD 
contains raster-based land cover maps with a 30 m × 30 m spatial resolution over all 50 states and 
Puerto Rico across the conterminous United States of America [62,63]. NLCD 2001, NLCD 2006 and 
NLCD 2011 are based primarily on decision-tree classifications of Landsat satellite data acquired in 
circa 2001, 2006 and 2011, respectively, and include 16 land cover classes modified from the 
Anderson land-use and land-cover classification system (Table 1). The study areas selected are six 
subsets of NLCD maps, each 240 km × 240 km (8000 pixels × 8000 pixels) in size (Figure 2). The land 
cover change percentage, which is calculated through a per-pixel comparison of land cover types, is 
presented in Table 2. The six areas each experienced land cover change but of differing magnitude 
and spatial distribution. Areas A, D and E experienced a high land cover change during 2001–2006 
and 2001–2011, whereas area F experienced the least land cover change. In Figure 3, the changed 
land cover pixels are relatively centralized in area A and B. In areas D and E, the changed land cover 
pixels are not represented as aggregated patches, but are spatially distributed across the entire map. 
By contrast, large parts of the map do not contain changed pixels in areas C and F. 

Figure 1. An example of land cover change and allocation of fine resolution pixel labels according to the
change strategy: (a) historic 10 ˆ 10 fine resolution pixels in a coarse resolution pixel; (b) corresponding
current coarse resolution mixed pixel, where class fractions of each class are denoted; (c) fraction
change of each class; (d) fine resolution pixel locations of class A marked in yellow color in the current
fine resolution map; (e) potential fine resolution pixel locations of class B marked in light blue color in
the current fine resolution map; and (f) fine resolution pixel locations of class C marked in dark green
color and potential fine resolution pixel locations for the rest of class C marked in light green color in
the current fine resolution map.

2.4. The Scale Issue

According to the unidirectional change strategy, for any land cover class, fine resolution
changed-in and changed-out pixels do not appear within the area of a coarse resolution pixel at the
same time. The scale factor between the coarse and fine resolution pixels is expected to strongly affect
the performance of the change strategy. In extreme cases, if the scale factor equals to 1, which means
the historic fine resolution map and current coarse resolution map have the same spatial resolution,
all fine resolution pixels obey the change strategy. Conversely, if the scale factor is extremely high,
a coarse resolution pixel may cover thousands of kilometers and millions of fine resolution pixels,
increasing the possibility of change within the pixel area not being unidirectional. Therefore, in which
situation the change strategy is obeyed becomes a critical issue for its practical application.

3. Dataset and Methods

The National Land Cover Database (NLCD) was used to assess the change strategy. The NLCD
contains raster-based land cover maps with a 30 m ˆ 30 m spatial resolution over all 50 states and
Puerto Rico across the conterminous United States of America [62,63]. NLCD 2001, NLCD 2006 and
NLCD 2011 are based primarily on decision-tree classifications of Landsat satellite data acquired in
circa 2001, 2006 and 2011, respectively, and include 16 land cover classes modified from the Anderson
land-use and land-cover classification system (Table 1). The study areas selected are six subsets of
NLCD maps, each 240 kmˆ 240 km (8000 pixelsˆ 8000 pixels) in size (Figure 2). The land cover change
percentage, which is calculated through a per-pixel comparison of land cover types, is presented in
Table 2. The six areas each experienced land cover change but of differing magnitude and spatial
distribution. Areas A, D and E experienced a high land cover change during 2001–2006 and 2001–2011,
whereas area F experienced the least land cover change. In Figure 3, the changed land cover pixels
are relatively centralized in area A and B. In areas D and E, the changed land cover pixels are not
represented as aggregated patches, but are spatially distributed across the entire map. By contrast,
large parts of the map do not contain changed pixels in areas C and F.



Remote Sens. 2016, 8, 642 7 of 23

Remote Sens. 2016, 8, 642; doi:10.3390/rs8080642 7 of 23 

 

 
Figure 2. Locations of the six study areas as shown in the National Land Cover Database (NLCD) 
2011 land cover map. 

  
Figure 3. Land cover maps (240 km × 240 km, 8000 pixels × 8000 pixels with the 30 m spatial 
resolution) and corresponding land cover change map (black indicates the changed pixels) for the six 
study areas.  

