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Abstract
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as a putative framework for a nonassociative theory of gravity.
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1 Introduction and summary

This paper is the second part in a series of articles whose goal is to systematically develop
a formalism for differential geometry on noncommutative and nonassociative spaces. The
main physical inspiration behind this work is sparked by the recent observations from closed
string theory that certain non-geometric flux compactifications experience a nonassociative
deformation of the spacetime geometry [BHM06, BP11, Lus10, BDLPR11, MSS12, BFHLS14]
(see [Lus11, MSS13, Blu14] for reviews and further references), together with the constructions
of [MSS14, ASz15] which show that the corresponding nonassociative algebras and their basic
geometric structures can be obtained by cochain twist quantization, and hence are commutative
and associative quantities when regarded as objects in a suitable braided monoidal category.
See the first paper in this series [BSS15], hereafter referred to as Part I, for further motivation
and a more complete list of relevant references.

Earlier categorical approaches to nonassociative geometry along these lines were pursued
in [BHM11, BM10]. In the present paper we develop important notions of differential geome-
try internal to the representation category HM of a quasitriangular quasi-Hopf algebra H. In
particular, we develop the notions of derivations, differential operators, differential calculi and
connections by using universal categorical constructions such as categorical limits. In contrast
to the approach of [BM10], our geometric structures are described by internal homomorphisms
instead of morphisms in the category HM . This leads to a much richer framework, because the
conditions for being a morphism in HM (i.e. H-equivariance) are very restrictive and hence
the framework in [BM10] allows for only very special geometric structures. Our internal homo-
morphism approach is inspired by the formalism of [AS14] (see [Sch11, Asc12] for overviews),
and it clarifies these ideas and constructions in categorical terms.

We begin in Section 2 with a brief review of the categorical framework which was developed
in Part I. In contrast to that paper, in the present paper we consider the case where all
modules are Z-graded; this allows us later on to regard graded objects such as differential
calculi naturally as objects in our categories.

In Section 3 we introduce derivations der(A) on braided commutative algebras A in HM by
formalizing the Leibniz rule in terms of an equalizer in HM . We analyse structural properties
of der(A) and in particular prove that, in the case where H is triangular, der(A) together
with an internal commutator [ · , · ] is a Lie algebra in HM . We then introduce differential
operators diff(V ) on symmetric A-bimodules V in HM by again using a suitable equalizer in
HM to capture the relevant algebraic properties. We show that diff(V ) is an algebra in HM

and we also prove that the zeroth order differential operators are the internal endomorphisms
endA(V ) in the category of symmetric A-bimodules HAM

sym
A . Using the product structure on

differential operators to formalize nilpotency of a differential, we can then give a definition of
a differential calculus in HM .

In Section 4 we develop an appropriate notion of connections con(V ) on objects V in

2



H
AM

sym
A . The idea is to formalize a generalization of the usual Leibniz rule with respect to a

differential calculus in terms of an equalizer in HM . The resulting object con(V ) is analysed
in detail and it is shown that the usual affine space of ordinary connections arises as a certain
proper subset of con(V ). Our more flexible definition of connections has the advantage that
con(V ) also forms an object in HM in addition to being an affine space. We then develop a
lifting prescription for connections to tensor products V ⊗AW of objects V,W in H

AM
sym
A . It

is important to notice that our notion of tensor product connections differs from the standard
one: Although our techniques are only applicable to braided commutative algebras and their
bimodules in HM , they are more flexible in the sense that any two connections can be lifted
to a tensor product connection, not only those which satisfy the very restrictive ‘bimodule
connection’ property proposed in [Mou95, D-VM96, BM-HDS96, D-V01]. We also develop a
lifting prescription for connections to internal homomorphisms homA(V,W ) of objects V,W in
H
AM

sym
A . These lifts are all important ingredients in (noncommutative and nonassociative)

Riemannian geometry for extending e.g. tangent bundle connections to all tensor fields, and
they play an instrumental role in physical applications of our formalism to noncommutative and
nonassociative gravity theories such as those anticipated to arise in non-geometric string the-
ory. All of these constructions moreover generalize and clarify the corresponding constructions
of [AS14] in categorical terms.

