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At a glance commentary 

Scientific knowledge on the subject 

Unbiased clustering of asthma using clinical features has derived phenotypes of limited 

pathobiological relevance. It is not known whether semi-biased clustering on transcriptomic 

data will provide additional information on underlying asthma biology. 
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What the study adds to the field 

We show that semi-biased clustering of transcriptomic profiles from asthmatic airway 

samples produces biologically relevant clusters that have implications for directed or 

personalized therapy. We report subgroups of eosinophilic asthma driven by T-helper Type 2 

cells and corticosteroid insensitivity signatures that featured either high submucosal 

eosinophils or sputum eosinophils. An inference scheme using currently-available 

inflammatory biomarkers can be used to predict the subtypes of gene expression. 
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Abstract (245 words) 

Rationale and objectives: Asthma is a heterogeneous disease driven by diverse 

immunologic and inflammatory mechanisms. We used transcriptomic profiling of airway 

tissues to help define asthma phenotypes.  

Methods: The transcriptome from bronchial biopsies and epithelial brushings of 107 

moderate-to-severe asthmatics were annotated by gene-set variation analysis (GSVA) using 

42 gene-signatures relevant to asthma, inflammation and immune function.  Topological 

data analysis (TDA) of clinical and histological data was used to derive clusters and the 

nearest shrunken centroid algorithm used for signature refinement.  

Results: 9 GSVA signatures expressed in bronchial biopsies and airway epithelial brushings 

distinguished two distinct asthma subtypes associated with high expression of T-helper type 2 

(Th-2) cytokines and lack of corticosteroid response (Group 1 and Group 3).  Group 1 had 

the highest submucosal eosinophils, high exhaled nitric oxide (FeNO) levels, exacerbation 

rates and oral corticosteroid (OCS) use whilst Group 3 patients showed the highest levels of 

sputum eosinophils and had a high BMI. In contrast, Group 2 and Group 4 patients had an 

86% and 64% probability of having non-eosinophilic inflammation. Using machine-learning 

tools, we describe an inference scheme using the currently-available inflammatory 

biomarkers sputum eosinophilia and exhaled nitric oxide levels along with OCS use that 

could predict the subtypes of gene expression within bronchial biopsies and epithelial cells 

with good sensitivity and specificity. 

Conclusion: This analysis demonstrates the usefulness of a transcriptomic-driven approach 

to phenotyping that segments patients who may benefit the most from specific agents that 

target Th2-mediated inflammation and/or corticosteroid insensitivity. 

Key words: severe asthma, bronchial biopsies, bronchial brushings, corticosteroid 

insensitivity, T-helper Type 2(Th2), exhaled nitric oxide, gene-set variation analysis, asthma 

phenotype 
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Introduction 

Asthma is a heterogeneous disease that presents with varying degrees of inflammation in 

the airways in association with airway wall structural changes. Both infiltrating and resident 

airway structural cells participate in the inflammatory and remodeling processes of asthma 

and various  mechanisms have been proposed that could underlie the asthmatic 

inflammatory process (1). T-helper Type 2 (Th2) cell activation characterized by the secretion 

of IL-4, IL-5 and IL-13 is a key mechanism of allergic asthma with these cytokines being 

overexpressed in the bronchial submucosa of asthmatic patients (2, 3). Th2-high asthmatic 

patients are characterized by a greater degree of bronchial hyperresponsiveness, higher serum 

IgE levels, greater blood and airway eosinophilia, subepithelial fibrosis and airway mucin 

gene expression (4).  

Th1 and Th17 cells, and their products are also important in asthma. Th1 cells are 

characterised by IFNγ production which plays a role in dealing with viral infections and in 

autoimmunity and both Th1 cells and IFNγare overexpressed in asthma subjects (5-7). 

These have also been shown to be important in severe asthma (8, 9). Th-17 cells express 

IL-17A, IL-17E, IL-17F and IL-22, and may mediate corticosteroid-resistant airway 

inflammation and airway hyperresponsiveness in mice (10). IL-17A and IL-17F, have been 

localised in the airways of patients with severe asthma (11).  

Oxidative stress is another important feature of asthma, particularly those with severe 

asthma, and is associated with increased levels of reactive oxygen species (ROS) and 

compromised antioxidant responses (12, 13). ROS may mediate various features of severe 

asthma such as the chronic inflammatory response, the hypercontractility of the airways and 

corticosteroid insensitivity (14-16). Finally, structural abnormalities can alter airway 

mechanics and contribute to bronchial hyperresponsiveness, while structural cells can also 

contribute to inflammatory processes through release of cytokines, chemokines, growth 

factors and extracellular matrix elements (17-19). 
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Therefore, asthma is a syndrome with many potential endotypes and defining these is an 

essential step towards providing personalized treatments (20, 21). Defining asthma 

phenotypes from clinical and physiological parameters, including currently-used 

inflammatory biomarkers, is limited in expressing the heterogeneity of underlying 

mechanisms (20, 22, 23). This may not be surprising considering the complexity of 

immunoinflammatory mechanisms and the diversity of cell types implicated in asthma 

(24-27).  Deriving asthma clusters according to differentially-expressed genes may be a 

better approach to capture the diverse pathways of asthma pathobiology that could lead to the 

identification of important targets for therapy and offer insights towards achieving 

personalized medicine (20, 28, 29).  This approach has been used to identify genes from 

sputum cells that linked pathway-based transcriptomic clusters to clinically-important 

features of asthma (30).  

Conventional gene set enrichment (GSE) methods have limitations owing to the 

assumption of two classes (e.g. case versus control) (31). Gene Set Variation Analysis (GSVA) 

addresses this limitation by calculating GSE scores as a function of genes inside and outside a 

specifically-defined gene set (32) and can indicate functional activity across individual 

samples (33).  Topological data analysis (TDA) that recognises the invariant shape of 

complex data sets (34, 35) has been used to overcome the challenges that stochastic gene 

expression presents on conventional hierarchical or k-means clustering (36).  

 In the current study, we analysed transcriptomic data from bronchial biopsies from 

asthma participants from the Unbiased BIOmarkers in PREDiction of respiratory disease 

outcomes (U-BIOPRED) project (37) and performed supervised clustering using 42 gene sets 

associated with asthma and immune/inflammatory pathways by GSVA. We then explored the 

relationship between these GSVA signatures and their unique clinico-histopathological 

features. This was then further investigated in the transcriptome from epithelial brushings of 

the same participants with the aim of examining whether transcriptomic signatures may help 

define subsets of Th2-high eosinophilic and non-Th2 asthma from distinct airway 
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compartments. Some of the results of these studies have been previously reported in the form 

of an abstract (38). 

 

Materials and methods (500 words) 

Details of analytical methods are provided in the On-line Supplement. 

Clinical data  

107 participants (Table 1) with moderate-to-severe asthma from the U-BIOPRED cohort 

underwent fiberoptic bronchoscopy for epithelial cell brushings and bronchial biopsies(39). 

Pre-bronchodilator spirometry, exhaled nitric oxide (FeNO), sputum differential cell count, 

skin prick tests, serum total IgE, and differential blood count were measured(39). Oral 

corticosteroid dependence was assessed by determining the lowest maintenance dose of daily 

prednisolone. The study was approved by the Ethics Committees for each of the 16 clinical 

recruiting centres. All participants gave written and signed informed consent. 

 

Immunohistochemistry for submucosal cells in the bronchial biopsies 

Samples from glycolmethacrylate embedded sections (2µm) were stained with 

monoclonal antibodies against CD3, CD4, CD8, neutrophil elastase and EG2. Cell counts 

were performed in a blinded fashion and expressed as positive cells/mm2. These results have 

been presented previously in an abstract form [43]. 