The NLCD is available with 16 classes. As land cover change studies often focus on a relatively 
low number of classes, the original 16 classes were aggregated to form two new data sets with eight 
and four classes, respectively (Table 1), to assess the impact of the thematic resolution on the 
accuracy of change mapping. Table 2 shows the land cover change ratio, which represents the 

Figure 2. Locations of the six study areas as shown in the National Land Cover Database (NLCD) 2011
land cover map.

Remote Sens. 2016, 8, 642; doi:10.3390/rs8080642 7 of 23 

 

 
Figure 2. Locations of the six study areas as shown in the National Land Cover Database (NLCD) 
2011 land cover map. 

  
Figure 3. Land cover maps (240 km × 240 km, 8000 pixels × 8000 pixels with the 30 m spatial 
resolution) and corresponding land cover change map (black indicates the changed pixels) for the six 
study areas.  

The NLCD is available with 16 classes. As land cover change studies often focus on a relatively 
low number of classes, the original 16 classes were aggregated to form two new data sets with eight 
and four classes, respectively (Table 1), to assess the impact of the thematic resolution on the 
accuracy of change mapping. Table 2 shows the land cover change ratio, which represents the 

Figure 3. Land cover maps (240 km ˆ 240 km, 8000 pixels ˆ 8000 pixels with the 30 m spatial resolution)
and corresponding land cover change map (black indicates the changed pixels) for the six study areas.



Remote Sens. 2016, 8, 642 8 of 23

Table 1. The land cover class grouping strategy.

Index 16 Class 8 Class 4 Class

11 Open water
Water Water

12 Perennial ice/snow

21 Developed, open space

Developed Developed/Barren
22 Developed, low intensity

23 Developed, medium intensity

24 Developed, high intensity

31 Barren land Barren

41 Deciduous forest

Forest

Vegetation

42 Evergreen forest

43 Mixed forest

52 Shrub/scrub Shrub/scrub

71 Grassland/herbaceous Grassland/herbaceous

81 Pasture hay
Planted/Cultivated

82 Cultivated Crops

90 Woody wetlands
Wetlands Wetlands

95 Emergent Herbaceous wetlands

Table 2. Land cover changed area percentages for different areas during 2001–2006 and 2001–2011.

2001–2006 2001–2011

16 Class 8 Class 4 Class 16 Class 8 Class 4 Class

A 5.99% 5.94% 0.93% 11.33% 10.78% 4.12%
B 1.10% 1.08% 0.99% 2.22% 1.44% 1.26%
C 1.32% 1.28% 0.55% 4.83% 4.26% 2.12%
D 7.25% 6.98% 0.91% 14.16% 13.13% 1.42%
E 7.05% 6.92% 1.62% 13.96% 13.05% 2.74%
F 0.59% 0.58% 0.31% 1.92% 1.28% 0.74%

The NLCD is available with 16 classes. As land cover change studies often focus on a relatively
low number of classes, the original 16 classes were aggregated to form two new data sets with eight
and four classes, respectively (Table 1), to assess the impact of the thematic resolution on the accuracy
of change mapping. Table 2 shows the land cover change ratio, which represents the percentage
of pixels with changed classes (a high value means the study area has a highly dynamic landscape
during the period). The changed area percentages for the 16-class scheme in different areas are only
slightly higher than those for the eight-class scheme. The changed area percentages for the four-class
scheme decreased compared with those of 16-class and eight-class schemes in the different study areas,
because the inter-class changes for 16-class and eight-class schemes become intra-class changes for the
four-class scheme. The highest changed area percentage was 14.16% for the 16-class scheme in area D
during 2001–2011, and the lowest changed area percentage was 0.31% for the four-class scheme in area
F during 2001–2006.

In order to thoroughly assess the change strategy, various scenarios were simulated for all six study
areas. It is noteworthy that the input of sub-pixel land cover change mapping includes a previous
fine spatial resolution land cover map and a current coarse spatial resolution fraction images, with
which the change strategy is applied to provide temporal information. In practice, the current coarse
spatial resolution fraction images are produced from remotely sensed imagery via a soft classification
analysis. Here, however, the current coarse spatial resolution fraction images were simulated from the
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current fine spatial resolution land cover maps directly. Simulating coarse spatial resolution fraction
images can avoid extra fraction errors caused by the soft classification and the spatial registration error
between fine and coarse spatial resolution images. Moreover, the original fine spatial resolution land
cover maps can be used as the reference to assess the result.

