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Abstract  

The differential interferometric synthetic aperture radar (DInSAR) remote sensing 

technique has proven to be invaluable in the remote monitoring of earth surface 

movements associated with the extraction and geostorage (subsurface injection) of 

natural resources (water, oil, gas).  However, a significant limitation of this technique is 

the low density and uneven coverage that may be achieved over vegetated rural 

environments.  The Intermittent Small Baseline Subset (ISBAS) method, an amended 
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version of the established SBAS algorithm, has been designed to improve coverage over 

rural, vegetated, land cover classes by allowing for the intermittent coherence that is 

predominant in such areas.  In this paper we perform a validation of the ISBAS method 

over an area of gas production and geostorage in North Holland, the Netherlands.  Forty-

two ERS-2 (SAR) C-band images (1995-2000) and 63 ENVISAT (ASAR) C-band 

images (2003-2010) were processed using the ISBAS technique and the derived 

measurements enabled the identification of subsidence patterns in rural and urban areas 

alike. The dominant feature was an area of subsidence to the west of Alkmaar, attributed 

to natural gas production from the Bergermeer reservoir, where subsidence rates in the 

region of 3 mm/year were measured. Displacements derived using linear and non-linear 

surface deformation models were validated with respect to the first order system of 

levelling benchmarks which form the Amsterdam Ordnance Datum (NAP). It was 

established that ISBAS products were accurate to within 1.52 mm/year and 1.12 mm/year 

for the ERS and ENVISAT data sets respectively. Error budgets were comparable to 

results using persistent scatterers interferometry (PSI) during a validation activity carried 

out in the European Space Agency Terrafirma project.  These results confirm the 

capability of the ISBAS method to provide a more regular sampling of land motion 

measurements over gas fields that may be critically used in future to infer the properties 

of buried, fluid-filled, porous rock. 
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1. Introduction  

 

Satellite differential interferometric synthetic aperture radar (DInSAR) has proven itself 

to be an invaluable tool for monitoring land surface motion, capable of monitoring large 

areas at a low cost and at spatial scales not reasonably achievable by traditional in situ 

measurements (GPS surveys, slope inclinometers, tiltmeters, accelerometers, strain 

gauges and thermistors) and, sometimes, over areas not accessible at all (Milillo et al., 

2015). Despite relatively few examples in the oil and gas industry (e.g., Ferretti, 2014), 

DInSAR is able to provide remarkable data, particularly for the upstream sector, namely 

the exploration, appraisal and production stages. 

During exploration, SAR amplitude data can detect offshore oil slicks, e.g. oil seepages 

as an indicator of hydrocarbon existence (Leifer et al., 2012).  During appraisal, ground 

motion results support site safety since risk areas of potential fault reactivation or 

possible well failure can be identified at an early stage (Davies et al., 2013; Wilson et al., 

2015). During production DInSAR measurements can aid the assessment of whether the 

pressure of injection is correctly distributed over the area and the evaluation of the 

storage stability, since millimetric surface uplift could be one of the indicators for a 

potential storage leak.  For Enhanced Oil Recovery operations, DInSAR monitoring is 

able to contribute to production efficiency (Yang et al., 2015).  Finally, radar ground 

movement monitoring can be potentially used to provide warnings about potential risks 

for pipelines and Liquid Natural Gas terminals in areas suffering from landslides or 

subsidence hazard (Hole et al., 2012). The surface movement thus constitutes a signature 
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of the processes in the reservoir and can provide information about the surface and 

subsurface processes. 

 

An early demonstration of this capability was on the In Salah Gas Project in Algeria from 

which gas production began in 2004 (Onumaa and Ohkawa, 2009; Ringrose et al., 2009). 

The produced natural gas from the individual fields within In Salah is not pure methane. 

Up to 10% CO2 is present and this needs to be removed before the gas can be sold.  BP 

and partners chose to re-inject the separated CO2 rather than vent this greenhouse gas; 

storing it permanently underground in the same formations from which the natural gas is 

produced, albeit at a distance from the gas production areas (Bishop et al, 2004).  As 

injection of CO2 progressed, patterns of land surface heave were detected by DInSAR.  

Such data provided unique and critical information to the 4D reservoir model (spatial and 

temporal) that was invisible to conventional seismic surveys undertaken at the same time 

(Mathieson et al, 2009).  

The In Salah project was undertaken in a non-vegetated, bare rock, desert area, which is 

excellent terrain for a DInSAR survey. This is because most DInSAR algorithms that 

span an extended period of time are limited to localities, typically rocky or urban terrain 

types, that unfailingly display high coherence or high phase stability for the entire period 

of image acquisitions. In the presence of vegetation, however, the majority of InSAR 

techniques either fail to work or provide very sparse coverage indeed (Crosetto et al., 

2010; Osmanoğlu et al., 2015).  Consequently, the spatial distribution of points is rarely 

sufficient to depict a large-scale feature that continues over dissimilar and dynamic land 

covers, such as may occur for an underground reservoir. As a result, only parts of the 
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subsidence patterns may be visible with some being missed altogether, which can lead to 

the incorrect interpretation of the results. This is a severe restriction to the application of 

DInSAR to reservoir monitoring in mid- and polar-latitudes as well as areas of tropical 

vegetation but not over desert areas, such as In Salah. 

A potential solution to the vegetation problem is the Intermittent Small Baseline Subset 

(ISBAS) method (Sowter et al., 2013), developed at the University of Nottingham, which 

is a modification of the widely-used SBAS (Berardino et al., 2002) DInSAR time series 

processing algorithm.  The modification recognises the intermittent nature of coherence 

over vegetated areas, exploiting this characteristic in an attempt to draw out the 

underlying land motion.  Results have greatly increased the density of measurements over 

regions largely dominated by rural land cover, leading to a more consistent overall 

coverage and a more confident interpretation. It has been used to determine surface 

movements in various application areas including; coal extraction in the UK (Sowter et 

al., 2013, Novellino et al., 2014a, Bateson et al., 2015), landslips in Italy (Novellino et 

al., 2014b), elevation changes associated with blanket peat in Wales (Cigna et al., 2014) 

and groundwater abstraction in Mexico (Sowter et al., 2016). 

There are a number of different ways to apply DInSAR to derive time series. Two broad 

categories exist (Hooper et al., 2012): ‘persistent scatterer’ and ‘small baseline’ 

approaches. Persistent scatterer approaches (e.g. Ferretti et al., 2001; Hooper et al., 2004; 

Kampes, 2005) target resolution pixels whose scattering characteristics remain constant 

when viewed from different angles and in time; whereas, small baseline approaches (e.g. 