Finally, in Section 5 we assign curvatures to connections and show that they are internal
endomorphisms in the category H

AM
sym
A , provided that H is triangular. We also obtain a

Bianchi tensor, which in classical differential geometry would identically vanish; in general it is
not necessarily equal to 0, and hence in this sense it characterizes the noncommutativity and
nonassociativity of our geometries. We further observe that the curvature of any tensor product
connection is the sum of the two individual curvatures, which means that curvatures behave
additively in an appropriate sense. We conclude with a brief outline of how our formalism
could be used to describe a noncommutative and nonassociative theory of gravity coupled to
Dirac fields; our considerations are based on Einstein-Cartan geometry and its noncommutative
generalization which was developed in [AC09].

2 Categorical preliminaries

Let k be an associative and commutative ring with unit 1 ∈ k. In contrast to Part I, in
this paper we shall work with Z-graded k-modules. This will have the advantage later on that
naturally graded objects such as differential calculi can be described as objects in the categories
we define below, and also that minus signs will be absorbed into the formalism. The goal of
this section is to adapt the material developed in [BSS15] to the graded setting and to thereby
also fix our notation for the present paper.

2.1 Z-graded k-modules

The category M of bounded Z-graded k-modules is defined as follows: The objects in M are
the bounded Z-graded k-modules

V =
⊕

n∈Z

V n , (2.1)

where the k-modules V n = 0 for all but finitely many n. The morphisms in M are the degree
preserving k-linear maps f : V → W , i.e. f(V n) ⊆ W n for all n ∈ Z. For any object V in M

there is a map

| · | :
⊔

n∈Z

V n −→ Z , (2.2)
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which assigns to elements v ∈ V n their degree |v| = n. Elements of V n are said to be
homogeneous of degree n.

The category M is monoidal with monoidal functor ⊗ : M × M → M given by the
Z-graded tensor product: For any two objects V ,W in M we define

V ⊗W :=
⊕

n∈Z

(
V ⊗W

)
n
:=

⊕

n∈Z

⊕

m+l=n

V m ⊗W l , (2.3)

where V m ⊗ W l is the usual tensor product of k-modules. To any M × M -morphism (f :
V → V ′, g :W →W ′ ) the monoidal functor assigns the M -morphism

f ⊗ g : V ⊗W −→ V ′ ⊗W ′ , v ⊗ w 7−→ f(v)⊗ g(w) . (2.4)

The unit object in M is given by the ring k itself, but regarded as a Z-graded k-module with
kn = 0, for all n 6= 0, and k0 = k. The associator in M is the natural isomorphism

Φ : ⊗ ◦
(
⊗ ×idM

)
=⇒ ⊗ ◦

(
idM ×⊗

)
, (2.5)

whose components are identity maps. The unitors in M are the natural isomorphisms

λ : k ⊗ – =⇒ idM and ρ : –⊗ k =⇒ idM , (2.6)

whose components are λ : k ⊗ V → V , c ⊗ v 7→ c v and ρ : V ⊗ k → V , v ⊗ c 7→ c v.
Here and in the following we shall refrain from writing indices on the components of natural
transformations.

The monoidal category M is also braided. Denoting by ⊗op : M × M → M the func-
tor taking the opposite Z-graded tensor product, i.e. V ⊗op W := W ⊗ V and similarly for
morphisms, the braiding is the natural isomorphism

τ : ⊗ =⇒ ⊗op , (2.7)

whose components are given by

τ : V ⊗W −→W ⊗ V , v ⊗ w 7−→ (−1)|v| |w| w ⊗ v , (2.8)

for all homogeneous v ∈ V and w ∈W .

Finally, M is a braided closed monoidal category with internal hom-functor

hom : M
op × M −→ M . (2.9)

For any object (V ,W ) in M op × M we define

hom
(
V ,W

)
:=

⊕

n∈Z

hom
(
V ,W

)
n
:=

⊕

n∈Z

⊕

l−m=n

Homk

(
V m,W l

)
, (2.10)

where Homk(V m,W l) denotes the k-module of k-linear maps between the homogeneous com-
ponents V m and W l. To any M op × M -morphism (fop : V → V ′, g : W → W ′ ) the internal
hom-functor assigns the M -morphism

hom(fop, g) : hom
(
V ,W

)
−→ hom

(
V ′,W ′

)
, L 7−→ g ◦ L ◦ f . (2.11)