In each case, the NLCD 2001 subsets were used as the previous fine spatial resolution land
cover maps, and NLCD 2006 or NLCD 2011 subsets were used to simulate what is described here
as the current coarse resolution fraction images, respectively. When the coarse fraction images were
simulated, different thematic resolution (4, 8 and 16 classes) and different scale factors including
4, 8, 10, 16, 33, 50, 100, 200, 500 and 1000, which correspond to the spatial resolution of 120 m, 240 m,
300 m, 480 m, 990 m, 1.5 km, 3 km, 6 km, 15 km, and 30 km, respectively, were applied. Therefore, in
this experiment, the total number of simulated cases is 360: 6 (study area) ˆ 2 (NLCD 2006 or NLCD
2011) ˆ 3 (thematic resolution) ˆ 10 (scale factor). In each case, the coarse resolution fraction images
can be produced by spatial degradation processing, by dividing the number of fine resolution pixels of
each class by the total number of fine resolution pixels in a coarse resolution pixel, according to used
dataset and parameters.

The change strategy accuracy (Acs) value that represents the percentage of fine resolution
pixels obeying the change strategy was used to assess the accuracy of the change strategy in each
scenario. Let f pLqc be the fraction of class c in the current coarse resolution pixel and f pHqc be that
in the corresponding historic coarse resolution pixel that is degraded from fine resolution pixels.
The fraction change of class c in current and historic coarse resolution pixels, called ∆ fc, is determined
as ∆ fc “ f pLqc ´ f pHqc. Assuming the label of a historic fine resolution pixel i is class c, whether
the fine resolution pixel i obeys the change strategy is determined according to the class label of its
corresponding current fine resolution pixel j as the following:

(1) If ∆ fc = 0, the fraction of class c is unchanged. According to the change strategy about the
unchanged-fraction class, fine resolution pixels belonging to this class in historic and current maps
should be the same. Then, if the current fine resolution pixel j is also class c, the corresponding
fine resolution pixel i in the historic map obeys the change strategy. If, however, pixel j belongs
to another class than that depicted for pixel i, the change strategy is disobeyed.

(2) If ∆ fc > 0, the fraction of class c increases. According to the change strategy, all fine resolution
pixels belonging to this class in the historic map need to be preserved in the current map. Then,
if the current fine resolution pixel j is class c, the fine resolution pixel i obeys the change strategy.
Otherwise, pixel i disobeys the change strategy.

(3) If ∆ fc < 0, the fraction of class c decreases. In this case, if the current fine resolution pixel j is
also class c, the fine resolution pixel i obeys the change strategy. In addition, fine resolution
pixels belonging to classes that decreased in fraction may change to the increased-fraction class
according to the change strategy. Then, if the current fine resolution pixel j belongs to the class
that has increased fraction, the fine resolution pixel i also obeys the change strategy.

Figure 4 shows the whole procedure used to judge whether a fine resolution pixel within a coarse
resolution pixel obeys the change strategy or not. An example, as shown in Figure 5, is further used
here to illustrate the aforementioned judgment rules. The example is similar as that in Figure 1.
The scale factor is 10, and there are three land cover classes. Figure 5a shows historic fine resolution
pixels and Figure 5b shows current fine resolution pixels. The procedure is then used to judge whether
the pixels in the fine spatial resolution map obey the change strategy or not. For the pixels labeled
class A in Figure 5a, the yellow pixels in Figure 5c still belong to class A in the current map, and they
obey the strategy. The black pixels in Figure 5c become allocated to class B in the current map, then,
the pixels in this area do not obey the change strategy. For the pixels labeled class B in the historic
map, the dark blue pixels in Figure 5d are still class B, and the light blue pixels marked in Figure 5d
are class C with increased area, in the current map. The pixels in these areas obey the change strategy.
In contrast, the black pixels (Figure 5d) belong to class A in the current map, thus, the pixels in this
area do not obey the change strategy. For class C in the historic map, the pixels shown as green in