Berardino et al., 2002; Mora et al., 2003; Schmidt and Bürgmann, 2003; Pepe et al., 

2005; 2011; Lanari et al., 2007) target resolution cells that contain a distribution of 
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scatterers, inverting many interferograms to derive displacements. Additionally, there are 

algorithms that utilize both scattering types (e.g. Hooper, 2008; Ferretti et al., 2011). The 

ISBAS method is able to apply linear and non-linear models to land motion, to generate 

either a simple velocity per point or a profile of the deformation over time. 

The ISBAS algorithm has previously been validated by contextual comparisons only, 

where the pattern of ground motion correlates with the geology and, in some cases, 

appears bound by existing fault structures (Bateson et al., 2015). This has essentially been 

motivated by the lack of historical survey observations in the vegetated classes. However, 

whilst a contextual interpretation provides spatial confirmation, there is a need for a more 

quantitative validation of ISBAS products. A geological validation cannot corroborate the 

rates of ground motion observed and there remains an amount of ambiguity and 

uncertainty around the algorithm’s performance. Comparisons with existing surveyed 

observations on the ground can overcome this but, when using historical satellite 

observations as in this paper, there is seldom any off-the-shelf archive of ground truth 

with the desired spatial coverage or precision that were acquired with sufficient 

frequency during the specific period of the satellite observations.  Furthermore, there is 

seldom any such data in rural locations where such measurements may be more difficult 

to procure.  

Therefore, the principal aim of this paper is to conduct a quantitative validation of the 

ISBAS method through comparison with ground observations.  In this aspect, we found 

an existing project was able to provide the necessary ground truth to achieve this: the 

Terrafirma Validation Project (TVP) (Crosetto et al., 2008; Hanssen et al., 2008).  During 

this project, DInSAR surveys using persistent scatterers interferometry (PSI) were used to 
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monitor land movement in a gas production area in the Netherlands. The TVP ran within 

Stage 2 of the European Space Agency-funded Terrafirma project, demonstrating a 

significant PSI validation exercise of four Operational Service Providers (OSPs). The 

principle objective of the TVP was to validate motion data products via a product 

validation workgroup which brought together national geodetic and geological 

organisations, commercial radar remote sensing companies, government research 

institutions and end users to determine the consistency and accuracy of PSI motion 

monitoring.  The TVP validation data set has been made publicly available specifically 

for the assessment of similar DInSAR algorithms.  The availability of this data set 

therefore affords an opportunity to determine the accuracy of ISBAS products and to 

compare the accuracy of ISBAS with the PSI products generated by the TVP (Crosetto et 

al., 2008; Hanssen et al., 2008). 

The main objective of this paper, then, is to apply the ISBAS DInSAR technique to SAR 

data of the gas fields of North Holland, validate the results using the TVP data and 

highlight any qualitative and quantitative improvements. We will conclude by 

underlining the implications of this for the future mapping and modelling of land surface 

displacements caused by gas fields. It should be noted this paper is focused on the 

validation of the ISBAS method, and is not a comparison against other processing 

algorithms designed to improve coverage in rural environments, such as SqueeSAR 

(Ferretti et al., 2011). 
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2. North Holland  

2.1 Land Cover  

The area of interest (AOI) for the validation is situated in North Holland, the Netherlands, 

and covers an area of 517 square kilometres (fig. 1a). Five different basic land cover 

classes were determined using a supervised classification on a Landsat 7 Enhanced 

Thematic Mapper Plus (ETM+) image acquired on 24th August 2000. 

The results of the classification are shown in fig. 1b. The land cover consists of: 69% 

agricultural fields, 0.1% sand dunes, 22.1% urban districts, 0.8% water bodies and 8.1% 

woodland. Mixed agriculture dominates in the province, with much of the best 

agricultural land found below sea level on reclaimed polders. The west coast is 

characterised by a long thin belt of sand dunes that protect the province from the North 

Sea. The AOI contains the cities of Alkmaar and Heerhugowaard; and the towns of Broek 

op Langedijk, Bergen, Heiloo, Castricum, Utigeest, Krommenie and Wormerveer. 
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Fig. 1. (a) Map locating the North Holland province and area of interest (AOI) within the 

Netherlands (b) Land cover classification of the AOI conducted on Landsat 7 ETM+ 

imagery (24th August 2000).  

 

2.2 History of Gas Production 

After Groningen, the largest natural gas field in Europe, the Alkmaar area is the most 

important gas-producing region in the Netherlands (Grötsch and Gaupp, 2011).  

Exploration began in 1962 when the Amoco Netherlands Petroleum Company 

commenced drilling. The Amoco group discovered the Heiloo and Schermer reservoirs in 

1964 (fig. 2); however, in November 1965 the Dutch government suspended drilling 

awaiting an enactment of exploration legislation, which arrived on May 3rd 1967 when 

the Mineral Exploration Act was published. Operations progressed slowly due to 

legislative issues and environmental protest groups. The surface environment of the area 

presents a challenge with respect to exploration and production; much of the 

northwestern part of the country is located below sea level, protected from the sea by 

sand dunes. The polder land and dunes have their own ecological balance which is 

predominantly controlled by ground-water conditions. The ecological and economic 

quality of the polder land below sea level is maintained by strict management of surface 

and ground water. The dunes constitute a vast fresh-water reservoir, utilized as a drinking 

water reserve, and is therefore protected against any activity that might jeopardize its 

integrity such as drilling operations or seismic activity. Additionally, the area contains a 

nature reserve and the historic city of Alkmaar. Any disruption the flora and fauna of the 

reserve and the century old buildings of Alkmaar would have been unacceptable and 
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therefore it was not until September 1972 that the first field, Bergermeer, came on 

stream. It was swiftly followed by Groet in 1974, Bergen in 1978, Schermer and Alkmaar 

in 1979 and Heiloo in 1982 (Van Lith, 1983).  The locations of these fields are shown in 

fig. 2. 
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Fig. 2. Location map showing the AOI and the gas fields 

 

2.3 Geological Setting 

Productive reservoirs have been found at depth from 1200 to 2000 m in the Permian, 

Upper Rotliegend Group, Zechstein Group and Lower German Triassic Group 

(Buntsandstein) (Kaasschieter and Reijers, 1982). In the Alkmaar area all formations 

consist of sedimentary rocks; the oldest formations drilled belong to the Limburg Group 

(Late Carboniferous) which is unconformably (Saalian unconformity) overlain by the 

Early Permian Upper Rotliegend Group, the main gas reservoir (fig. 3). The Upper 

Rotliegend group encompasses coarse (e.g., Slochteren Formation) and fine-grained (e.g., 

Silverpit Formation) clastic sediments, predominantly of red-bed type, as well as 
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evaporites with a thickness in the order of 200 to 270 m (Van Adrichem Boogaert, 1976). 