The natural currying isomorphism

ζ : HomM (–⊗ –, –) =⇒ HomM (–,hom(–, –)) (2.12)

has components given by

ζ(f) : V −→ hom(W,X) , v 7−→ f
(
v ⊗ ( · )

)
, (2.13)

for all M -morphisms f : V ⊗W → X . The natural inverse currying isomorphism has compo-
nents given by

ζ−1(g) : V ⊗W −→ X , v ⊗ w 7−→ g(v)(w) , (2.14)

for all M -morphisms g : V → hom(W,X).
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2.2 Z-graded quasi-Hopf representation categories

Let H be a quasitriangular quasi-Hopf algebra (see e.g. [Dri90, BSS15] for definitions), which
we regard as being Z-graded and sitting in degree 0. A left H-action on an object V in M is
an M -morphism

⊲ : H ⊗ V −→ V , (2.15)

such that

1 ⊲ v = v and (hh′ ) ⊲ v = h ⊲ (h′ ⊲ v) , (2.16)

for all v ∈ V and h, h′ ∈ H. The bounded Z-graded representation category HM of H is
defined as follows: The objects in HM are the bounded Z-graded left H-modules, i.e. the pairs
V = (V , ⊲) consisting of an object V in M and a left H-action ⊲ : H ⊗ V → V on V . The
morphisms in HM are the H-equivariant M -morphisms f : V →W , i.e.

f(h ⊲ v) = h ⊲ f(v) , (2.17)

for all h ∈ H and v ∈ V .

The category HM is monoidal with monoidal functor ⊗ : HM × HM → HM (denoted
by the same symbol as that of M ): For any two objects V ,W in HM we define V ⊗W as
the Z-graded tensor product of the underlying Z-graded k-modules (2.3) together with the left
H-action

⊲ : H ⊗ V ⊗W −→ V ⊗W , h⊗ v ⊗ w 7−→ (h(1) ⊲ v)⊗ (h(2) ⊲ w) , (2.18)

where we have used the Sweedler notation ∆(h) = h(1)⊗h(2) (with summation understood) for

the coproduct of H. To any HM × HM -morphism (f : V → V ′, g : W → W ′ ) the monoidal
functor assigns the HM -morphism induced by (2.4). The unit object in HM is I := (k, ⊲) with
trivial left H-action ⊲ : H ⊗ k → k , h ⊗ c 7→ ǫ(h) c given by the counit of H. The associator
in HM is the natural isomorphism

Φ : ⊗ ◦
(
⊗ ×idHM

)
=⇒ ⊗ ◦

(
idHM

×⊗
)
, (2.19)

whose components are given in terms of the associator φ = φ(1) ⊗ φ(2) ⊗ φ(3) ∈ H ⊗H ⊗H of
H by

Φ : (V ⊗W )⊗X −→ V ⊗ (W ⊗X) ,

(v ⊗ w)⊗ x 7−→ (φ(1) ⊲ v)⊗
(
(φ(2) ⊲ w) ⊗ (φ(3) ⊲ x)

)
. (2.20)

The unitors in HM are the natural isomorphisms

λ : I ⊗ – =⇒ idHM and ρ : –⊗ I =⇒ idHM , (2.21)

whose components are λ : I ⊗ V → V , c⊗ v 7→ c v and ρ : V ⊗ I → V , v ⊗ c 7→ c v.

The monoidal category HM is also braided. The braiding is the natural isomorphism
τ : ⊗ ⇒ ⊗op with components given in terms of the universal R-matrix R = R(1)⊗R(2) ∈ H⊗H
of H by

τ : V ⊗W −→W ⊗ V , v ⊗ w 7−→ (−1)|v| |w|
(
R(2) ⊲ w

)
⊗

(
R(1) ⊲ v

)
, (2.22)

for all homogeneous v ∈ V and w ∈W .
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Finally, HM is a braided closed monoidal category with internal hom-functor

hom :
(
H

M
)op × H

M −→ H
M . (2.23)

For any object (V,W ) in (HM )op×HM the internal hom-object hom(V,W ) := (hom(V ,W ), ⊲)
in HM is given by the Z-graded k-module (2.10) equipped with the left adjoint H-action