Remote Sens. 2016, 8, 642 10 of 23

Figure 5e obey the change strategy and the pixels shown as black in Figure 5e do not obey the change
strategy. In summary, there are seven pixels in the fine spatial resolution map that do not obey the
change strategy, as shown in Figure 5f.Remote Sens. 2016, 8, 642; doi:10.3390/rs8080642 10 of 23 
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Figure 5. An example of Acs calculation: (a) Historic fine resolution pixels within a coarse resolution
pixel. The scale factor is 10; (b) Corresponding current fine resolution pixels; (c–e) Fine resolution
pixels of class A, B and C, as shown in (a), respectively. Pixels marked in color obey the change strategy,
and pixels marked in black do not obey the change strategy; (f) The final indicator map, where 1 means
that the pixel obeys the change strategy, and 0 means that the pixel does not obey the change strategy.
Pixels marked in color and grey are changed pixels.
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According to the aforementioned steps, Acs is calculated according to the number of fine resolution
pixels that obey the change strategy. Moreover, in order to better represent the ability of the change
strategy to describe the land cover change scenario, and to avoid the bias caused by different changed
area percentages, only fine resolution pixels whose land cover labels in the historic and current maps
are different, are included to calculate the value of Acs as:

Acs “
nc ´ nd

nc
(3)

where nd is the number of pixels that disobey the change strategy, and nc is the number of pixels that
changed class label. Take Figure 5 as an example, nd equals to 7 and nc equals to 29, including the
pixels as shown in grey in Figure 5f. Thus, the value of Acs is 0.759% or 75.9%. The Acs value represents
the percentage of fine spatial resolution pixels obeying the change strategy in all changed fine spatial
resolution pixels, and a higher Acs value indicates that the change strategy represents the temporal
land cover change pattern better.

4. Results

The change mapping approach was applied to the NLCD data for each time period and each
study area. The resulting Acs values are shown in Table 3. Moreover, Figure 6 shows the Acs values
for six study areas with land cover maps of NLCD during 2001 and 2006, and Figure 7 shows those
during 2001 and 2011. Generally, Acs values vary with the scale factor, the thematic resolution and the
changed area percentage.
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Table 3. Acs values for six study areas with different spatial resolution of coarse pixels, land cover class schemes and time spans.

Area
Time
Span

Class
Scheme

Spatial Resolution of Coarse Pixels

120 m
(S = 4)

240 m
(S = 8)

300 m
(S = 10)

480 m
(S = 16)

990 m
(S = 33)

1.5 km
(S = 50)

3 km
(S = 100)

6 km
(S = 200)

15 km
(S = 500)

30 km
(S = 1000)

A

2001–2006
16 class 0.987 0.967 0.957 0.925 0.855 0.809 0.742 0.686 0.627 0.602
8 class 0.987 0.967 0.956 0.923 0.853 0.808 0.742 0.688 0.637 0.613
4 class 0.998 0.994 0.993 0.987 0.975 0.963 0.938 0.912 0.864 0.806

2001–2011
16 class 0.961 0.928 0.913 0.876 0.804 0.761 0.696 0.641 0.585 0.555
8 class 0.962 0.929 0.914 0.876 0.804 0.762 0.696 0.643 0.586 0.555
4 class 0.954 0.922 0.909 0.879 0.819 0.776 0.698 0.629 0.564 0.513

B

2001–2006
16 class 0.997 0.994 0.992 0.988 0.980 0.975 0.960 0.943 0.916 0.892
8 class 0.997 0.993 0.992 0.988 0.979 0.973 0.960 0.943 0.921 0.897
4 class 0.997 0.994 0.993 0.990 0.983 0.979 0.970 0.962 0.957 0.950

2001–2011
16 class 0.991 0.981 0.977 0.965 0.941 0.920 0.873 0.822 0.770 0.731
8 class 0.997 0.993 0.992 0.988 0.979 0.974 0.960 0.944 0.921 0.897
4 class 0.996 0.992 0.989 0.984 0.971 0.962 0.946 0.929 0.914 0.900

C

2001–2006
16 class 0.996 0.989 0.986 0.978 0.955 0.938 0.893 0.835 0.755 0.707
8 class 0.996 0.991 0.989 0.981 0.961 0.945 0.899 0.840 0.760 0.712
4 class 0.998 0.994 0.993 0.989 0.977 0.970 0.952 0.927 0.897 0.877

2001–2011
16 class 0.979 0.958 0.948 0.924 0.871 0.833 0.761 0.699 0.637 0.596
8 class 0.984 0.967 0.959 0.938 0.887 0.849 0.778 0.717 0.654 0.617
4 class 0.991 0.977 0.972 0.956 0.920 0.895 0.845 0.798 0.739 0.692

D

2001–2006
16 class 0.992 0.980 0.974 0.956 0.903 0.857 0.767 0.688 0.618 0.572
8 class 0.992 0.980 0.974 0.954 0.898 0.851 0.761 0.685 0.621 0.582
4 class 0.994 0.986 0.983 0.972 0.943 0.914 0.846 0.773 0.693 0.656