The net-to-gross ratio is quite high (>80%) in the moderately cemented sandstone layers 

with porosity in the 15-20% range. The lower boundary of the Zechstein Group in the 

basin has been taken at the base of the Coppershale, a thin, black, bituminous shale bed 

recognized over practically the entire Southern Permian Basin, which provides an 

excellent marker horizon (fig. 3). In addition, a series of subsequent evaporite layers, due 

to a marine transgression, function as a sealing layer of the Rotliegend Group reservoir 

rock.  

 

The Zechstein Group accumulated as a series of marine/playa sequences consisting of 

anhydrite, carbonate and clay for a total thickness of ≈200 m in the study area (Van Gent 

et al., 2011) where another reservoir, the Z3 Leine Formation (Plattendolomite), occurs. 

The Z3 Leine Formation is a light brown dolomite with intercrystalline and locally vuggy 

porosity, interbedded with light to dark grey, argillaceous and slightly carbonaceous, 

dense dolomite, with a thickness of 40-50 m. The Plattendolomite reservoir has a variable 

quality with porespace changing from a few percent to 20%; much of its porosity is 

vuggy or intercrystalline and interconnected via pervasive fractures and joints. As for the 

Zechstein Group, the Buntsandstein name has also been derived from the German 

stratigraphic nomenclature of the Triassic period. The Buntsandstein is a group of 

formations composed mainly of ≈300 m red-bed-type sandstones, siltstones and 

claystones, situated between the top of the Zechstein Group and the Base Solling 

Unconformity (also known as Spathian Unconformity), which marks the base of the 

Upper Germanic Trias Group. Differently, the base is characterized by a succession of 
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red-brown to green silty, sometimes anhydritic claystones (the Main Claystone Member) 

which overlay the Zechstein strata (fig. 3). The net-to-gross ratio in the Buntsandstein is 

as high as is the porosity, typically 20-25%. 

 

 

 

 

Fig. 3. Schematic stratigraphy of the study area for the Middle Permian Epoch to Early 

Triassic Epoch. Fm=Formation; Mb=Member. 
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2.4 Reservoir Compaction and Induced Seismicity 

Vertical land movements, the variation in the position of land with respect to sea-level, 

have been inferred to occur in the Netherlands using different geodetic and geological 

indicators (Kooi and De Vries, 1998). Contributions to this changing land–sea 

relationship include different and, overlapping, geological processes: the long-term 

tectonic and isostatic subsidence of the crust, representative for time scales of 106-107yr, 

and others at shorter time scales of 100-103 yr, such as the Pleistocene sands (Kooi and 

De Vries, 1998) and reservoir compaction related to gas production (Lorentz et al., 1995), 

which in the AOI, is the predominant phenomenon, and is often associated with induced 

seismicity (van Wees et al., 2014). 

The compaction of a porous medium, such as reservoir layers and acquifers, relates to the 

Terzaghi’s principle of one-dimensional consolidation (Terzaghi, 1925). Under this 

principle, when the total stress remains constant, a change in pore fluid pressure causes 

an equivalent change in the effective stress within the reservoir system, which causes the 

system skeleton to compress or expand under the new load. Therefore, if effective stress 

is increased by fluid withdrawn, the reservoir system compresses elastically. The degree 

of resulting compaction depends on the compressibility of the reservoir rock, reservoir 

thickness and its depositional history and boundary conditions (Gluyas and Cade, 1997; 

Galloway et al., 1998; Nagel, 2001). 

Continually, the poroelastic theory, formulated by Geertsma (1957; 1966), has 

specifically addressed the rock mechanical problem of reservoir compaction due to 

production pressure depletion through the stress–strain relationship. 
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The consequences of the subsurface compaction affect both hydrocarbon production and 

reservoir management, arising safety issues related to platform stability and 

environmental impact. 

Seismic events are a further consequence of gas production and are often associated with 

reservoir compaction (Wilson et al., 2015). They occur as a result of slip on pre-existing 

surfaces (Zoback and Zinke, 2002), which can be initiated by a variety of mechanisms 

including geochemical reactions, pore pressure variations, temperature effects and the 

reactivation or locking of pre-existing faults (Suckale, 2009). Induced seismic activity in 

the north of the Netherlands began in 1986; five notable events have previously occurred 

in the area of interest, four in the Bergermeer reservoir and one the Bergen reservoir 

(Haak et al., 2001). Despite small earthquakes ≤3.5ML, the Alkmaar area is considered 

an area of low seismic hazard (van Eck et al., 2006), constituting less of a risk than the 

Groningen gas field in north-eastern Netherlands (TNO, 2015; van Thienen-Visser and 

Breunese, 2015). Dutch mining legislation introduced in 2003 requires that operators 

assess seismic hazard as part of a risk appraisal before exploration and production 

licenses can be awarded (van Eijs et al., 2006).    
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3. ISBAS Analysis  

3.1 Processing  

Forty-two ERS-2 SAR descending images acquired between 19th July 1995 and 16th 

August 2000 (Table A.1) and sixty-three ENVISAT ASAR descending images acquired 

between 19th March 2003 and 8th September 2010 (Table A.2) were processed separately 

using the ISBAS technique. Both data sets had restrictions of a maximum of 250m on the 

perpendicular baseline and four years on the temporal baseline applied, values commonly 

applied to SBAS surveys. Multilooking (spatial averaging of pixels) was implemented 

using a 4 x 20 window size, producing pixels of 100m x 100m in ground range and points 

deemed coherent were those which displayed an average coherence greater or equal to 

0.25, a threshold again common to SBAS surveys using ERS or ENVISAT data. 

The perpendicular orbital baseline (Bperp) relative to the master, plotted against the 

relative time (temporal baseline) of each image is illustrated for each case in fig.4.  Each 

image appears as a vertex and, when a pair of images forms a differential interferogram 

meeting the restrictions, a line is drawn between them, as illustrated. 