⊲ : H ⊗ hom
(
V ,W

)
−→ hom

(
V ,W

)
,

h⊗ L 7−→
(
h(1) ⊲ ·

)
◦ L ◦

(
S(h(2)) ⊲ ·

)
, (2.24)

where S is part of the quasi-antipode (S, α, β) of H. To any (HM )op × HM -morphism (fop :
V → V ′, g :W →W ′ ) the internal hom-functor assigns the HM -morphism induced by (2.11).
The natural currying isomorphism

ζ : HomHM
(–⊗ –, –) =⇒ HomHM

(–,hom(–, –)) (2.25)

has components given by

ζ (f) : V −→ hom(W,X) ,

v 7−→ f
((
φ(−1) ⊲ v

)
⊗

((
φ(−2) β S(φ(−3))

)
⊲ ( · )

))
, (2.26)

for all HM -morphisms f : V ⊗W → X, where φ−1 = φ(−1) ⊗ φ(−2) ⊗ φ(−3) ∈ H ⊗ H ⊗ H

denotes the inverse associator of H. The natural inverse currying isomorphism has components
given by

ζ−1(g) : V ⊗W −→ X ,

v ⊗ w 7−→ φ(1) ⊲
(
g(v)

((
S(φ(2))α φ(3)

)
⊲ w

))
, (2.27)

for all HM -morphisms g : V → hom(W,X).

2.3 Internal evaluation, composition and tensor product

In any closed monoidal category there are evaluation and composition morphisms for its inter-
nal homomorphisms. If the category is in addition braided then there are also tensor product
morphisms for its internal homomorphisms. These morphisms are derived using the curry-
ing bijection, see e.g. [Maj95, Proposition 9.3.13] and [BSS15], and they induce important
structures on the internal homomorphisms that make them look like morphisms.

We shall denote the internal evaluation HM -morphisms by

ev : hom
(
V,W

)
⊗ V −→W , (2.28)

the internal composition HM -morphisms by

• : hom
(
W,X

)
⊗ hom

(
V,W

)
−→ hom

(
V,X

)
, (2.29)

and the internal tensor product HM -morphisms by

⊗• : hom
(
V,W

)
⊗ hom

(
X,Y

)
−→ hom

(
V ⊗ X,W ⊗ Y

)
. (2.30)

For the explicit forms of these morphisms in terms of the currying map see e.g. [BSS15, Proposi-
tions 2.11 and 5.5]. The next three lemmas summarize important properties of these morphisms,
which we shall frequently use throughout this paper.
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Lemma 2.1. Let V,W,X, Y be any four objects in HM . Then

ev
((
L′ • L

)
⊗ v

)
= ev

((
φ(1) ⊲ L′

)
⊗ ev

((
φ(2) ⊲ L

)
⊗

(
φ(3) ⊲ v

)))
, (2.31a)

(
L′′ • L′

)
• L = (φ(1) ⊲ L′′ ) •

(
(φ(2) ⊲ L′ ) • (φ(3) ⊲ L)

)
, (2.31b)

for all L ∈ hom(V,W ), L′ ∈ hom(W,X), L′′ ∈ hom(X,Y ) and v ∈ V .

Proof. The proof follows the same steps as in [BSS15, Proposition 2.12].

Lemma 2.2. Let V,W,X, Y be any four objects in HM . Then

L⊗• L′ =
(
L⊗• 1Y

)
•
(
1V ⊗• L′

)
, (2.32a)

(
K • L

)
⊗• 1Y =

(
K ⊗• 1Y

)
•
(
L⊗• 1Y

)
, (2.32b)

1Y ⊗•
(
K • L

)
=

(
1Y ⊗• K

)
•
(
1Y ⊗• L

)
, (2.32c)

(−1)|L| |L
′|
(
R(2) ⊲ L

)
⊗•

(
R(1) ⊲ L′

)
=

(
1W ⊗• L′

)
•
(
L⊗• 1X

)
, (2.32d)

for all L ∈ hom(V,W ), K ∈ hom(W,X) and L′ ∈ hom(X,Y ), where 1V := (β⊲ · ) ∈ hom(V, V ),
for all objects V in HM , are the unit internal homomorphisms.