2001–2011
16 class 0.980 0.957 0.946 0.915 0.837 0.782 0.693 0.629 0.587 0.559
8 class 0.984 0.963 0.953 0.921 0.843 0.788 0.701 0.637 0.585 0.573
4 class 0.991 0.981 0.977 0.963 0.926 0.897 0.828 0.757 0.685 0.627

E

2001–2006
16 class 0.993 0.984 0.978 0.962 0.917 0.875 0.781 0.692 0.608 0.575
8 class 0.993 0.983 0.978 0.961 0.912 0.867 0.769 0.678 0.594 0.552
4 class 0.997 0.994 0.992 0.987 0.973 0.958 0.925 0.881 0.827 0.798

2001–2011
16 class 0.982 0.962 0.952 0.924 0.858 0.807 0.721 0.661 0.613 0.588
8 class 0.987 0.969 0.961 0.934 0.869 0.820 0.736 0.683 0.644 0.625
4 class 0.996 0.991 0.988 0.981 0.965 0.952 0.924 0.892 0.852 0.841

F

2001–2006
16 class 0.997 0.993 0.991 0.988 0.979 0.972 0.954 0.934 0.905 0.860
8 class 0.998 0.996 0.995 0.993 0.986 0.981 0.965 0.945 0.914 0.872
4 class 0.999 0.997 0.996 0.993 0.987 0.984 0.978 0.970 0.958 0.939

2001–2011
16 class 0.971 0.944 0.935 0.912 0.872 0.846 0.796 0.740 0.667 0.626
8 class 0.994 0.988 0.985 0.978 0.961 0.943 0.905 0.863 0.812 0.791
4 class 0.997 0.993 0.991 0.986 0.976 0.964 0.943 0.920 0.903 0.892

Average 0.989 0.977 0.971 0.956 0.920 0.893 0.842 0.794 0.744 0.712
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4.1. The Spatial Resolution

As shown in Figures 6 and 7, Acs values decrease with the increase of the spatial resolution of
coarse pixels. That is, the coarsening of the spatial resolution of coarse pixels results in more pixels not
obeying the change strategy. When the spatial resolution of coarse pixels is 120 m, that is, the scale
factor is 4, the average Acs value is 0.989, meaning that 98.9% changed pixels obey the change strategy.
When the spatial resolution of coarse pixels is 990 m (S “ 33), the average value is still as high as 0.92.
The Acs value at the 990 m spatial resolution of coarse pixels is different in different study areas, the
highest one is 0.987, and the lowest one is 0.804. With the further increase of the spatial resolution of
coarse pixels, however, the Acs values decrease rapidly.

The spatial pattern of land cover is important for sub-pixel mapping [64]. For sub-pixel land
cover change mapping, the spatial pattern of temporal land cover change also affects the accuracy
of the change strategy. According to the fundamental principle of the change strategy, for each land
cover class within a coarse resolution pixel, only unidirectional changes exist and changed-out and
changed-in pixels do not exist simultaneously. Figure 8 shows the scatter plot of variance values versus
the distance of changed-out and changed-in pixels for each land cover class during 2001–2006 and
2001–2011 in the four-class scheme result and Figure 9 shows those in the eight-class scheme. A larger
variance value means that more bidirectional land cover changes exist.

In general, the variance values are small with a small distance for all these scenarios. For example,
most of the first variance values calculated with the distance of 0.6 km are much less than 0.1 in all
scenarios. This means that, for a random changed fine spatial resolution pixel, the probability that
another changed pixel with a distance of 0.6 km to it has the same change direction is larger than 90%.
From another point of view, in a coarse pixel with the spatial resolution of 0.6 km, more than 90% of
changed pixels have the same change direction. The variance value becomes larger with the increment
of distance. This tread means that more fine spatial resolution pixels have different change directions
when their spatial distance becomes larger. In other words, with the increment of the spatial resolution
of coarse pixels, more bidirectional changes exist in a coarse resolution pixel. This explains the result
that the Acs values decrease with the coarsening of the spatial resolution of coarse pixels.
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From Figures 6 and 7, it also noticed that the decline rates of the Acs values are much different
in different scenarios. This is mainly caused by the pattern of variance values. As shown in
Figures 8 and 9, with the increase of the distance, the variance values show various change patterns. In
some scenarios, such as the area B in 2001–2006 in the four-class scheme, the variance values decline at
a near-linear trend for the vegetation and wetlands classes. As a result, the Acs value has a near-linear
decline rate. By contrast, in the area D in 2001–2006 in the four-class scheme, the variance values for
the vegetation and wetlands classes first decline rapidly within about 2 km, and then decline slowly.
As a result, the Acs value has a much higher decline rate at the beginning.