ISBAS processing is then performed only on points that meet a minimum quality 

criterion (called coherent points).  This criterion is based upon that point being of 

sufficient quality in a minimum number of interferograms.  If there are N interferograms 

in total, an interferogram threshold m (such that m ≤ N) is selected such that, if the point 

shows sufficient quality (coherence) in a minimum of m interferograms then it is used; 

otherwise, it is discarded.  This rule allows the ISBAS algorithm to accept points that 

may not be high quality in all interferograms, which is a characteristic of vegetated sites.  
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It must be recognised that points with a high value of m are high quality, meaning that 

they are more coherent.  However, such points are fewer and would likely not provide 

sufficient coverage of all land cover classes.  The choice of m, therefore, is a trade-off 

between coverage and quality. The values of m have a direct relationship to the final 

standard error (Cigna et al., 2014) and so a good value based on coverage and acceptable 

standard error can be estimated on a case-by-case basis.   

In all aspects of the processing, close attention was made to the quality of intermediate 

stages, such as phase unwrapping, and identifying the presence of any anomalous effects 

such as persistent atmospheric anomalies. No obvious errors were detected or were 

filtered out during baseline correction. 

The ERS data analysis resulted in 294 multi-looked differential interferograms (fig.4a) 

and an interferogram threshold of m = 90 was applied. The derivation of linear velocities 

for each coherent point was then performed using a reference point at 52°38'02.7"N 

4°45'56.2"E located in Alkmaar.   Reference points act as a benchmark for the 

deformation (i.e. all derived deformations are relative to this point).  For this reason, 

these points are expected to be stable, of zero velocity, and, to aid the analysis, highly 

coherent in all N interferograms. To ensure the ground motion was relative to a stable 

location, the reference points were located in areas where levelling data indicated it was 

most stable during the period of observation, which was different for the ERS and 

ENVISAT data analysis. 

The ENVISAT data analysis resulted in 636 multi-looked differential interferograms (fig. 

4b) and an interferogram threshold of m = 210 was used. The derivation of linear 
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velocities used a reference point at 52°35'47.2"N 4°42'33.2"E, located in the town of 

Heiloo, approximately 2km south west of Alkmaar.  

The analysis results in a line-of-sight (LOS) velocity (vLOS) for each coherent point, 

towards or away from the satellite.  If we simplistically assume that all motion is vertical, 

to enable an equivalent comparison with the results of the TVP, the vertical velocity 

(vvert) is given by: 

       ����� =
���	


��
        (2) 

where θ is the incidence angle from the surface normal, approximately 23° at scene 

centre for both of the ERS and ENVISAT frames used here.  

One of the benefits of the ISBAS analysis is that the increased density of points 

processed allows phase unwrapping to be performed in confidence across the entire area 

of the image.  Here, the ISBAS analysis was actually performed on the complete 100 km 

x 100 km image frame in both ERS and ENVISAT cases. 

 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

a) b) 

 

Fig. 4. Temporal and perpendicular baselines of the image pairs relative to the master (a) 

ERS SAR (master:  27th August 1997) (b) ENVISAT ASAR (master: 11th July 2007).  

  

3.2 Results using a Linear Model of Deformation 

Using a linear model of the deformation results in the generation of rates of motion 

(velocities) for each coherent point across the scene.  These are shown in fig. 5. 

In the ERS case, coherent points covered 80% of the total land surface contained in the 

entire frame (fig. 5a). The distribution of point velocities was densest in urban regions but 

also extended into rural areas, over agricultural fields and woodland.  The complete 

image frame contains several areas of deformation that fall outside of the AOI and are not 

the subject of this paper.  However, it is interesting to note that the largest area of 

deformation, in the southwest of the frame, appears to correspond to a peatland area 

known as the Green Heart (Groene Hart), already the subject of DInSAR surveys 

(Cuenca and Hanssen, 2008) and also falling in a predominantly rural region. 
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a) b) 

In the ENVISAT case, coherent points covered 88% of the total land area of the full 

frame (fig. 5b). Following the same trend of the ERS analysis, the ISBAS result produced 

a wide and even spread of point velocities across the scene.  However, as will be 

discussed below, the amount of deformation observed was far less than in the ERS 

survey. 

As indicated above, the best quality points occur when m=N (i.e. m=294 for ERS and 

m=636 for ENVISAT).  However, these points account for only 7% of the ERS and 10% 

of the ENVISAT total land cover. Furthermore, the distribution of these points are 

limited to urban centers and other locations where scatterers are more stable and 

decorrelation is less prominent. For instance, considering only the ERS points that lie 

within the area of interest (AOI), 74% of such points are located in urban land cover (and 

urban land cover only makes up 22% of AOI).  

Below we will discuss the linear deformation results within the AOI boundary for the 

ERS and ENVISAT surveys, respectively. 
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Fig. 5. (a) ERS ISBAS vertical velocities (b) ENVISAT ISBAS vertical velocities.  

 

ERS  

In the AOI the mean velocity of all points was -0.93 ± 1.09 mm/year with a maximum 

subsidence of -7.45 ± 1.59 mm/year and a maximum uplift of 4.55 ± 1.17 mm/year (fig. 

6a); the standard error ranged from 0.27 – 2.29 mm/year (fig. 6c). Lower standard errors 

are observed in urban areas, as may be expected due to the likelihood of more coherent 

interferograms per point, m (fig. 6e). The predominant source of error is seen within 

targets exhibiting intermittent coherence, with a strong correlation in relation to the 

standard error and the number of interferograms used in the calculation of the velocity 

(fig. 6c and fig.6e).  

Overall, the AOI displays little ground motion and where motion does occur it is 

relatively small, up to around 3mm/year maximum (fig. 6a). The most significant area of 

ground motion is located to the west of Alkmaar, where a clear boundary of stability and 

subsidence can be seen at the edge of urban Alkmaar. Ground motion here can be 

attributed to natural gas extraction as the results show good correlation with the extents of 

the Bergermeer reservoir (fig. 6a and fig.9c). Although the deformation is large enough to 

be detected, the pattern appears noisy, particularly in the rural areas where there is a 

higher standard error (Table 3).  Our confidence in identifying this signal as real 

deformation depends on its relative strength to the background noise and, in this case, a 

rate of 3mm/year is just above the 99% confidence level (3 sigma). Had a greater level of 
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deformation signal been present in the data a smoother more confident subsidence pattern 

would almost certainly have been observed, as was present in previous studies of 

spatially correlated motion using the technique (Bateson et al., 2015; Sowter et al., 2013; 

Sowter et al., 2016).  

 

ENVISAT  

Following the ISBAS analysis the mean velocity of all points in the AOI was -0.33 ± 0.65 

mm/year, with a maximum deformation of -3.91 ± 0.86 mm/year and maximum uplift of 

3.64 ± 0.74 mm/year (fig. 6b). The ISBAS standard error ranged from 0.17 – 1.12 

mm/year (fig. 6d). Similarly to the ERS results, higher standard deviations were seen in 

rural areas due to the reduced likelihood of coherent interferograms per point, m (fig. 6d 

and fig. 6f). The same correlation is found with regards to the standard error and m, 

confirming that the main source of error is found in points encompassing intermittent 

coherence, predominantly located rural areas (Table 3).  