Proof. The proof follows the same steps as in [BSS15, Lemmas 5.6 and 5.7].

Lemma 2.3. Let U, V,W,X, Y, Z be any six objects in HM . Then

Φ ◦
(
(L⊗• 1W )⊗• 1Y

)
◦ Φ−1 = L⊗•

(
1W ⊗• 1Y

)
, (2.33a)

Φ ◦
(
(1U ⊗• L′ )⊗• 1Y

)
◦ Φ−1 = 1U ⊗•

(
L′ ⊗• 1Y

)
, (2.33b)

Φ ◦
(
(1U ⊗• 1W )⊗• L′′

)
◦ Φ−1 = 1U ⊗•

(
1W ⊗• L′′

)
, (2.33c)

for all L ∈ hom(U, V ), L′ ∈ hom(W,X) and L′′ ∈ hom(Y,Z).

Proof. The proof follows the same steps as in [BSS15, Proposition 5.9].

Remark 2.4. To simplify notation, in what follows we shall drop the labels on the unit internal
homomorphisms and simply write 1 := (β ⊲ · ) ∈ hom(V, V ), for any object V in HM .

Finally, we prove a technical lemma that will be useful for our analysis throughout this
paper.

Lemma 2.5. Let V,W,X be any three objects in HM .

(i) For any HM -morphism g : V → hom(W,X) there is an identity

ζ−1(g) = ev ◦
(
g ⊗ id

)
: V ⊗W −→ X . (2.34)

(ii) Let f : V ⊗W → X be any HM -morphism. Then ζ(f)◦j = 0 if and only if f ◦(j⊗id) = 0,
for all HM -morphisms j : U → V .

Proof. The proof of item (i) is exactly as in [BSS15, Proposition 2.12 (i)]. To prove item (ii),
let us first suppose that ζ(f) ◦ j = 0. Then

0 = ev ◦
((
ζ(f) ◦ j

)
⊗ id

)
= ev ◦

(
ζ(f)⊗ id

)
◦ (j ⊗ id) = f ◦ (j ⊗ id) , (2.35)

where in the last equality we have used item (i). Let us now assume that f ◦ (j⊗ id) = 0. Then

0 = ζ
(
f ◦ (j ⊗ id)

)

= ζ
(
HomHM

(jop ⊗ idop, id)
(
f
))

= HomHM
(jop,hom(idop, id))

(
ζ(f)

)
= ζ(f) ◦ j , (2.36)

where in the third equality we have used naturality of the currying bijection, see also the proof
of [BSS15, Theorem 2.10].
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2.4 Algebras and bimodules

An algebra in the braided closed monoidal category HM is an object A in HM together with
two HM -morphisms µ : A⊗ A → A (product) and η : I → A (unit), such that (denoting the
product by juxtaposition and the unit element by 1 := η(1) ∈ A)

(a a′ ) a′′ = (φ(1) ⊲ a)
(
(φ(2) ⊲ a′ ) (φ(3) ⊲ a′′ )

)
, (2.37)

for all a, a′, a′′ ∈ A, and

1 a = a = a 1 , (2.38)

for all a ∈ A. To simplify notation, we shall denote an algebra in HM simply by its underlying
bounded Z-graded left H-module A, suppressing the product and unit from the notation. We
denote by HA the category of all algebras in HM ; the morphisms in HA are given by all
HM -morphisms f : A→ B that preserve the products and units, i.e. f(a a′ ) = f(a) f(a′ ), for
all a, a′ ∈ A, and f(1) = 1.

Example 2.6. Let V be any object in HM . Then the internal endomorphism object end(V ) :=
hom(V, V ), together with the HM -morphisms • : end(V ) ⊗ end(V ) → end(V ) and η : I →
end(V ) , c 7→ c (β ⊲ · ), is an object in HA . We call this object the algebra of internal
endomorphisms of V .

We say that an object A in HA is braided commutative if its product is compatible with
the braiding in HM , i.e. µ ◦ τ = µ or

a a′ = (−1)|a| |a
′|
(
R(2) ⊲ a′

) (
R(1) ⊲ a

)
, (2.39)

for all homogeneous a, a′ ∈ A. The full subcategory of braided commutative algebras in HM

is denoted by HA com.