4.2. The Time Interval

The time interval between the previous fine spatial resolution land cover map and the current
coarse spatial resolution images affects the accuracy of the change strategy. As shown in Figures 6 and 7,
the Acs values are different at the 2001–2006 and 2001–2011 periods. The changed area percentages in
all six areas during 2001–2006 and 2001–2011 are shown in Table 2. For a certain area, the changed area
percentage during 2001–2011 was always higher than that during 2001–2006, as the area would have
more possibility to change if it experiences a longer period of time (Table 2). As a result, almost all Acs

values for 2001–2011 (Figure 7) were lower than the corresponding Acs values for 2001–2006 (Figure 6).
From Figures 8 and 9, it is noticed that the time interval had an important role on the variance

values. In most cases, the variance values during 2001–2011 were larger than those during 2001–2006.
During 2001–2011, the number of fine spatial resolution pixels that changed their class labels was
much larger than that during 2001–2006. This made the land cover change pattern more complex and
the inter-change of land cover classes more popular, leading to a larger variance value. For different
land cover classes, the variance values were also different. For example, in the area A in the four-class
scheme, the variance value of the developed/barren class almost equals to zero during 2001–2006,
but increased rapidly during 2001–2011. As a result, the Acs value during 2001–2011 is much lower
than that during 2001–2006 in the area A.

4.3. The Thematic Resolution

As shown in Figure 6, for the land cover change during 2001–2006, the Acs values decrease with
the increment of the thematic resolution. The simplest four-class land cover scheme was always
associated with the highest Acs values. The Acs values observed for analyses with the eight-class
and 16-class schemes are basically the same, and both much lower than that of the four-class scheme.
For the land cover change during 2001–2011 (Figure 7), a similar trend was noticed where the scheme
with lowest number of land cover classes often obtained high Acs values. In some areas, however,
the difference between the eight-class and 16-class schemes becomes distinguishable.

In general, the changed area percentage is larger when the thematic resolution increases, as shown
in Table 2. It is noteworthy that the four-class scheme was generated from the eight-class scheme,
which was again generated from the 16-class scheme in this experiment. For a class changed to another
class in the eight-class scheme, the change still existed in the four-class scheme if these two classes
belonged to different classes in the four-class scheme. While these two classes belonged to the same
class in the four-class scheme, the changed area became the same class and the change did not exist in
the four-class scheme. When the thematic resolution was 4, the changed area percentages for all study
areas were less than those of the eight-class and 16-class schemes, and the corresponding Acs values
are mostly higher than those of the eight-class and 16-class schemes.

As shown in Table 2, for all six areas during the 2001–2006 period and most areas during the
2001–2011 period, the changed area percentages of the eight-class and 16-class schemes were very
close. This indicated that land cover that changed in the 16-class scheme also changed in the eight-class
scheme. In this situation, the Acs values were almost the same for the eight-class and 16-class schemes.
During 2001–2011, however, the changed area percentages of the eight-class scheme were different
with those of the 16-class scheme in the areas B and F, making the Acs values different.
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It is also noticed that the Acs values of the four-class scheme are not always higher than those of
the eight-class and 16-class schemes. For example, in the area B during the 2001–2011, the Acs values
of the four-class scheme are lower than those of the eight-class scheme when the spatial resolution of
coarse pixels ranges from 1 km to 15 km. This is mainly caused by two reasons. First, the changed
area percentage was 1.44% for the eight-class scheme and 1.26% for the four-class scheme. Using the
four-class scheme did not much reduce the change area. Second, combining several classes in the
eight-class scheme to one class in the four-class scheme may change the used rule of the change strategy.
For example, if one class with increased area and another class with decreased area in the eight-class
scheme were combined to one class in the four-class scheme, the change strategy becomes ineffective
for at least one class in the eight-class scheme, leading to a decreased Acs value.

4.4. Per-Class Analysis

Figures 10 and 11 show the Acs values obtained for different land cover classes at the four-class
scheme, and Table 4 shows the land cover class transfer matrices in all these areas. Overall, for all land
cover classes, the trends of the Acs values at the category level are similar with those at the map level
discussed above; that is, the Acs values decrease with the increase of the scale factor and the increase
of the change area.
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(a–f) Represent the results of the study areas A to F, respectively.