 

Microarray analysis of mRNA 

Expression profiling was performed using AffymetrixU133 Plus 2.0 microarray 

(Affymetrix, Santa Clara, Calif) on total RNA extracted from bronchial biopsies and 

epithelial brushings. RNA purity (RIN >9.5) was measured by Agilent Bioanalyser (Agilent, 

Santa Clara, Calif).  Raw data were quality assessed and pre-processed by robust multi-array 

average normalization using Almac Pipeline and Pre-processing Toolbox (Almac, Craigavon, 

United Kingdom). Probes of low expression were filtered according to robust multi-array 

signal values <5 and batch/technical effects were adjusted as covariates using a linear model.  
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Gene Set Variation Analysis (GSVA) 

42 gene sets containing 2431 genes were manually curated: 6 for six key immune cell 

type-specific gene expression associated with their differentiation and activation, 6 for 

evolutionarily-conserved transcriptional signatures for Th1 and CD8 memory T cell 

differentiation, 5 of effector CD4+ T cell differentiation for Th2, Th17 and Treg cell subset, 6 

for chronic effect of oxidative stress in response to ozone from a mouse model and genes 

associated with COPD from human lung, 7 from peripheral blood mononuclear cells (PBMCs) 

in four autoimmune diseases, 7 for asthma-specific mechanism driven by T cells and 5 from 

human lung biopsy, airway smooth muscle cells and PBMCs in response to corticosteroid 

treatment (Supplementary TableS1).  

 

TDA and machine learning algorithm 

TDA was used to explore clusters driven by gene signatures utilizing the Ayasdi CoreTM 

(Ayasdi, Inc. California, USA) program and the nearest shrunken centroid algorithm was used 

to further define the optimal number of classifiers. Details of the methods are provided in 

Supplementary file.  

 

Statistical analysis 

All datasets needed for this analysis were uploaded from the tranSMART system, an 

open-source knowledge management platform for sharing research data(40) supported by the 

European Translational Information and Knowledge Management Services (eTRIKS) project. 

All categorical variables were analyzed using Fisher’s exact test. Student’s t test was used for 

continuous variables with normal distribution, otherwise Wilcoxon rank-sum test was used. A 

linear model for microarray data (Bioconductor R package limma) with false discovery rate 

(FDR) correction was used for differential expression gene analysis, and recursive 

partitioning (R package PARTY) for decision tree learning. An FDR<0.05 was considered 

Page 8 of 57
 AJRCCM Articles in Press. Published on 31-August-2016 as 10.1164/rccm.201512-2452OC 

 Copyright © 2016 by the American Thoracic Society 



9 

 

statistically significant. 

 

Results 

Transcriptomic profiles from 91 bronchial biopsies and 99 epithelial brushings were 

obtained, of which 83 samples were paired from the same subject.  

 

Differentially-expressed gene and gene set analysis  

We performed differential expression analysis of individual genes and of gene sets 

comparing moderate asthma versus severe asthma in both epithelial brushings and bronchial 

biopsies.  None of the individual genes or gene sets were significantly different between 

epithelial brushings from severe and non-severe asthma after multiple testing correction for 

FDR (Fig 1A & B).  In addition, only 2 genes with marginally significant expression and 

three GSVA gene sets with a trend toward significant expression were found when comparing 

expression profiles in bronchial biopsies between severe and non-severe patients (Fig 1C & 

D). Therefore, the clinical classification of moderate versus severe asthma provides a limited 

framework for the identification of differential gene expression profiles.  

There was a significant correlation between the ES of the Th2 signature and the relative 

steroid insensitivity signature in both biopsy and brushings (Fig S1), together with a 

significant relationship between the oxidative stress signature and T-cell, Th1 and Th2 

signatures (Fig S2), and between the oxidative stress signatures and relative corticosteroid 

insensitivity signatures in both biopsy and brushings (Fig S3). These correlations indicate 

potential mechanistic interactions between Th2 and Th1 genes with oxidative stress and 

relative corticosteroid insensitivity which was defined by the signature of genes that are 

usually down-regulated by corticosteroids showing no change or being up-regulated.  

In both biopsy and brushings, CD44 as a constituent of corticosteroid insensitivity 

signature had the most extensive association/interaction with a subset of Th2 signature genes 

including CCL26, IL1R2 and CST2. In addition, a highly correlated association between 
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NELFE (within the corticosteroid insensitivity signature) and ATP5J (within the Th2 

signature) was also seen in both biopsy and brushing compartments.   

 

Clinical clusters driven by bronchial biopsy GSVA analysis 

We  performed an analysis of the bronchial biopsy transcriptome using GSVA in order 

to investigate the immune cell-specific characteristics and distinctive pathophysiological 

processes in asthma. Unsupervised clustering of GSVA gene sets applied to biopsies using 

TDA identified a cluster characterized by high submucosal eosinophils (5.6 vs. 1.2/mm2, 

p=6.6 x 10-5), high FeNO (34.0 vs. 21.0 ppb, p=0.028) and high oral corticosteroid use (41.0 

vs 15.4%, p=0.006) (Fig 2 & Table 2).  Comparing Cluster A to Cluster non-A, 26 out of 42 

gene sets were found to be differentially expressed (p<0.05) (Fig 3).  A similar clustering 

was obtained when hierarchical clustering was performed using hierarchical clustering (Fig 

4).   

 

Finding signatures for optimal cluster classification 

In order to determine the GSVA signatures that best distinguished Cluster A from Cluster 

non-A, the shrunken centroid algorithm was applied to these 26 GSVA gene-sets and 

produced a classification accuracy of 82.4% (Fig 5A).  After feature reduction, 9 GSVA 

gene-sets of non-zero value which were expressed in the opposite direction in Cluster A and 

non-A were retained as centroid classifiers of discrimination (Fig 5B, Table 3). ROC curve 

analysis demonstrated a high performance of this 9-gene-set signature model (AUC: 0.866; 

95%CI: 0.796-0.927, p=1.3x10-9) in differentiating membership of Cluster A, providing a 

sensitivity and specificity of 84.6% and 90.4%, respectively (Fig 5C). 

 

Clusters from epithelial brushings and from combined epithelial brushings and bronchial 

biopsies 

In order to test whether these 9 GSVA signatures were also able to discriminate clusters 
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in bronchial brushings, a similar analysis was performed on the 99 epithelial brushing 

samples.  The 9 GSVA signatures from Cluster A determined in bronchial biopsies was 

found in 31 (31.3%) of subjects as calculated using the nearest shrunken centroids of the 

signatures.  This subgroup reproduced the clinical characteristics noted in biopsies in terms 

of significantly higher submucosal eosinophils (5.8 vs. 1.5/mm2, p=1.3x10-5), higher exhaled 

NO (51.5 vs. 21.0 ppb, p=4.2x10-4) and higher oral corticosteroid use (40.7 vs 17.9%, 

p=0.032; Table 4). In addition, higher eosinophil counts in blood and sputum and higher 

numbers of submucosal CD3, CD4 and CD8 T cells in bronchial submucosa were also noted.  

The relative expression of these 9 GSVA signatures in bronchial biopsies and epithelial 

brushings is shown in Table 5: Group 1 (19 subjects, 23%) expressed these 9 signatures in 

both bronchial samples and epithelial brushing cells, Group 2 (17 patients, 20%) expressed 

these signatures in bronchial biopsies only, Group 3 (8 patients, 10%) in epithelial brushing 

cells alone and Group 4 (39 patients, 47%) expressed these 9 GSVA signatures in neither 

compartment.  

Compared to Group 4 participants, two subtypes of patients with eosinophilic 

inflammation and relative steroid insensitivity were noted (Groups 1 and 3; Table 6).  Group 

1 had the highest submucosal eosinophils (6.1 vs. 1.0/mm2, p=7.64x10-6), CD3 (45.3 vs. 