Example 2.7. Classical examples of braided commutative algebras are given by function al-
gebras C∞(M) on G-manifolds M , where G is a Lie group with Lie algebra g, see [BSS15,
Section 6]. The relevant quasitriangular quasi-Hopf algebra in this case is the universal en-
veloping Hopf algebra Ug (with trivial R-matrix and associator). These examples are braided
commutative algebras concentrated in Z-degree 0. Similarly to [BSS15, Section 6], one can show
that the exterior algebras of differential forms Ω♯(M) on G-manifolds are braided commutative
algebras according to our definition. These algebras are now nontrivially Z-graded and they
satisfy our assumption of boundedness of Z-graded k-modules for all finite-dimensional mani-
folds. These examples and cochain twist deformations thereof (cf. [BSS15, Section 6]) are our
main examples of interest.

Let A be any object in HA . An A-bimodule in HM is an object V in HM together with
two HM -morphisms l : A⊗ V → V (left A-action) and r : V ⊗A → V (right A-action), such
that (denoting also the A-actions by juxtaposition)

(v a) a′ = (φ(1) ⊲ v)
(
(φ(2) ⊲ a) (φ(3) ⊲ a′ )

)
, (2.40a)

a (a′ v) =
(
(φ(−1) ⊲ a) (φ(−2) ⊲ a′ )

)
(φ(−3) ⊲ v) , (2.40b)

a (v a′ ) =
(
(φ(−1) ⊲ a) (φ(−2) ⊲ v)

)
(φ(−3) ⊲ a′ ) , (2.40c)

for all a, a′ ∈ A and v ∈ V , and

1 v = v = v 1 , (2.41)
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for all v ∈ V . To simplify notation, we shall denote an A-bimodule in HM simply by its
underlying bounded Z-graded left H-module V , suppressing the A-actions from the notation.
We denote by H

AMA the category of all A-bimodules in HM ; the morphisms in H
AMA are

given by all HM -morphisms f : V → W that preserve the A-actions, i.e. f(v a) = f(v) a and
f(a v) = a f(v), for all v ∈ V and a ∈ A. If A is an object in HA com, we may demand that
the left and right A-actions in an A-bimodule V are compatible with the braiding in HM , i.e.
r ◦ τ = l and l ◦ τ = r, or

a v = (−1)|a| |v|
(
R(2) ⊲ v

) (
R(1) ⊲ a

)
, (2.42a)

v a = (−1)|a| |v|
(
R(2) ⊲ a

) (
R(1) ⊲ v

)
, (2.42b)

for all homogeneous a ∈ A and v ∈ V . We shall call such A-bimodules symmetric and denote
the full subcategory of all symmetric A-bimodules in HM by H

AM
sym
A .

Example 2.8. Following [BSS15, Section 6] and Example 2.7, the C∞(M)-bimodules of sec-
tions Γ∞(E) of G-equivariant vector bundles E → M over G-manifolds M are symmetric
C∞(M)-bimodules concentrated in Z-degree 0. Similarly, the Ω♯(M)-bimodules of E-valued dif-
ferential forms Ω♯(M,E) are symmetric Ω♯(M)-bimodules that are now nontrivially Z-graded.
These examples and cochain twist deformations thereof (cf. [BSS15, Section 6]) are our main
examples of interest.

The category H
AM

sym
A is a braided monoidal category. The monoidal functor is denoted

⊗A : HAM
sym
A ×H

AM
sym
A → H

AM
sym
A and it assigns to any two objects V,W in H

AM
sym
A the

object

V ⊗AW =
V ⊗W

Im
(
r ⊗ id− (id⊗ l) ◦Φ

) (2.43)

in HM , together with left and right A-actions given by the HM -morphisms

l : A⊗
(
V ⊗AW

)
−→ V ⊗AW ,

a⊗
(
v ⊗A w

)
7−→ a (v ⊗A w) :=

(
(φ(−1) ⊲ a) (φ(−2) ⊲ v)

)
⊗A (φ(−3) ⊲ w) , (2.44a)

and

r :
(
V ⊗AW

)
⊗A −→ V ⊗AW ,

(
v ⊗A w

)
⊗ a 7−→ (v ⊗A w) a := (φ(1) ⊲ v)⊗A

(
(φ(2) ⊲ w) (φ(3) ⊲ a)