There was a much smaller deformation signal in the ENVISAT data, which proved to be 

more stable than the ERS survey (fig. 6a and fig. 6b). There is still a very minor pattern 

that follows the trend with the ERS time series where points over Alkmaar are stable and 

with some subsidence to the northwest in the region of the Bergermeer reservoir and 

southeast in the region of the Schermer reservoir (fig. 6b).  

 

 Agriculture Sand Urban Woodland 

ERS standard error (mm/year)     
Mean 1.17 1.14 0.84 1.19 
Range 0.34-2.29 0.61-1.54 0.27-2.04 0.37-1.94 
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ENVISAT stand error (mm/year)     
Mean 0.70 0.56 0.50 0.66 
Range 0.25-1.12 0.40-0.92 0.17-1.03 0.26-0.94 

 

Table 3 

Standard error per land cover classification within the area of interest (AOI).  
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Fig. 6. (a) ERS ISBAS vertical velocities (b) ENVISAT ISBAS vertical velocities (c) 

ERS ISBAS standard error (d) ENVISAT ISBAS standard error. (e) ERS ISBAS 

a) b) 

c) d) 

e) f) 
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coherent interferograms per point (m) (f) ENVISAT ISBAS coherent interferograms per 

point (m).  

 

3.3 Results using a Non-Linear Model of Deformation 

A non-linear model was applied to both ERS and ENVISAT datasets, using a similar 

method as that proposed by Berardino et al. (2002) for SBAS. This method 

systematically applies temporal and spatial filters to deduce the atmospheric phase screen 

from the phase residuals and the accuracy is difficult to determine without comparison 

against detailed profiles. Ground truth for InSAR measurements are rarely available in 

sufficient densities, to within the desired precision and are often unreliable, difficulties 

which are more restrictive to validation attempts in rural environments. It is notoriously 

difficult to implement quality control due to the absence of a known scatterer, the phase 

ambiguity estimation problem and the absence of redundant measurements (Marinkovic 

et al., 2007). 

Fig. 7 displays the resulting deformation time series of four arbitrarily selected coherent 

points, the locations of which are marked on fig. 6. In these examples two points were 

selected from urban and rural land covers for both ERS and ENVISAT data sets, 

respectively. It is evident that ISBAS points that fall in agricultural or woodland areas 

(fig. 7b and fig. 7d) are noisy when compared with the results of the linear displacement 

model; ISBAS points that fall in urban areas (fig. 7a and fig. 7c) are far less noisy and 

follow closely the linear model. This is reflected in the standard errors, which are greater 

for points falling in rural areas because of the reduction in the quantity of coherent 

interferograms per point (m) and potentially the network used for the inversion. The 
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standard error is over twice as high over vegetation in both the ERS and ENVISAT data 

sets which may also be used as an indication of the unreliability of time series outside of 

urban classes.  
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Fig. 7. Non-linear time series for selected ISBAS points. The crosses represent the 

ISBAS non-linear displacements and the lines represents the ISBAS linear displacements 

which were derived separately. (a) ERS ISBAS in urban land cover (b) ERS ISBAS in 

(a) (b) 

(d) (c) 
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rural land cover (c) ENVISAT ISBAS in urban land cover (d) ENVISAT ISBAS in rural 

land cover.  

 

4. Results  

4.1 Levelling Benchmarks  

Levelling data were provided to the TVP by the Rijkswaterstaat. Benchmarks attained 

were of the 1st order which define the Amsterdam Ordnance Datum (NAP), located 

approximately 30 metres below the surface established on Pleistocene sand deposits. 

Benchmarks for the ERS and ENVISAT validation were prepared separately, with 

levelling campaigns approximately four years before and after the radar acquisitions 

being utilized. There were five significant campaigns that contained over 200 

measurements in the ERS validation and four campaigns with over 200 measurements in 

the ENVISAT validation. Estimates of displacement velocities from the levelling data 

were computed for each benchmark, fitting a linear trend through the levelling heights. 

Only those benchmarks that had three or more measurements were used in the validation 

to ensure confidence in the calculated velocity. Fig. 8 displays an example of a levelling 

benchmark used in the ERS validation, where it is evident that a linear model is suitable 

for the observed subsidence. Once fitted, linear velocities could be calculated; 235 

benchmarks satisfied the conditions for the ERS validation and 210 for the ENVISAT 

validation. The quality of the heights estimated from levelling benchmarks can only be 

estimated, as precise information is not available. The original levelling data has a 

precision of 0.7 mm per square kilometer, but the variance-covariance matrix of the 

heights could not be reconstructed due to unknown network design and adjustment 
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procedures. Consequently, as was assumed in the TVP, the heights are presumed to be 

uncorrelated with a standard deviation of 1 mm/year.  

 

Fig. 8. The linear displacement model estimated for Benchmark ID:019A0137 for the 

ERS time series. The vertical dashed lines represent the start and end of the SAR 

acquisitions.  

 

4.2 The Spatial Distribution of the Linear Deformation Results 

To qualitatively investigate the spatial relationship between the ISBAS-derived linear 

velocities and the velocity of the levelling benchmarks, levelling benchmarks were 

overlaid on ISBAS products. The results are in approximate agreement; it is evident that 

in the ERS data both the ISBAS and levelling techniques have identified an area of 
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subsidence around the Bergermeer reservoir, while there is a lack of motion over the city 

of Alkmaar (fig. 9a and fig. 9c). The ENVISAT data shows a similar pattern but the 

subsidence rates over the Bergermeer reservoir have fallen considerably, whereas 

Alkmaar remains stable (fig. 9b and fig. 9d). Crucially, there is a consistency between the 

data; both in the patterns of stability and subsidence identified by the levelling and 

ISBAS analysis and in the differences between the ERS and ENVISAT data, where 

higher rates of subsidence area identified in the ERS data. In addition, the assumed 

accuracy of the levelling heights is ±1mm/year, while within the AOI the mean standard 

error of ISBAS points in the ERS analysis was 1.00 mm/year. Consequently, on average 

up to a 2 mm/year difference between velocities derived from ISBAS analysis and 

levelling could be accounted for in the standard errors. 