33.3/mm2, p=0.048), CD8 (26.4 vs. 13.9/mm2, p=0.020) T cells, FeNO (56.5 vs. 19.0 ppb, 

p=0.001), acute exacerbation rate (3.0 vs. 1.5 times/year, p=0.022), oral corticosteroid use 

(47.7 vs 12.8%, p=0.010) and intermediate-high sputum eosinophils (8.2 vs 0.6%, p=0.017).  

In contrast, Group 3 participants possessed the highest levels of sputum eosinophils (15.8 vs. 

0.6%, p=0.014), high BMI (33.1 vs. 28.0, p=0.010) and a trend toward intermediate-high 

FeNO (35.5 vs. 19.0 ppb, p=0.058). 

Levels of gene expression of IL-33 and TSLP but not IL-25 were relatively increased in 

Cluster A compared to Cluster non-A and in Group 1 compared to Groups 3 and 4 (for IL-33) 

and to Group 4 (for TSLP) in bronchial biopsies but not in epithelial brushings (Fig S4).  
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Inference of phenotype from non-invasive clinical measurements 

The clinical features and non-invasive biomarkers from the patients classified into the 4 

groups were used to build an inference tree framework. FeNO >55 ppb (Fig 6 Node 7, 58% 

for Group 1), sputum eosinophil >4.5% (Fig 6 Node 6, 42% for Group 1) or oral 

corticosteroid dependency (Fig 6 Node 4, 36% for Group 1) predicted subjects as the highest 

eosinophilic inflammation and steroid insensitivity subtype (Group 1), with an 84% 

sensitivity and 72% specificity. Patients with FeNO≤55 ppb, sputum eosinophil ≤4.5% and 

not dependent on oral corticosteroids had an 86% probability of having non-eosinophilic 

inflammation (Fig 6 Node 5, 22% for Group 2 and 64% for Group 4). Clustering analysis 

based on the 3 top gene sets in the 9-GSVA signature associated with these clinical traits 

confirmed the molecular association of Group 1 subjects with high Th2 activation and 

corticosteroid insensitivity in bronchial biopsy and epithelial brushing samples (Fig 7). 
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Discussion 

We clustered gene expression data from bronchial biopsies and epithelial brushings 

obtained from patients with moderate-to-severe asthma in order to define clinical phenotypes 

of asthma. Direct comparison of the transcriptome obtained from severe asthma to 

moderately-severe asthma subjects led to the identification of few differentially-expressed 

genes in bronchial biopsies and epithelial brushings using false discovery rate. We then 

examined their gene expression profiles based on important disease drivers as described by 

specific gene-sets and derived phenotypes from the gene-set clusters. A collection of 9 

gene-set signatures applied to genes expressed in bronchial biopsies and airway epithelial 

brushings led to two subtypes of patients with eosinophilic inflammation and relative 

corticosteroid insensitivity. Using machine-learning tools, we found that currently-available 

inflammatory biomarkers such as sputum eosinophilia and exhaled nitric oxide levels could 

be used to predict the subtypes of asthmatics described by gene expression profiling. This 

approach could ultimately define patients who may benefit the most from specific molecular 

agents that target Th2-mediated inflammation and/or relative corticosteroid insensitivity.  It 

also defines the importance of the site of expression of these 9 gene-set signatures in either 

biopsies or brushings or in both in determining the phenotype.     

It is now generally accepted that asthma is a heterogeneous disease with distinct 

phenotypes. Our analysis confirmed the presence of a previously-described Th2-high cluster 

derived from an analysis of Th2-gene expression in epithelial brushings which is indicative of 

Th2 activation (4, 41) and which was defined by two of the 42 GSVA gene-sets we used. This 

signature has been linked to other features of asthma, particularly corticosteroid 

responsiveness. The remaining signatures we used reflected the heterogeneous nature of 

asthma and represent many of the mechanisms that have been proposed to drive the asthmatic 

disease process in addition to the Th2 pathway.  

Interestingly, GSVA gene-sets associated with steroid responsiveness accounted for the 

second and sixth most important signatures that were significantly up-regulated, when they 
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are expected to be down-regulated by corticosteroids in non-severe asthmatics. In addition, a 

moderate correlation was noted between Th2 and corticosteroid insensitivity signatures 

(Supplementary Figure S1) reflecting the clinical problem of clinical insensitivity to 

corticosteroid treatment in a subgroup of severe asthmatics. Further analysis of the genes that 

were associated in the corticosteroid insensitivity and Th2 signatures in the biopsies and 

brushings has shown an association between CD44 and the Th2-associated genes CCL26, 

IL1R2 and CST2, indicating potential underlying mechanisms. The patients in Group 1 where 

the corticosteroid insensitivity signatures were most highly expressed in the airway 

epithelium and bronchial biopsy were on the highest doses of oral corticosteroids. 

Therapeutic strategies other than corticosteroid dose escalation should be considered for these 

patients.  

Relative corticosteroid insensitivity was defined at the molecular level by detecting the 

signature of genes usually down-regulated by corticosteroids as being up-regulated. However, 

such a definition assumes that the patient is adherent to corticosteroid therapy, particularly 

oral therapy. The patients in UBIOPRED have been followed-up for at least for 6 months in a 

specialist severe asthma clinic during which time their degree of compliance has been 

deemed to be satisfactory. Our observation that Group 1 where the expression of the relative 

corticosteroid insensitivity signature together with the Th2 high and oxidative stress 

signatures were found in both bronchial biopsies and brushings was associated with a greater 

level of oral steroid dependency would support the notion that relative corticosteroid 

insensitivity may be associated with corticosteroid dependency. A potential limitation of the 

analysis of relative corticosteroid insensitivity is the use of the gene signatures obtained from 

patients with COPD, where the gene response to corticosteroids may be different from that 

seen in asthma.   

Two gene-sets used were related to ozone stimulation as a marker of elevated oxidative 

stress and other important GSVA signatures that were critical in differentiating asthma 

included those from monocytes relating to autoimmune diseases and to Th1 immunity as 
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reflected by the increase in the numbers of submucosal CD3+ and CD8+ T cells. Amongst 

them, we noted that the oxidative stress signature revealed a moderate to high correlation 

with Th1 signature and with the steroid insensitivity signature (Supplementary Figure S2 & 

S3). While ROS has been reported to play a role in promoting asthmatic inflammation (14, 15) 

and reducing steroid responsiveness (16), the mechanism remains largely controversial. 

Therefore, the implication of oxidative stress in our finding may shed light on the impact of 

ROS in asthma. Overall, we found that there were non-Th2 pathways that were associated 

with severe asthma in the analysis of both bronchial biopsies and epithelial brushings despite 

the presence of eosinophilic inflammation.  

One potential concern regarding our approach in this study is the appropriateness of 

gene sets used for clustering. We endeavored to be as inclusive as possible by using gene sets 

reflecting the diversity of processes previously reported to be associated with various aspects 

of asthma pathobiology in addition to key mechanisms involved in chronic obstructive airway 

disease, baseline immune cell signatures and those reported in a number of systemic immune 

disorders. In keeping with this deployment of gene-sets, we found that Group 1 subjects were 

distinguished by diverse immune activation across airway compartments, whereas nearly half 

of Group 4 participants did not show pronounced activation of the immune cells selected. 

Interestingly, the enrichment of GSVA signatures representative of multiple immune 

pathways including Th2, Th1, Th17, neutrophil, dendritic cells and influenza response were 

largely lower in Group 4 compared to Group 1 (Supplementary Figure S4), suggesting the 

lack of a dominant disease driving immune pathway and may reflect a pauci-immune 

phenotype of asthma. Further unbiased bioinformatic analyses such as the use of weighted 

gene co-expression network analysis (WGCNA) will be necessary to determine other 

potential disease-driving mechanisms. In a preliminary WGCNA analysis of epithelial cell 

gene expression, we found several modules related to FeNO, sputum eosinophilia and oral 

corticosteroid use with distinct eigengenes associated with these clinical parameters.   