)
. (2.44b)

To any H
AM

sym
A ×H

AM
sym
A -morphism

(
f : V → X, g : W → Y

)
the monoidal functor assigns

the H
AM

sym
A -morphism

f ⊗A g : V ⊗AW −→ X ⊗A Y , v ⊗A w 7−→ f(v)⊗A g(w) . (2.45)

The unit object in H
AM

sym
A is A itself with left and right A-actions given by the product

in A. The unitors in H
AM

sym
A are the natural isomorphisms ρA : – ⊗A A ⇒ idH

A
M

sym
A

and

λA : A ⊗A – ⇒ idH
A

M
sym
A

with components given by λA : A ⊗A V → V , a ⊗A v 7→ a v

and ρA : V ⊗A A → V , v ⊗A a 7→ v a. The associator is the natural isomorphism ΦA :
⊗A ◦

(
⊗A ×idH

A
M

sym
A

)
⇒ ⊗A ◦

(
idH

A
M

sym
A

×⊗A

)
whose components are given by

ΦA : (V ⊗AW )⊗A X −→ V ⊗A (W ⊗A X) ,

(v ⊗A w)⊗A x 7−→ (φ(1) ⊲ v)⊗A

(
(φ(2) ⊲ w)⊗A (φ(3) ⊲ x)

)
. (2.46)

Finally, the braiding in H
AM

sym
A is the natural isomorphism τA : ⊗A ⇒ ⊗op

A with components
given by

τA : V ⊗AW −→ W ⊗A V , v ⊗A w 7−→ (−1)|v| |w|
(
R(2) ⊲ w

)
⊗A

(
R(1) ⊲ v

)
, (2.47)

for all homogeneous v ∈ V and w ∈W . The braided monoidal category H
AM

sym
A is also closed;

we shall give an explicit description of the internal hom-functor in H
AM

sym
A in Section 3.4.
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3 Derivations and differential operators

In the remainder of this paper we shall systematically build up notions of differential geometry
internal to the bounded Z-graded representation category HM of a quasitriangular quasi-Hopf
algebra H. In this section we shall address the notions of derivations, differential operators
and differential calculi. We describe derivations and differential operators as subobjects of the
internal endomorphisms in HM by expressing the algebraic properties which characterize them
in terms of universal categorical constructions. See [Mac98] for an introduction to the notions
of limits and colimits in a category that we use below.

3.1 Internal commutators

Recalling Example 2.6, for any object V in HM there exists an algebra in HM given by the
internal endomorphisms end(V ) with product the internal composition • and unit element
1 := (β ⊲ · ).
Definition 3.1. The internal commutator in the algebra of internal endomorphisms end(V )
is the HM -morphism

[ · , · ] : end(V )⊗ end(V ) −→ end(V ) , L⊗ L′ 7−→ (• − • ◦ τ)(L⊗ L′ ) . (3.1)

Proposition 3.2. The internal commutator in end(V ) satisfies the following properties:

(i) If H is triangular, i.e. its R-matrix satisfies R = R−1
21 , then [ · , · ] is braided antisymmet-

ric, i.e.

[ · , · ] = −[ · , · ] ◦ τ , (3.2)

or
[
L,L′

]
= −(−1)|L| |L

′|
[
R(2) ⊲ L′, R(1) ⊲ L

]
, (3.3)

for all homogeneous L,L′ ∈ end(V ).

(ii) If H is triangular, then [ · , · ] satisfies the braided Jacobi identity Jac = 0, with Jacobiator
given by the HM -morphism Jac : (end(V )⊗ end(V ))⊗ end(V ) −→ end(V ) defined as

Jac := [ · , · ] ◦
(
[ · , · ]⊗ id

)
◦
(
((id⊗ id)⊗ id) + (τ ◦ Φ) + (Φ−1 ◦ τ)

)
, (3.4)

or

0 =
[[
L,L′

]
, L′′

]

+ (−1)|L| (|L
′|+|L′′|)

[[
R

(2)
(1) φ

(2) ⊲ L′, R
(2)
(2) φ

(3) ⊲ L′′
]
, R(1) φ(1) ⊲ L

]

+ (−1)|L
′′| (|L|+|L′|)

[[
φ(−1)R(2) ⊲ L′′, φ(−2)R

(1)
(1) ⊲ L

]
, φ(−3)R

(1)
(2) ⊲ L

′
]
, (3.5)

for all homogeneous L,L′, L′′ ∈ end(V ).