The ISBAS analysis appears to give excellent coverage over the complete site; with 

coverage achieved in rural land cover at locations over the gas reservoirs. The ISBAS 

analysis covers most of the region extending over woodland and agricultural areas and 

demonstrates that subsidence occurs across this region. Points are certainly less reliable in 

rural areas but we can still be measurably confident about such points as demonstrated by 

the standard error. Despite the intermittent nature of coherent ISBAS targets, the 

coverage has not come at the sacrifice of the quality with a mean standard error in the 

AOI of 1.00 mm/year and 0.65 mm/year for the ERS and ENVISAT data sets 

respectively. If warranted by the quantitative analysis, the additional coverage would 

clearly be of benefit as it provides a more complete description of the spatial distribution 

of deformation. 
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Fig. 9. (a) ERS ISBAS vertical velocities with levelling benchmarks overlaid (b) 

ENVISAT ISBAS vertical velocities with levelling benchmarks overlaid. (c) ERS ISBAS 

vertical velocities with levelling benchmarks overlaid in the area of Alkmaar (d) 

ENVISAT ISBAS vertical velocities with levelling benchmarks overlaid in the area of 

Alkmaar. a marks the Groet-Oost reservoir, b the Bergermeer reservoir and c the 

Alkmaar reservoir.  
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4.3 Quantitative Comparison of the Measured Linear Velocities  

In this analysis, ISBAS point velocities are directly compared with the levelling 

measurements.  However, it is important to recognise that the ISBAS velocities 

correspond to an area of approximately 100m x 100m whereas the levelling points are 

likely made on isolated survey pegs or nails corresponding to dimensions of only a few 

centimetres at most.   On the assumption that the velocity of the levelling point was 

characteristic of its surroundings, each levelling benchmark velocity was compared with 

the nearest point velocity from the ISBAS survey and, where no ISBAS velocity fell 

within 50 metres, the levelling benchmark was discarded from the analysis. This left each 

remaining levelling benchmark with a corresponding ISBAS point velocity for 

comparison. 

One hundred and twenty-eight levelling benchmarks fulfilled the criteria for the ERS 

ISBAS/levelling validation and 187 locations for the ENVISAT ISBAS/levelling 

validation. The root mean square error (RMSE) of the difference between the two 

measurements for the ERS velocities was 1.52 mm/year while the ENVISAT case 

produced a smaller RMSE of 1.13 mm/year (Table 4). The histograms of the differences 

are displayed in fig. 10. 
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Fig. 10. Histograms of the difference in velocity (Levelling velocity – ISBAS velocity) 

(a) ERS (b) ENVISAT. Abs=Absolute.   

 

As previously stated, the predominant source of error is seen within targets exhibiting 

intermittent coherence (rural areas), with a correlation between the standard error and m 

(fig. 6). It was therefore investigated whether the high quality points, predominantly 

found in urban areas, produced a smaller error with respect to levelling. The ISBAS 

analysis was divided into two categories, rural and urban. The RMSE was calculated for 

urban points and for rural points. A large difference was found in the ERS data where 

points with constant coherence were 0.47 mm/year more accurate than those displaying 

intermittent coherence. The difference was far smaller in the ENVISAT data where 
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points with constant coherence only 0.06 mm/year more accurate than those displaying 

intermittent coherence. Table 4 summarizes the results.   

Previous investigations have shown that other DInSAR techniques are limited in their 

spatial coverage, typically restricted to urban and rocky environments (e.g., Li et al., 

2014; Osmanoglu et al., 2015; Gong et al., 2016).  Prior studies using the ISBAS method 

have demonstrated that the spatial extent of ISBAS velocities is improved and the 

patterns of land motion correlate to geology (Sowter et al., 2013; Bateson et al., 2015).  

Here, we have shown a similar improvement in spatial coverage and also report that, 

where available, the quantitative measurements are correct.  

 

 

 ISBAS Urban ISBAS  Rural ISBAS 

ERS    
No. of Benchmarks 128 24 104 
RMSE ISBAS-Levelling (mm/year) 1.52 1.05 1.61 
    
ENVISAT    
No. of Benchmarks 187 26 161 
RMSE ISBAS- Levelling (mm/year) 1.13 1.07 1.14 

Table 4 

RMSE between ISBAS-levelling. 

 

 

4.4 Comparison of Non-Linear Time Series and Levelling 

Fig. 11 displays a comparison of the displacements derived from the linear ISBAS 

analysis, the non-linear ISBAS analysis and the levelling benchmarks. A comparison is 
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shown for points falling in urban and rural areas for both the ERS and ENVISAT data 

sets, the locations of which are marked of fig.6. The comparison further confirms earlier 

conclusions that the predominant source of error is in points displaying intermittent 

coherence (rural areas), as they are noisier than those displaying constant coherence 

(urban areas).  

The noise in rural areas may be a combination of a number of factors, principally that the 

low number of interferograms (m) will increase the noise in the measurement simply by 

reducing the number of observations and decreasing the redundancy in the observations.  

However, land level in the rural sites may also be subject to environmental noise, such as 

soil shrink/swell, ploughing and tilling, the seasonal growth and harvest of crops and the 

loss of leaf cover for broadleaf trees during the winter period.  The interaction of these 

effects with the radar signal is complex, depending also upon the geometry and moisture 

characteristics of plant and soil.  Therefore, what we detect in a deformation signal using 

an ISBAS analysis is likely to be a combination of all of these factors and any underlying 

signal due to reservoir depletion or injection may be difficult to identify without filtering. 
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Fig. 11. Comparison of levelling benchmarks and neighbouring non-linear ISBAS 

analysis. The crosses represent non-linear ISBAS displacements, the solid linear trend 

(b) (a) 

(c) (d) 
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lines represent the linear ISBAS displacements and the dashed linear trend lines represent 

the linear levelling displacements. (a) ERS ISBAS in urban land cover (b) ERS ISBAS in 

rural land cover (c) ENVISAT ISBAS in urban land cover (d) ENVISAT ISBAS in rural 

land cover.  

 

5. Comparisons with PSI Results from the TVP 

The TVP compared unidentified PSI outputs from four OSPs and a result from TU Delft 

against levelling data for the Alkmaar site (Crosetto et al., 2008; Hanssen et al., 2008).  

These are compared with ISBAS results for the ERS and ENVISAT data sets (fig. 12). 

It is useful to note here that the individual point results generated by the OSPs and TUD 

were not available to this analysis.  Therefore, we are unable to comment upon the spatial 

resolution of the PSI results, which would have been almost an order of magnitude better 

than the ISBAS point measurements. 