Although the 9 GSVA gene-set signature was initially derived from gene expression in 
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bronchial biopsies, its expression in epithelial brushings was associated with similar clinical 

characteristics. The strength of this signature was greater when it was highly expressed in 

epithelial cells than when it was expressed solely in bronchial biopsies particularly when 

linked to clinical parameters such as FeNO, blood eosinophils, sputum eosinophils and 

subtypes of submucosal T cells. This finding echoes previous studies highlighting the key 

role of the bronchial epithelium in dictating Th2 asthma phenotype and emphasizes the 

importance of the bronchial epithelium in driving asthma pathobiology (42).  However, 

cross-talk between these compartments must exist as the most severe asthma subtype we 

describe here featuring eosinophilic inflammation and corticosteroid insensitivity (Group 1) 

occurred in subjects where the 9 GSVA signatures were concomitantly highly expressed in 

both bronchial biopsies and epithelial brushings. Interestingly, the expression of the 9 GSVA 

gene-set signatures in epithelial cells was mainly associated with sputum eosinophilia (Group 

3 participants).   

This observation may reflect priming of the asthmatic airway upon which Group 1 

subtype was dependent when the signature was also found in the bronchial biopsies. This 

priming is further supported by the observation that subjects lacking this 9 GSVA signature 

expression in epithelial cells do not show eosinophilic inflammation irrespective of their 

signature expression in bronchial biopsies (Groups 2 and 4 participants).  This highlights the 

need to further clarify the role played by airway epithelial cells in driving the development of 

airway inflammation in asthma. Indeed, recent work indicates that the airway epithelium is an 

important upstream cell that controls the regulation of Th2 cytokines through the production 

of cytokines such as thymic stromal lymphopoietin (TSLP), IL-25 and IL-33, which can be 

stimulated by exposure of epithelial cells to external stimuli such as pollutants, viruses and 

allergens (42, 43). The epithelium in severe asthma is also reported to be thicker than in 

mild-to-moderate asthma with increased proliferation, apoptosis and release of 

pro-inflammatory factors (44). However, our results indicate that IL-33 and TSLP gene 

expression is increased in the biopsies not in the brushings in asthmatic patients in Cluster A 
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and in Group 1 who also show the highest Th2 gene signature with bronchial eosinophilia. 

The subtypes of asthma reported here, based on transcriptomic rather than clinical data, 

share some overlapping clinical and biomarker features with phenotypes driven by clinical 

parameters from the Leicester (23) and Severe Asthma Research Program (SARP) (22) 

clustering studies.  The small Group 3 phenotype (10% of patients) reported here is very 

similar to Cluster 3 in SARP (8%) in terms of higher BMI and higher sputum eosinophils but 

lower biopsy eosinophils, relative to the remaining asthmatic groups.  In addition, our Group 

1 phenotype (23%) has some resemblance to Cluster 5 in SARP (16%) regarding the lower 

FEV1, whereas they were discordant with respect to its neutrophilic profile. Indeed, we found 

no difference in the level of either blood or sputum neutrophilia in the 4 groups. These 

findings provide a bridge between phenotypes derived from clustering of clinical parameters 

and our approach of using gene expression profiles within key airway structural cells along 

with tissue histopathology. We have provided a path to exploring the mechanisms underlying 

different subsets of patients where discordant inflammation is found.  

A key question is whether there is any clinical utility or application of the phenotypes 

described here particularly as they were determined using transcriptomic analysis of samples 

obtained using bronchoscopy. The clinical utility is addressed by the tree-based recursive 

partitioning algorithm selecting significant non-invasive parameters or clinical traits based on 

their conditional distribution statistics against phenotypes using an unbiased permutation 

method (45). This approach successfully translated our phenotypes originally defined by gene 

signatures and by histopathological results to a clinically inferable scheme. Following a 

stepwise binary value split of FeNO (>55ppb), sputum eosinophils (>4.5%) or oral 

corticosteroid dependency, this scheme identified Group 1 subjects with an 84 % sensitivity 

and 72% specificity. This is clinically important as this group bears the Th2 and steroid 

insensitivity signatures across airway structural cells that justifies the need for molecular 

agents that target Th2-specific pathobiology (20).  However, other groups such as Group 2 

and 3 may also benefit from these agents with the possibility that different targets within the 
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Th2 phenotype may be more appropriate for each of the 3 groups. Thus, epithelial-dependent 

release of different eosinophilic cytokines/chemokines might be appropriate for Groups 1 and 

3, while in Group 2, a non-eosinophilic Th2 or T2 targets might be more useful.  

In conclusion, transcriptomic profiling in bronchial biopsies and epithelial brushing cells 

showed heterogeneity of underlying mechanisms with respect to Th2 and relative steroid 

insensitivity signatures which allowed the definition of different asthma phenotypes. 

Routinely-used clinical biomarkers successfully translated these findings, and used in this 

way may help in taking therapeutic decisions for patients with severe eosinophilic 

inflammation and relative corticosteroid insensitivity. 
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Figure legends: 

Figure 1: Differential expression analysis comparing moderate versus severe asthma from 

bronchial biopsies and epithelial brushing transcriptomic profiles on the basis of individual 

genes or Gene set variation analysis (GSVA). Given the FDR correction (broken line), no 

differentially expressed genes (A) or gene sets (B) in epithelial brushing was noted. Two 

genes were marginally significant (C) and three gene sets (D) showed a trend towards 

significance in bronchial biopsies. ES: enrichment score. 

 

Figure 2: Topological network analysis of gene-set variation analysis using 42 gene sets of 

relevance to the pathogenesis of asthma in bronchial biopsies revealing one large 

signature-driven cluster (Cluster A) and 4 smaller distinct clusters. Cluster A was 

distinguished by higher submucosal eosinophil counts, higher levels of nitric oxide in exhaled 

breath and higher oral corticosteroid use. The network is coloured on the basis of the 

submucosal eosinophil count with low cell count in blue and high in red. The colour key 

histogram (bottom left) showed the number of subjects with respect to the given cell count 

(x-axis) from low to high. Subjects of high submucosal eosinophil count were noted to be 

highly enriched in Cluster A as compared to the rest.  

 

Figure 3: Heat map of differential gene set expression from bronchial biopsies between 

Cluster A (blue bar) and Cluster non-A (grey bar). High expression is denoted by red and low 

expression by green. Twenty-six of 42 gene sets used were significantly 

differentially-expressed in Cluster A with 23 over-expressed and 3 under-expressed.  

 

Figure 4: Hierarchical clustering showing 91 bronchial biopsies on 42 GSVA signatures and 

the color bar revealed the clustering result from TDA on the same dataset. The Cluster A (red 

bar) identified by TDA method overlapped substantially with the subgroup of patients 

identified by hierarchical clustering that shaded in grey. The agreement on two clustering 
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methods measured by Rand and adjusted Rand Index were 0.7 and 0.4, respectively. 

 

Figure 5: Machine-learning algorithm using shrunken centroid method on 26 

differentially-expressed gene sets in bronchial biopsies. Panel A: Training of classifiers for 

Cluster A was evaluated for classification error using 10-fold cross-validation. A threshold of 

1.82 (red broken line) was selected which reduced classifiers to 9 gene-sets at an 82% 

cross-validated accuracy. Panel B:  Centroid profile of the 9-gene-set signatures. Length of 

the centroid denoted the relative amount the expression was away from the overall mean 

expression for each given gene-set signature. From top down, the centroids of Cluster A and 

Cluster non-A were ranked in decreasing amount. Panel C: Discrimination performance of 

the 9 gene-set signatures (AUC: 0.866; 95% CI:0.796-0.927, p=1.3e-09) based on the 

estimation of the Cluster A probability from Gaussian density distribution. The probability 

cut-off at 0.5 gave a sensitivity and specificity of 84.6% and 90.4% respectively, with the 

confidence intervals shown.  