The Acs values obtained differed between land cover classes. In most cases, the Acs values of the
vegetation and wetlands classes were lower than those of the water and developed/barren classes.
One reason for this difference was that the change areas for the vegetation and wetlands classes were
larger than those of the water and developed/barren classes (Table 4). Another reason was the stability
of land cover classes. In general, water and developed/barren areas were more stable temporally
than the vegetation and wetland classes and the change strategy is then more effective in the water
and developed/barren areas. In Figure 11, however, it is apparent that the Acs value decreased in
2001–2011 in area B for the developed/barren class. This is because the number of changed pixels
from developed/barren to vegetation rapidly increased in this area from 1758 during the period
2001–2006 to 41,219 during the period 2001–2011. Because the Acs value is a relative value that reflects
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the ratio of pixels, this abrupt land cover change percentage greatly affected the performance of the
change strategy.
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Table 4. Transfer matrixes for six study areas with the four-class scheme during 2001–2006 and 2001–2011.

2006

Land Cover Water Db Veg Wet Land Cover Water Db Veg Wet

2001

A

Water 3,116,366 19,357 5684 1972

B

Water 791,233 3035 3376 1586
DB 3583 6,994,948 357,820 2611 DB 1766 5,583,533 1758 551
Veg 2195 111,536 51,560,188 49,568 Veg 106,367 131,085 56,076,531 359,721
Wet 2794 11,649 29,473 1,730,256 Wet 15,115 2442 4117 917,784

C

Water 1,098,440 1988 12,326 3043

D

Water 836,413 2735 39,937 4810
DB 2847 5,268,490 8899 290 DB 301 3,612,785 9169 84
Veg 17,128 251,552 54,120,307 32,403 Veg 23,396 87,385 51,442,482 167,987
Wet 5577 7094 7991 3,161,625 Wet 6373 6780 235,585 7,523,778

E

Water 1,176,054 3577 5167 1700

F

Water 891,964 15,936 4019 910
DB 15,803 6,991,968 160,834 1564 DB 1601 4,744,077 3166 269
Veg 36,129 566,439 49,514,204 105,917 Veg 8944 160,284 57,966,901 2199
Wet 9544 8435 1,185,92 5,284,073 Wet 215 1035 2990 195,490

2011

2001

A

Water 3,103,034 29,721 6086 4538

B

Water 789,631 3743 3466 2390
DB 35,254 6,957,042 357,365 9301 DB 3187 5,541,891 41,219 1311
Veg 60,571 535,507 50,392,410 734,999 Veg 110,823 244,845 55,949,346 368,690
Wet 35,572 67,682 761,702 909,216 Wet 16,406 3324 5918 913,810

C

Water 1,092,348 3428 15,598 4423

D

Water 818,683 4333 54,076 6803
DB 3187 5,226,750 50,176 413 DB 571 3,607,785 13,782 201
Veg 41,648 569,663 53,647,536 162,543 Veg 37,792 258,647 51,176,048 248,763
Wet 7673 16,427 483,952 2,674,235 Wet 8707 12,276 263,869 7,487,664

E

Water 1,170,098 6654 6792 2954

F

Water 888,202 15,517 8030 1032
DB 17,851 6,948,926 198,717 4675 DB 2930 4,712,826 33,251 282
Veg 45,980 1,064,314 48,794,496 317,899 Veg 10,992 393,906 57,728,264 5205
Wet 9065 13,020 65,380 5,333,179 Wet 240 1256 3227 194,840

* DB means Developed/Barren, Veg means Vegetation, Wet means Wetlands.
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5. Discussion

Sub-pixel land cover change mapping is a relatively new technology in the field of multi-temporal
land cover change analysis. This technology expands existing land cover change analysis methods
from the pixel to the sub-pixel scale. By using sub-pixel land cover change mapping, a historic fine
resolution land cover map can be updated with information from current coarse resolution images.
Because coarse resolution remotely sensed imagery often have a high temporal resolution, this new
technology enables high spatial and temporal resolution land cover change analysis. Sub-pixel land
cover change mapping can be considered as a special sub-pixel mapping method. A key feature of this
method is that an existing historic fine spatial resolution land cover map should be incorporated in
the sub-pixel mapping model. This historic fine spatial resolution land cover map provides valuable
information about the spatial distribution of the various land cover classes in mixed coarse resolution
pixels in coarse imagery acquired at a later date.