5.1 Comparison of Spatial Patterns and Coverage 

The PSI analysis identified the same spatial pattern of subsidence to the west of Alkmaar 

when compared with the ISBAS linear velocities (fig. 12). The comparison verifies that 

where PSI coverage has been possible, velocities are similar, significantly also 

identifying Alkmaar as being stable with subsidence to the west in the proximity of the 

Bergermeer reservoir. In agreement with the ISBAS results, the OSP’s also found greater 

levels of subsidence in the ERS data than in the ENVISAT data.  The PSI results are 

available from Hanssen et al. (2008, p.19-20).  
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The identification of subsidence to the west of Alkmaar is much clearer from the ISBAS 

point density (fig. 12a and fig.12b). This is due to the general observation that PSI only 

produces point velocities of a significant density over urban regions, which 

predominantly only show subsidence in the west of Alkmaar, and limited velocities over 

the Bergermeer reservoir in the town of Bergen. The inconsistent coverage of the PSI 

surveys has meant that a clear subsidence pattern may not be formed over the whole area 

(fig. 12c and fig. 12d). 

It should be noted that the high quality ISBAS points, where coherence is constant (i.e. 

m=294 for ERS and m=636 for ENVISAT), fall mainly in the urban areas in 

approximately in the same locations as the OSP’s PSI analyses (fig. 12e and fig.12f). 

This illustrates the capability of the ISBAS analysis to produce meaningful results in such 

areas, as well as the rural land classes. The benefit of relaxing the needs for coherence to 

be present in every interferogram is evident, with the ERS and ENVISAT ISBAS 

analysis covering a far greater portion of the scene. ISBAS is able to demonstrate that 

subsidence occurs across this region, something that the PSI results shown here were 

unable to achieve.  
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Fig. 12. (a) ERS ISBAS vertical velocities (b) ENVISAT ISBAS vertical velocities (c) 

ERS PSI from OSP D (from Hanssen et al., 2008) (d) ENVISAT PSI from OSP D (from 

Hanssen et al., 2008) (e) ERS ISBAS coherent interferograms per point (m) (f) 

a) b) 

c) d) 

e) f) 
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ENVISAT ISBAS coherent interferograms per point (m).  The centre of Alkmaar is 

located at 52.63N 4.75E and the centre of Bergen is located at 52.67N 4.71E.  

 

5.2 Comparison of Linear Displacement Velocities  

The TVP concluded that the RMSE of the differences between PSI-levelling were 

between 1.04 – 1.54 mm/year for the ERS time series and 1.26 – 1.79 mm/year for 

ENVISAT (Table 5). These results are comparable with the RMSE of ISBAS-levelling 

shown in Table 5: 1.52 mm/year for the ERS time series and 1.13 mm/year for the 

ENVISAT time series. The ERS ISBAS analysis has produced a result which is within 

the error achieved using PSI; the ENVISAT ISBAS analysis proved more accurate than 

all five TVP results, with an RMSE 0.13mm/year smaller than the most accurate PSI 

result. ISBAS products have therefore produced similar accuracies to PSI with the 

significant benefit of an output that covered almost the complete scene.  

 

 ISBAS TVP A TVP B TVP C TVP D TVP E 

ERS       

No. of Benchmarks 128 36 151 58 58 47 

RMSE DInSAR-Levelling (mm/yr) 

 

1.52 1.07 1.54 1.04 1.23 1.18 

ENVISAT       

No. of Benchmarks 187 76 118 80 49 90 

RMSE DInSAR-Levelling (mm/yr) 1.13 1.51 1.79 1.63 1.26 1.54 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 5 

A comparison of the RMSE ISBAS-levelling (mm/year) and the PSI-levelling (mm/year) 

from five products used in the TVP. 

 

5.3 Comparison of Non-Linear Displacements  

Unfortunately, non-linear displacements from the PSI results were only available for a 

single point (Hanssen et al., 2008) and there was no ISBAS coherent point within 50m of 

sufficient quality for a realistic comparison.  We were therefore unable to complete this 

part of the analysis. 

 

6. Discussion  

The history of the Bergermeer gas reservoir confirms the ISBAS displacements in time 

and space. The deformation measured during the ERS observation period (1995-2000) 

corresponds with the exploitation of the reservoir until 2007 and consequent decline in 

pressure that resulted in subsurface compaction. The reservoir was converted into a gas 

storage site after 2007, where injection of cushion gas commenced to bring pressure to a 

workable operating value.  The ENVISAT results (2003-2010) reflect these increasing 

pressure values in the Upper Rotliengend Group (Fokker et al., 2016). In space, 

differential ISBAS displacements over Bergermeer are characterized by higher 

subsidence in the northeastern sector, in agreement with the occurrence of two 

compartments separated by a narrow NW-SE trending fault (Orlic et al., 2013) which 

generated four earthquakes between 1994 and 2001. 
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Based upon the ISBAS displacements for the ERS time span (fig. 13a), the forward 

model of Mogi (1958) (fig. 13b) has been constructed to match surface subsidence with 

reservoir compaction within the Bergermeer reservoir, following the point pressure 

approach and considering a layered subsurface with non-uniform mechanical properties 

(Manconi et al., 2007). The model utilized a decreasing pore pressure of ≈10 MPa, as 

reported by the Netherlands Organization for Applied Scientific Research (TNO, 2008) 

for the corresponding time period, along with the elastic parameters for the different 

geological units (Young’s modulus and Poisson ratio) available in Fokker et al. (2016). 

The nucleus of strain approach proposed by Geerstma, which more accurately simulates 

reservoir compaction due to production pressure depletion (Geertsma and Van Opstal, 

1973), could not be formulated due to the lack of local pressure change data within the 

reservoir.  

The best displacement pattern resembles five main sources of contraction with a radius 

ranging between 80m and 150m, located in the Upper Rotliengend Group, near the well 

trajectories, at depths of ~2100m.  The overburden encompasses non-uniform elastic 

parameters with decreasing Young’s modulus towards the surface, so the maximum 

vertical and radial displacements are amplified with respect to the homogeneous elastic 

model. 

The estimated source parameters and the restricted uncertainties between the ISBAS LOS 

displacements and simulated deformation, are globally five times smaller than the ISBAS 

displacements (fig. 13b). The correspondence of ISBAS data, in turn, with NAP levelling 

data supports the quality our results. 
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Fig. 13. (a) ISBAS LOS surface displacements at Bergermeer during 1995-2000. (b) 

Simulated LOS displacements determined by the Mogi model applied in this study. (c) 

Residual analysis shows that all layered models yield very good results in reproducing 

the observed surface displacement. Gas well and well trajectory data were attained from 

the Netherlands Oil and Gas Portal (http://www.nlog.nl/nl/home/NLOGPortal.html) and 

earthquake epicentre locations from the United States Geological Society earthquake 

archive (http://earthquake.usgs.gov/earthquakes/search/).  