 

Figure 6: Tree-based inference scheme for the probability of Group 1 to Group 4 using two 

non-invasive measurements (FeNO: p=0.014, sputum eosinophil counts: p=0.012) and one 

clinical parameter (oral corticosteroid dependency: p=0.030). Group 1 (red bar) represented a 

phenotype of high eosinophilic inflammation and steroid insensitivity. Group 3 (pink bar) 

represented a phenotype of medium eosinophilic inflammation and Group 2 & 4 (black bar) 

low eosinophilic inflammation.  

 

Figure 7: Three signatures related to Th2 and steroid insensitivity in epithelial (above the 

broken line) and biopsy cells (below the broken line) across 83 asthmatics were used for 

clustering. Subject’s membership as Group 1 to 4 were shown as color bar and mapped 

underneath the dendrogram. Group 1 (magenta) patients with the highest and most extensive 

expression of these signatures were mainly clustered to the right. Group 3 (purple) subjects 
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with the signatures solely in the epithelium also clustered closely. Group 2 (light blue) and 4 

(grey) subjects interlaced with each other and clustered to the left. These 3 out of the 9 

signatures were the major representative features of Group 1 and 3 asthma subtypes. 
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Table 1. Demographic and clinical characteristics of 107 asthmatic subjects 

Variables
����
   

Age (years) 45.9 (13.9) 

Female  59 (55.1%) 

BMI 28.7 (5.8) 

Severe asthma category 67 (62.6%) 

Oral corticosteroid use (number) 29 (27.1%) 

Exacerbation numbers ( per year) 2 (1-4) 

Atopy 76 (71.0%) 

Allergic rhinitis 53 (49.5%) 

Eczema 42 (39.3%) 

Nasal polyp 27 (25.2%) 

FEV1 (% predicted) 74.9 (62.3-95.1) 

Total serum IgE (IU/ml) 115.6 (43.0-316.0) 

Blood eosinophil  (%) 3.1 (1.7-4.4) 

Sputum eosinophil  (%) 1.5 (0.4-7.5) 

Sputum neutrophil  (%) 52.5 (36.7-70.1) 

FeNO (ppb) 31.5 (19.0-53.8) 

Bronchial biopsy available 91 (85.0%) 

Epithelial brushing available 99 (92.5%) 

 

�: Data presented as N (%) and mean (SD) or median (IQR).BMI: Body mass  

index, FEV1
:
 Forced expiratory volume in 1 second, FeNO: Fractional exhaled  

nitric oxide  
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�: Data presented as N (%) and mean (SD) or median (IQR). 

 BMI: Body mass index, FEV1: Forced expiratory volume in 1 second, FeNO: Fractional 

exhaled nitric oxide 

  

Table 2. Clinical characteristics of Cluster A versus non-A  

Variables
����
 

No (%) 

Cluster A 

N= 39 

Cluster non-A 

N=52 

p-value 

Age (year) 48.4±13.6 45.8±13.1 0.355 

Female  18 (46.2%) 31 (59.6%) 0.288 

BMI 28.1±4.9 28.6±5.8 0.661 

Severe asthma 26 (66.7%) 30 (57.7%) 0.258 

Oral corticosteroid use 16 (41.0%) 8 (15.4%) 0.006 

Exacerbation number (time/year) 2.5 (2.0-3.75) 2.0 (1.0-3.0) 0.139 

Atopy 25 (64.1%) 40 (76.9%) 0.356 

Allergic rhinitis 17 (43.6%) 26 (50.0%) 0.793 

Eczema 15 (38.5%) 21 (40.4%) 1.000 

Nasal polyp 14 (35.9%) 11 (21.2%) 0.092 

FEV1 (%) 74.2 (59.8-91.6) 74.7 (62.3-94.6) 0.630 

Total serum IgE (IU/ml) 125.0 (41.0-231.5) 104.0 (44.0-364.5) 0.813 

Blood eosinophil (%) 3.2 (1.6-4.8) 2.7 (1.7-3.8) 0.523 

Sputum eosinophil (%) 3.9 (0.6-12.1) 1.1 (0.2-4.7) 0.156 

Sputum neutrophil (%) 53.2 (42.7-76.9) 52.4 (34.6-63.4) 0.421 

FeNO (ppb) 34.0 (20.0-61.0) 21.0 (14.5-40.0) 0.028 

Submucosal cells (mm
-2
)    

Eosinophils 5.6 (2.7-11.4) 1.2 (0-3.3) 6.6 x 10-5 

Neutrophils 11.0 (6.6-18.1) 12.1 (6.8-18.4) 0.833 

CD3 T cells 36.3 (22.6-50.0) 35.4 (16.6-49.5) 0.471 

CD4 T cells  11.2 (5.9-18.9) 9.5 (4.8-15.8) 0.545 

CD8 T cells 17.8 (9.5-30.4) 14.2 (4.9-27.7) 0.531 
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Table 3. Nine GSVA signatures differentiating Cluster A from the rest 

GSVA signature 
ES 

difference 
p-value FDR 

Lung.brushings.Th2high.asthma.HS.IVV.UP 0.578 6.0x10-10 2.5x10-8 

Lung.biopsy.COPD.FLU.SAL.HS.IVV.DOWN 0.308 5.3x10-6 7.4x10-5 

Lung.biopsy.HDM.Rhesus.IVV.UP 0.275 7.8x10-7 1.6x10-5 

PBMC.Systemic immune disorders.HS.IVV.UP 0.203 0.001 0.005 

Th1.activated.HS.IVS.UP.2 0.199 7.2x10-6 7.6x10-5 

PBMC.asthma.GC.HS.IVS 0.234 8.4x10-5 7.1x10-4 

Tcell.activated.HS.IVS 0.192 1.5x10-4 0.001 

Ozone.Air.MM.IVV.Up 0.157 8.9x10-4 0.004 

Ozone.MM.IVV.Down -0.159 2.1x10-4 0.001 

 

ES: enrichment score, FDR: false discovery rate, HS: Homo sapiens, MM: Mus musculus, 

IVS: in vitro soil-less, IVV: in vivo, COPD: chronic obstructive pulmonary disease, FLU: 

fluticasone, SAL: salmeterol, HDM: house dust mite, PBMC: peripheral blood mononuclear 

cell  
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�: Data presented as N (%) and mean (SD) or median (IQR). 

BMI: Body mass index, FEV1: Forced expiratory volume in 1 second, FeNO: Fractional exhaled nitric 

oxide 

  

Table 4. Clinical characteristics of the 9-gene-set signature expressed in epithelial brushings 

Variables
����
 

No (%) 

Expressed 

N= 31 

Not expressed 

N=68 

p-value 

Age (year) 48.0±14.8 44.4±14.0 0.253 

Female  12 (38.7%) 40 (58.8%) 0.101 

BMI 28.8±5.4 29.0±6.3 0.895 

Severe asthma 23 (74.2%) 40 (58.8%) 0.211 

Oral corticosteroid use 11 (40.7%) 10 (17.9%) 0.032 

Exacerbation number (time/year) 3.0 (2.0-4.0) 2.0 (1.0-3.0) 0.025 

Atopy 17 (63.0%) 40 (75.0%) 0.419 

Allergic rhinitis 19 (61.3%) 30 (44.1%) 0.171 

Eczema 10 (32.3%) 32 (47.1%) 0.245 

Nasal polyp 10 (32.3%) 15 (22.1%) 0.404 

FEV1 (%) 74.2 (57.3-95.8) 87.9 (68.5-95.5) 0.264 

Total serum IgE (IU/ml) 184.0 (44.0-373.0) 87.0 (39.6-268.5) 0.067 

Blood eosinophil (%) 3.5 (2.7-7.4) 2.3 (1.5-3.8) 0.008 

Sputum eosinophil (%) 12.0 (2.6-26.2) 0.6 (0-1.7) 5.2x10-4 

Sputum neutrophil (%) 53.2 (42.7-76.9) 52.4 (34.6-63.4) 0.786 

FeNO (ppb) 51.5 (20.8-75.8) 21.0 (13.3-37.8) 4.2x10-4 

Submucosal cells (mm
-2
)    