To use the information provided by the historic fine resolution land cover map, a sub-pixel
land cover change mapping model often includes a spatial sub-model and a temporal sub-model.
The spatial prior model used in existing sub-pixel mapping algorithms, such as the maximal spatial
dependence, can be used directly as the spatial sub-model. The temporal sub-model can provide the
information of land cover pattern included in the historic map to the current map, and ensure the
consistency of multi-temporal fine resolution land cover maps. Therefore, although the change strategy
itself cannot absolutely determine the class labels of current fine resolution pixels, it still plays a very
important role in sub-pixel land cover change mapping.

The results of the experiments reported above show that the performance of the change strategy
is substantially affected by the spatial resolution of coarse pixels, the time interval of the previous fine
spatial resolution land cover map and the current coarse spatial resolution images, and the thematic
resolution of the used land cover class scheme. According to the experiments, firstly, the accuracy of
the change strategy decreases with the coarsening of the spatial resolution of coarse pixels. If the fine
resolution map have a resolution of ~30 m, like the NLCD, the average accuracy of the change strategy
is about 92% when the coarse spatial resolution data used had a resolution of ~1000 m. Secondly, the
accuracy of the change strategy decreases with the increment of the time interval between the fine
spatial resolution land cover map and the coarse spatial resolution images, with which there are often
more changed areas. Therefore, in the area with rapid land cover changes, more recently high spatial
resolution land cover maps should be collected as the baseline for land cover change mapping, in order
to improve the accuracy of the change strategy. Thirdly, the accuracy of the change strategy decreases
with the increment of the number of land cover classes. In practice, the soft classification, which is
used to estimate fraction maps, often uses a simple land cover class scheme comprising a low number
of classes. For example, in the linear mixture model, the number of classes should be less than the
bands of data used. This situation is consistent with the usage of the change strategy.

In practice, however, some important issues about the usage of the change strategy need
to be further studied. Three issues, in particular, are apparent. The first issue is the image
registration accuracy between the historic fine resolution map and the current coarse resolution map.
Mis-registration decreases the accuracy of the fraction change between the historic and current maps,
and then affects the change strategy. The second issue is error in the fraction images. Spectral unmixing
is still an open problem and accurate fraction images are not always available in practice. The fraction
errors resulting from spectral unmixing will affect the performance of the change strategy. The third
issue is the combination with the spatial sub-model. In existing sub-pixel land cover change mapping
models, only the spatial prior model based on the maximal spatial dependence has been used. As the
latter may be too simple to describe complex land cover patterns, some powerful spatial prior models
in sub-pixel mapping are expected [56,58,60,61] to improve the sub-pixel land cover change mapping
model performance.
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6. Conclusions

Fine spatial and temporal resolution land cover datasets are valuable information for many
scientific research fields. Sub-pixel land cover change mapping is a recently proposed method that
aims to update a fine spatial resolution land cover dataset using coarse spatial resolution remote sensing
images with a high temporal resolution. In sub-pixel land cover change mapping models, the temporal
model plays a crucial role to the result. The unidirectional change strategy is a popular method to
describe the relationship between the historic fine resolution map and current coarse resolution fraction
images, and to construct the temporal model in sub-pixel land cover change mapping. In this paper,
the factors that affect the accuracy of the unidirectional change strategy were analyzed, in order to
provide guidance for the practical application of the approach to sub-pixel land cover change mapping
from multi-scale remote sensing images.

The experiment was performed by using six subsets of the NLCD maps, each 240 km ˆ 240 km
in size. The results of experiments indicate the accuracy of the change strategy is mainly affected by
the spatial resolution of coarse pixels, the time interval of the previous fine spatial resolution land
cover map and the current coarse spatial resolution images, and the thematic resolution of the used
land cover class scheme. With the coarsening of the spatial resolution, the percentage of the changed
pixels that obeys the change strategy decreases because the spatial dependence of changed-out and
changed-in pixels decreases with the increase of distance between changed pixels. An increase of the
time interval or the thematic resolution often increases the changed area and the variance values of
land cover change, leading to a decrease of the accuracy of the change strategy, In the future, more
experiments should be performed in various areas with different kinds of remote sensing imagery to
further assess the change strategy. The application of the change strategy in the sub-pixel land cover
change mapping models also needs further study.
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