 

The advantages of the simplified semi-analytic elastic model adopted here are that only a 

few physical parameters have to be determined, producing a rudimentary calculation of 

the ground deformation patterns allowing for a more intuitive understanding of the 
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results. In addition, the model is relatively computationally inexpensive compared with 

the more accurate numerical solutions produced by Finite Element Methods (FEM), 

commonly adopted for simulating surface subsidence and reservoir compaction (e.g., 

Minkoff et al., 2003; Marketos et al., 2015). The effort required to adequately 

characterize complex constitutive models (e.g., material rheology, reservoir geometry, 

and inhomogeneity) and develop stable mesh attributes mean the repetitive calculations 

of complex simulations typical of FEM can make these approaches impractical. 

The forward modelling proves that regular spatial sampling of DInSAR measurements 

are critical to better constrain the source parameters (Hanssen et al., 2008).  In cases 

where a dense coverage is not possible, such as in vegetated areas, it may be necessary to 

supplement DInSAR measurements with ground survey observations, such as GNSS and 

levelling campaigns (Heimlich et al, 2015), or place a network of artificial scatterers, 

such as corner reflectors (Ferretti et al., 2007), in order to fill the gaps to complete the 

model. 

The area between Bergen and Alkmaar is, indeed, vegetated and a clear gap of 

measurements is evident in each of the PSI results generated by the TVP. The ISBAS 

analysis suffers less from decorrelation in this area and regular sampling is preserved 

across the gap; therefore, we conclude that a more confident Mogi inversion may be 

applied using this data. Furthermore, with ISBAS it is not absolutely necessary to use 

additional ground surveys to return survey points in vegetated expanses. 
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7. Conclusions  

This paper was undertaken to validate the ISBAS DInSAR method for the 

characterisation of land subsidence associated with oil and gas extraction and injection.  

When compared against levelling data, ISBAS velocities demonstrated an RMSE of 1.52 

mm/year and 1.13 mm/year for the ERS and ENVISAT cases respectively, which 

compared very well to the PSI results obtained by the TVP (1.04 – 1.54 mm/year for ERS 

and 1.26 – 1.79 mm/year for ENVISAT).  Non-linear displacements were in agreement 

with the trends set by the levelling in urban areas but greater noise was observed in the 

vegetated classes, which may be due to environmental factors (shrink/swell, canopy 

development, agricultural field preparation etc.)  and contributions from the lack of 

coherence and redundancy in such areas.  However, the main conclusion is that ISBAS 

products returned point velocities at almost every location in the scene, providing 

consistent coverage over the widest variety of land cover, including vegetated areas. 

Finally, the improved point density and sampling of the ISBAS results implies a better 

input to any dislocation model to determine the approximate source location, depth and 

volume change responsible for the observed deflation at Bergerrmeer. 
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Appendices 
 

 

Table A.1 

ERS-2 SAR image dates and perpendicular baselines B⊥ (m) in reference to the master 

image on 27th August 1997. 

Sensor Date B⊥⊥⊥⊥ (m) Date B⊥⊥⊥⊥ (m) 

     
ERS-2 SAR 27th August 1997 0 29th April 1998 -54 
 19th July 1995 -424 3rd June 1998 95 

 27th September 1995 -137 8th July 1998 -1015 

 1st November 1995 248 12th August 1998 -460 

 6th December 1995 -566 16th September 1998 -867 

 20th March 1996 -51 21st October 1998 -722 

 24th April 1996 97 25th November 1998 -975 

 29th May 1996 -706 3rd February 1999 -536 

 3rd July 1996 -158 10th March 1999 -793 

 7th August 1996 -235 19th May 1999 -330 

 11th September 1996 -709 28th July 1999 79 

 16th October 1996 -151 1st September 1999 -1013 

 20th November 1996 653 6th October 1999 -660 

 9th April 1997 174 10th November 1999 -158 

 14th May 1997 -483 15th December 1999 -282 

 23rd July 1997 -359 19th January 2000 -637 

 1st October 1997 -401 23rd February 2000 -1170 

 5th November 1997 -986 29th March 2000 -437 

 14th January 1998 -626 3rd May 2000 -477 

 18th February 1998 -381 7th June 2000 -774 

 25th March 1998 -447 16th August 2000 -540 
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Sensor Date B⊥⊥⊥⊥ (m) Date B⊥⊥⊥⊥ (m) 

     
ENVISAT ASAR 11th July 2007 0 28th March 2007 591 
 19th March 2003 117 2nd May 2007 -103 

 2nd July 2003 -343 6th June 2007 57 

 6th August 2003 -392 15th August 2007 87 

 10th September 2003 290 19th September 2007 597 

 24th December 2003 300 24th October 2007 -126 

 28th January 2004 681 28th November 2007 367 

 3rd March 2004 -179 2nd January 2008 -319 

 7th April 2004 834 6th February 2008 317 

 12th May 2004 -415 12th March 2008 27 

 16th June 2004 74 16th April 2008 389 

 21st July 2004 283 21st May 2008 35 

 25th August 2004 146 25th June 2008 230 

 29th September 2004 -517 30th July 2008 134 

 12th January 2005 -519 3rd September 2008 398 

 16th February 2005 -321 8th October 2008 28 

 23rd March 2005 -717 12th November 2008 191 

 27th April 2005 451 17th December 2008 -140 

 6th July 2005 642 21st January 2009 258 

 10th August 2005 -66 25th February 2009 184 

 19th October 2005 149 6th May 2009 -108 

 23rd November 2005 336 10th June 2009 260 

 28th December 2005 363 15th July 2009 191 

 8th March 2006 203 19th August 2009 68 

 12th April 2006 -425 28th October 2009 36 

 17th May 2006 -79 2nd December 2009 198 

 21st June 2006 176 17th March 2010 146 

 26th July 2006 704 21st April 2010 456 

 30th August 2006 647 26th May 2010 14 

 4th October 2006 -647 4th August 2010 -175 

 8th November 2006 -388 8th September 2010 139 

 21st February 2007 171   
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Table A.2 

ENVISAT ASAR image dates and perpendicular baselines B⊥ (m) in reference to the 

master images on 11th July 2007. 
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The ISBAS method can detect land motion over gas fields for all land cover types. 

The density of measurements was uniform over almost the entire land surface. 

The coverage appears significant when compared to PSI surveys of the same 

area.. 

The accuracy is better than 1.52 mm/year when compared to ground levelling 

data. 

The ISBAS method improves the capability to infer the properties of buried 

cavities. 