Eosinophils 5.8 (3.0-12.5) 1.5 (0-4.8) 1.3x10-5 

Neutrophils 11.5 (4.6-17.1) 12.1 (6.8-19.2) 0.780 

CD3 T cells 44.7 (32.2-61.7) 24.4 (14.8-46.8) 0.003 

CD4 T cells  13.8 (7.9-23.7) 8.3 (3.2-14.6) 0.016 

CD8 T cells 24.9 (15.7-37.6) 10.8 (4.2-20.2) 2.0x10-4 
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Table 5. Expression status of the 9 gene-set signature of Cluster A in 83vbronchial 

biopsy and epithelial brushing  

Group  Bronchial biopsy Epithelial brushing N (%) 

Group 1                    Expressed Expressed 19 (23%) 

Group 2           Expressed Not expressed 17 (20%) 

Group 3              Not expressed Expressed 8 (10%) 

Group 4  Not expressed Not expressed 39 (47%) 
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Table 6. Clinical features of the expression of 9 gene-set signatures in bronchial biopsy and/or epithelial brush 

 
 

Variables
���� Group 1 Group 2 Group 3 Group 4 1 vs 4 3 vs 4 1 vs 3  

n (%) 19 (23%) 17 (20%) 8 (10%) 39 (47%)            p value  

Age (year) 48.0 ±13.6 47.4±14.1 50.6±13.4 44.0±13.5 0.284 0.187 0.644 
Age of asthma onset 24.7±13.4 22.2±14.4 32.0±11.6 22.1±13.7 0.485 0.039 0.176 
Female 7 (36.8%) 8 (47.1%) 3 (37.5%) 24 (61.5%) 0.136 0.390 1.000 
BMI 27.8±4.8 28.6±4.9 33.1±3.8 28.0±5.9 0.986 0.010 0.007 
Nasal polyps 8 (42.1%) 6 (35.3%) 2 (25.0%) 9 (23.1%) 0.102 0.898 0.357 
Rhinitis 8 (42.1%) 8 (47.1%) 6 (75.0%) 16 (41.0%) 0.996 0.100 0.150 
Eczema 6 (31.6%) 9 (52.9%) 2 (25.0%) 17 (43.6%) 0.604 0.525 0.900 
Severe asthma 14 (73.7%) 10 (58.8%) 6 (75.0%) 20 (51.3%) 0.179 0.402    1.000 
Oral corticosteroid use 9 (47.4%) 5 (29.4%) 2 (25.0%) 5 (12.8%) 0.010 0.737 0.515 
Atopy 11 (57.9%) 12 (70.6) 6 (75.0%) 30 (76.9%) 0.312 0.476 0.466 
Exacerbations/year  3.0 (2.0-5.0) 2.0 (1.3-2.8) 3.0 (2.0-3.0) 1.5 (1.0-3.0) 0.022 0.238 0.563 
FEV1 (%) 68.1(54.9-78.3) 90.4 (70.9-98.0) 80.3 (65.9-101.6) 79.7(65.5-94.8) 0.133 0.708 0.260 
Total IgE (IU/ml) 163 (42–231.5) 86.6 (24.0-196.0) 93.9 (41.3-879.8) 96 (44.3-278.5) 0.659 0.839 0.815 
Blood eosinophil (%)   3.5 (2.4-8.0) 1.7 (1.4-3.6) 3.4 (3.2-4.2) 2.4 (1.4-3.9) 0.070 0.100 0.915 
Blood neutrophil (%) 58.8 (50.4-64.2) 61.9 (56.6-68.3) 65.5 (61.9-69.5) 58.6 (53.2-68.9) 0.596 0.380 0.217 
Sputum eosinophil (%)  8.2 (1.8-27.0) 0.6 (0.6-1.0) 15.8(12.4-16.2) 0.6 (0-1.6) 0.017 0.014 0.863 
Sputum neutrophil (%) 52.3 (33.4-77.4) 57.0 (54.2-76.7) 45.3 (41.4-50.8) 52.7 (34.3-65.4) 0.835 0.763 0.727 
FeNO (ppb) 56.5 (34.1-74.6) 22.0 (14.5-32.5) 35.5 (20.0-50.4) 19 (12.5-36.1) 0.001 0.058 0.312 
Submucosal cells (mm

-2
)        

   Eosinophil 6.1 (4.3-13.6) 2.2 (0-5.9) 2.7 (1.5-4.6) 1.0 (0-3.5) 7.6E-06 0.109 0.019 
   Neutrophil 11.0 (4.6-18.2) 9.8 (7.1-18.7) 12.1 (6.5-13.5) 12.1 (6.8-19.2) 0.853 0.500 0.727 
   CD4 T cell 15.4 (9.2-24.7) 5.8 (1.5-11.1) 9.2 (6.2-16.3) 10.2 (4.6-15.5) 0.070 0.839 0.187 
   CD3 T cell 45.3 (32.7-77.2) 21.8 (16.0-37.0) 41.9 (36.9-70.9) 33.3(16.4-49.9) 0.048 0.243 0.874 
   CD8 T cell 26.4 (15.7-37.0) 9.4 (4.6-14.2) 27.1 (18.1-39.8) 13.9 (4.7-22.1) 0.020 0.150 0.852 
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†: Data presented as N (%) and mean (SD) or median (IQR). BMI: Body mass index, FEV1: Forced expiratory volume in 1 second, FeNO: fractional exhaled nitric 

oxide 
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Methods for Cluster Analysis and Machine Learning Algorithm 

Topology Data Analysis 

Software used for TDA was provided by Ayasdi Core
TM

 (Ayasdi, Inc. California, 

USA). TDA method takes three clustering parameters as input, namely dissimilarity 

(distance) metric, filter function and resolution parameters (resolution and overlap). A 

user-defined distance function computes the distance between any pairs of the data 

points and thus determines a metric space of the data set that serves as the starting 

point of TDA. The distance metric using correlation distance was a consensus setting 

in the UBIOPRED project across each individual analysis when applying the TDA 

approach for clustering. The filter function in TDA serves to generate a real valued 

quantity associated with each data point that reflects a unique view of the data set. 

There are various sort of filter functions in TDA that include functions that depend 

only on the distance metric itself, such as a density estimator or a measure of 

centrality; functions that produce linear projections on a data matrix, such as principle 

component analysis or multidimensional scaling; or functions that retrieved from 

input parameters by researchers, such as clinical metadata. In UBIOPRED, the filter 

function was an open option across each analysis. In this analysis, filter function of 

linear projection was chosen as the 1
st
 and 2

nd
 principle component of the 42 GSVA 

signatures in order to unbiasedly focus on the major variation within the data matrix.  

The value of each data point computed by the filter function which spanned from 

low to high was segmented into overlapping intervals (bins). User-defined resolution 

parameters in TDA are used to control the size of the bins, a high resolution means 

fine-grained partitions and a low resolution suggests coarse-grained ones. A network 

in high resolution will preserve the strongest connections between data points and 

data points that are more weakly associated tend to break apart as the bins are split. 

An overlap parameter is used to define the extent to which the data will be 
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oversampled. This parameter allows users to set the number of bins that are shared by 

most data points thus a higher overlap parameter is often useful to preserve the 

relationship of continuity within a data set. In this analysis, we set a moderate-high 

resolution (Resolution=30) and overlap parameter (Gain=3x) in order to reveal the 

detailed structure of the network while not compromising the inherent continuity of 

the data. Using these input set up, data points having their filter function value sat in 

the same bin were combined when clustering was performed based on the correlation 

dissimilarity. By clustering similar data points into nodes and joining nodes that had 

shared data points with edges, TDA produced a coordinate-free network with 3D 

graphic visualization to enable cluster exploration. Subsequent analysis of these 

graphs is used to identify specific network features such as flares or separated clusters 

that represent subgroups within the data set. Ayasdi Core
TM

 also provides a 

histogram-based coloring scheme for the constructed network from all available filter 

functions or metadata which was input by users. This flexible coloring scheme 

enables a quick overview of the characteristic of interest for all identified clusters or 

subgroups within the network [1, 2]. 

 

Nearest Shrunken Centroid learning algorithm 

The nearest shrunken centroid method was used as a machine learning algorithm to 

further define the optimal number of GSVA signatures that best differentiated between 

identified clusters. The centroids (average expression of each GSVA signature) for 

each cluster as well as the overall samples were calculated. Standardization of the 

centroids of each cluster was performed through dividing the difference of the cluster 

centroids and overall centroids by the within-cluster standard deviation of each 

signature. This standardized value was treated as an absolute value which was later 

shrunken by an amount (Δ, threshold value). If the value of a given standardized 
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centroid was shrunken to zero by Δ for all clusters, then this signature did not 

contribute to the nearest-centroid classification. Otherwise, a non-zero value of a 

standardized centroid after shrinkage was retained as a centroid classifier for the given 

cluster. The inherent property of this method is that many signatures will be 

eliminated from cluster prediction as Δ increases. Given that each amount of Δ 

shrunken will result in a set of surviving centroids for each cluster, the amount of 

shrinkage is chosen by iterative cross-validation on the performance that each set of 

surviving centroids correctly predicts the cluster classification of each sample. This 

algorithm is available as a free R software as prediction analysis for microarrays in 

The Comprehensive R Archive Networks (CRAN-pamr package) [3].   
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Table S1. 42 signatures used for gene set variation analysis 

Name of gene-sets Disease/Treatme

nt 

Species Cell Type Study 

Type 

Refer

ence 

Omnibus immune cells activation                     

Tcell.activated.HS.IVS activated HS Tcell IVS [4] 

Bcell.activated.HS.IVS activated HS Bcell IVS [4] 

Monocyte.activated.HS.IVS activated HS Monocyte IVS [4] 

NKcell.activated.HS.IVS activated HS NKcell IVS [4] 

Dentritic.activated.HS.IVS activated HS Dentritic IVS [4] 

Neutrophil.activated.HS.IVS activated HS Neutrophil IVS [4] 

Th1 and CD8 T cell immunity      

CD8.T.memory.activation.HS.IVS activated HS peripheral blood IVS [5] 

CD8.T.B.activation.HS.IVS activated HS peripheral blood IVS [5] 

CD8.CD4.T.activation.HS.IVS activated HS peripheral blood IVS [5] 

Th1.activated.HS.IVS.UP activated HS peripheral blood IVS [6] 

Th1.activated.HS.IVS.UP.2 activated HS peripheral blood IVS [7] 

Influenza.H1N1.HS.IVV.UP H1N1trivalent 

influenza vaccine  

HS peripheral blood IVV [8] 

Th2, Th17 and T-reg cell immunity      

Th17.activated.HS.IVS.UP activated HS peripheral blood IVS [6] 

Th17.activated.HS.IVS.UP.2 activated HS peripheral blood IVS [7] 

Th2.activated.HS.IVS.UP activated HS peripheral blood IVS [7] 

Treg.activated.HS.IVS.UP activated HS peripheral blood IVS [7] 

Tnaive.activated.HS.IVS.UP activated HS peripheral blood IVS [7] 

Oxidative stress      

Ozone.MM.IVV.Down Ozone MM lung biopsy IVV # 

Ozone.Air.MM.IVV.UP Ozone followed  

by air 

MM lung biopsy IVV # 

Ozone.Air.MM.IVV.DOWN Ozone followed  

by air 

MM lung biopsy IVV # 

Ozone.Nac.MM.IVV.UP Ozone followed by 

N-acetylcysteine 

MM lung biopsy IVV # 

Smoking.signature.Mouse smoke MM lung biopsy IVV # 

Lung.biopsy.COPD.HS.EXV.UP COPD HS lung biopsy EXVIVO [9] 

Systemic immune disorders      

PBMC.Systemic immune 

disorders.HS.IVV 

4 autoimmune 

diseases 

HS peripheral blood IVV [10] 

PBMC.Systemic immune 4 autoimmune HS peripheral blood IVV [10] 
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disorders.HS.IVV.UP diseases 

PBMC.Systemic immune 

disorders.HS.IVV.DOWN 

4 autoimmune 

diseases 

HS peripheral blood IVV [10] 

PBMC.Systemic immune 

disorders.HS.IVV.2 

3 autoimmune 

diseases 

HS peripheral blood IVV [10] 

PBMC.SLE.IFNa.HS.IVV_IVS.UP SLE (Bonferroni) HS peripheral blood IVV_IVS [11] 

PBMC.SLE.IFNa.HS.IVV_IVS.UP.2 SLE (FDR) HS peripheral blood IVV_IVS [11] 

CD4T.RA.HS.IVV.UP RA HS peripheral blood IVV [12] 

Asthma specific T cell immunity      

CD4.severe.asthma.HS.IVV.UP Severe Asthma HS peripheral blood IVV [13] 

CD4.severe.asthma.HS.IVV.UP Severe Asthma HS peripheral blood IVV [13] 

CD8.severe.asthma.HS.IVV.UP Severe Asthma HS peripheral blood IVV [13] 

CD8.severe.asthma.HS.IVV.DOWN Severe Asthma HS peripheral blood IVV [13] 

Lung.biopsy.HDM.Rhesus.IVV.UP HDM Rhesus lung biopsy IVV [14] 

Lung.biopsy.Th2high.asthma.HS.IVV.U

P 

Th2 high/low 

asthma 

HS lung biopsy IVV [15] 

Lung.brushings.Th2high.asthma.HS.IVV

.UP 

Th2 high/low 

asthma 

HS lung brushings IVV [16] 

Glucocorticoid response      

Lung.biopsy.COPD.FLU.SAL.HS.IVV COPD fluticasone 

& salmeterol 

HS lung biopsy IVV [17] 

Lung.biopsy.COPD.FLU.SAL.HS.IVV.

UP 

COPD fluticasone 

& salmeterol  

HS lung biopsy IVV [17] 

Lung.biopsy.COPD.FLU.SAL.HS.IVV.

DOWN 

COPD.fluticasone 

& salmeterol  

HS lung biopsy IVV [17] 

Lung.ASM.asthma.Prednisolone.HS.IV

V.UP 

Asthma, 

Prednisolone  

HS lung biopsy 

ASM 

IVV [18] 

PBMC.asthma.GC.HS.IVS Asthma,IL-1β, 

TNF-α, with or 

without GC 

HS peripheral blood IVS [19] 

HS: Homo sapiens, MM: Mus musculus, IVS: in vitro soil-less, IVV: in vivo, INF: interferon, COPD: 

chronic obstructive pulmonary disease, FLU: fluticasone, SAL: salmeterol, HDM: house dust mite, PBMC: 

peripheral blood mononuclear cell, SLE: systemic lupus erythematosus, RA: rheumatoid arthritis, GC: 

glucocorticoid, #: unpublished data from Philip Hansbro et al. 
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Supplementary Figures 

Figure S1 

 

 

 

Relationship between steroid insensitivity (PBMC.asthma.GC.HS.IVS) and Th2 

signature-A (Lung.biopsy.HDM.Rhesus.IVV.UP) showing a moderate correlation in 

epithelial brushings (Pearson’s r: 0.49, p=2.6x10
-7

) and bronchial biopsies (Pearson’s 

r: 0.44, p=1.3x10
-5

). There was also a significant correlation between the steroid 

insensitivity signature and the Th2 signature-B 

(Lung.brushings.Th2high.asthma.HS.IVV.UP) in epithelial brushings and bronchial 

biopsies (data not shown).  
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Figure S2 

 

 

 

 

Relationship between oxidative stress (Ozone.Air.MM.IVV.UP) and adaptive 

immunity signatures. In bronchial biopsy, oxidative stress showed high correlation 

with (A) T cell signature (Tcell.activated.HS.IVS; Pearson’s r: 0.79, p=1.3x10
-20

), 

moderate correlation with (B) Th1 signature (Th1.activated.HS.IVS.UP; Pearson’s r: 

0.50, p=4.5x10
-7

) and mild correlation with (C) Th2 signature_B 

(Lung.brushings.Th2high.asthma.HS.IVV.UP; Pearson’s r: 0.36, p=4.6x10
-7

). In 

epithelial brushing, oxidative stress showed moderate correlation with (D) T cell 

signature (Tcell.activated.HS.IVS; Pearson’s r: 0.58, p=3.1x10
-10

), moderate 

correlation with (E) Th1 signature (Th1.activated.HS.IVS.UP; Pearson’s r: 0.55, 

p=3.7x10
-9

) and weak to negligible correlation with (F) Th2 signature_B 

(Lung.brushings.Th2high.asthma.HS.IVV.UP; Pearson’s r: 0.16, p=0.110). There was 

also a significant correlation between the oxidative stress signature and the Th2 

Page 52 of 57
 AJRCCM Articles in Press. Published on 31-August-2016 as 10.1164/rccm.201512-2452OC 

 Copyright © 2016 by the American Thoracic Society 



signature-A (Lung.biopsy.HDM.Rhesus.IVV.UP) in bronchial biopsies and epithelial 

brushings (data not shown). 
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Figure S3 

 

 

Relationship between steroid insensitivity 

(Lung.biopsy.COPD.FLU.SAL.HS.IVV.DOWN) and oxidative stress 

(Ozone.Air.MM.IVV.UP) signature showing a moderate correlation in epithelial 

brushings  (Pearson’s r: 0.53, p=1.7x10
-8

) and high correlationin bronchial biopsies 

(Pearson’s r: 0.80, p=1.9 x10
-21

). 
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Figure S4 

Bronchial biopsies 

 

 

Gene expression of IL-25, IL-33 and TSLP in bronchial biopsies according to cluster 

A and non-A (upper panel), and in bronchial biopsies and epithelial brushings 

according to the 4 Groups (lower panels). For bronchial biopsies, there was a 

significant difference in the level of gene expression for IL-33 and TSLP between 

Group1 and Group4  (p=0.003 for both) and between Group2 and Group4 (p=0.014 

and p= 0.051, respectively). There was a  difference in  the level of gene expression 

of IL-33 between Group1 and Group3 (p=0.053).  

 

Page 55 of 57
 AJRCCM Articles in Press. Published on 31-August-2016 as 10.1164/rccm.201512-2452OC 

 Copyright © 2016 by the American Thoracic Society 



 

 

Reference: 

 

1. Lum, P.Y., G. Singh, A. Lehman, et al., Extracting insights from the shape of 

complex data using topology. Sci Rep, 2013. 3: 1236. 

2. Nicolau, M., A.J. Levine, and G. Carlsson, Topology based data analysis 

identifies a subgroup of breast cancers with a unique mutational profile and 

excellent survival. Proc Natl Acad Sci U S A, 2011. 108: 7265-70. 

3. Tibshirani, R., T. Hastie, B. Narasimhan, and G. Chu, Diagnosis of multiple 

cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U 

S A, 2002. 99: 6567-72. 

4. Abbas, A.R., D. Baldwin, Y. Ma, et al., Immune response in silico (IRIS): 

immune-specific genes identified from a compendium of microarray expression 

data. Genes Immun, 2005. 6: 319-31. 

5. Haining, W.N., B.L. Ebert, A. Subrmanian, et al., Identification of an 

evolutionarily conserved transcriptional signature of CD8 memory 

differentiation that is shared by T and B cells. J Immunol, 2008. 181: 1859-68. 

6. Zhang, W., J. Ferguson, S.M. Ng, et al., Effector CD4+ T cell expression 

signatures and immune-mediated disease associated genes. PLoS One, 2012. 

7: e38510. 

7. Zhang, H., C.E. Nestor, S. Zhao, et al., Profiling of human CD4+ T-cell 

subsets identifies the TH2-specific noncoding RNA GATA3-AS1. J Allergy Clin 

Immunol, 2013. 132: 1005-8. 

8. Bucasas, K.L., L.M. Franco, C.A. Shaw, et al., Early patterns of gene 

expression correlate with the humoral immune response to influenza 

vaccination in humans. J Infect Dis, 2011. 203: 921-9. 

9. Campbell, J.D., J.E. McDonough, J.E. Zeskind, et al., A gene expression 

signature of emphysema-related lung destruction and its reversal by the 

tripeptide GHK. Genome Med, 2012. 4: 67. 

10. Tuller, T., S. Atar, E. Ruppin, M. Gurevich, and A. Achiron, Common and 

specific signatures of gene expression and protein-protein interactions in 

autoimmune diseases. Genes Immun, 2013. 14: 67-82. 

11. Bennett, L., A.K. Palucka, E. Arce, et al., Interferon and granulopoiesis 

signatures in systemic lupus erythematosus blood. J Exp Med, 2003. 197: 

711-23. 

12. Pratt, A.G., D.C. Swan, S. Richardson, et al., A CD4 T cell gene signature for 

early rheumatoid arthritis implicates interleukin 6-mediated STAT3 signalling, 

Page 56 of 57
 AJRCCM Articles in Press. Published on 31-August-2016 as 10.1164/rccm.201512-2452OC 

 Copyright © 2016 by the American Thoracic Society 



particularly in anti-citrullinated peptide antibody-negative disease. Ann 

Rheum Dis, 2012. 71: 1374-81. 

13. Tsitsiou, E., A.E. Williams, S.A. Moschos, et al., Transcriptome analysis 

shows activation of circulating CD8+ T cells in patients with severe asthma. J 

Allergy Clin Immunol, 2012. 129: 95-103. 

14. Abbas, A.R., J.K. Jackman, S.L. Bullens, et al., Lung gene expression in a 

rhesus allergic asthma model correlates with physiologic parameters of 

disease and exhibits common and distinct pathways with human asthma and a 

mouse asthma model. Am J Pathol, 2011. 179: 1667-80. 

15. Choy, D.F., B. Modrek, A.R. Abbas, et al., Gene expression patterns of Th2 

inflammation and intercellular communication in asthmatic airways. J 

Immunol, 2011. 186: 1861-9. 

16. Woodruff, P.G., H.A. Boushey, G.M. Dolganov, et al., Genome-wide profiling 

identifies epithelial cell genes associated with asthma and with treatment 

response to corticosteroids. Proc Natl Acad Sci U S A, 2007. 104: 15858-63. 

17. van den Berge, M., K. Steiling, W. Timens, et al., Airway gene expression in 

COPD is dynamic with inhaled corticosteroid treatment and reflects biological 

pathways associated with disease activity. Thorax, 2014. 69: 14-23. 

18. Yick, C.Y., A.H. Zwinderman, P.W. Kunst, et al., Glucocorticoid-induced 

changes in gene expression of airway smooth muscle in patients with asthma. 

Am J Respir Crit Care Med, 2013. 187: 1076-84. 

19. Hakonarson, H., U.S. Bjornsdottir, E. Halapi, et al., Profiling of genes 

expressed in peripheral blood mononuclear cells predicts glucocorticoid 

sensitivity in asthma patients. Proc Natl Acad Sci U S A, 2005. 102: 14789-94. 

 

 

Page 57 of 57
 AJRCCM Articles in Press. Published on 31-August-2016 as 10.1164/rccm.201512-2452OC 

 Copyright © 2016 by the American Thoracic Society 