(iii) For generic quasitriangular H, [ · , · ] satisfies the braided derivation property

[ · , · ] ◦ (• ⊗ id) = • ◦
((

id⊗ [ · , · ]
)
+

(
[ · , · ]⊗ id

)
◦Φ−1 ◦

(
id⊗ τ

))
◦Φ , (3.6)

or

[
L • L′, L′′

]
=

(
φ(1) ⊲ L

)
•
[
φ(2) ⊲ L′, φ(3) ⊲ L′′

]

+ (−1)|L
′| |L′′|

[
φ̃(−1) φ(1) ⊲ L, φ̃(−2)R(2) φ(3) ⊲ L′′

]
•
(
φ̃(−3)R(1) φ(2) ⊲ L′

)
, (3.7)

for all homogeneous L,L′, L′′ ∈ end(V ).
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Proof. Item (i) follows from a short calculation

[ · , · ] = • − • ◦ τ = −(• ◦ τ − •) = −(• − • ◦ τ−1) ◦ τ = −(• − • ◦ τ) ◦ τ = −[ · , · ] ◦ τ , (3.8)

where in the fourth equality we have used triangularity of the R-matrix which implies τ−1 = τ .
The proofs of items (ii) and (iii) involve standard manipulations using the weak associativity
of the internal composition (2.31b) and standard properties of the R-matrix (see e.g. [BSS15,
Section 5.1]).

Corollary 3.3. Let H be a triangular quasi-Hopf algebra and V any object in HM . Then the
HM -object given by the internal endomorphisms end(V ), together with the internal commutator
[ · , · ] given in (3.1), is a Lie algebra in HM .

3.2 Derivations

We give a description of the derivations on an object A in HA com by using universal construc-
tions in the braided closed monoidal category HM to formalize a suitable version of the Leibniz
rule, that is compatible with the structures in HM , in terms of an equalizer. Let us start by
noticing that for any object V in H

AM
sym
A there is an HM -morphism

l̂ := ζ(l) : A −→ end(V ) , (3.9)

which is obtained by currying the left A-action l : A⊗V → V . Similarly to [BSS15, Lemma 4.1],
one can show that (3.9) is moreover an HA -morphism to the algebra of internal endomorphisms,
cf. Example 2.6. In particular, this implies that for any object A in HA com there exist two
parallel HM -morphisms

end(A)⊗A
l̂◦ev

//

[ · , · ]
//

end(A) , (3.10)

where for brevity we denote by [ · , · ] the composition [ · , · ] ◦
(
id⊗ l̂

)
with l : A⊗A→ A the

left A-action induced by the product in A.

Definition 3.4. Let A be an object in HA com. The derivations of A is the object der(A) in
HM which is defined by the equalizer

der(A) // end(A)
ζ(l̂◦ev)

//

ζ([ · , · ])
//

hom(A, end(A)) (3.11)

in HM .

In the category HM equalizers may be computed by taking the kernel of the difference of
the two parallel morphisms. In particular, der(A) can be represented explicitly as the kernel

der(A) = Ker
(
ζ
(
[ · , · ]− l̂ ◦ ev

))
. (3.12)

The following lemma will allow us to establish a relation between our definition of deriva-
tions and the standard definition in terms of a Leibniz rule.

Lemma 3.5. Let A be any object in HA com. An HM -subobject U ⊆ end(A) is an HM -
subobject of der(A) if and only if

[L, a] = l̂(ev(L⊗ a)) , (3.13)

for all L ∈ U and a ∈ A.
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Proof. Denoting by f := [ · , · ]− l̂◦ev : end(A)⊗A→ end(A) and j : U → end(A) the inclusion
HM -morphism, we have to show that ζ(f) ◦ j = 0 if and only if f ◦ (j ⊗ id) = 0. This is a
consequence of item (ii) of Lemma 2.5.

Remark 3.6. We explain how our definition of derivations is related to the standard definition
in terms of a Leibniz rule: Let L ∈ der(A) be any derivation. Then Lemma 3.5 implies that
[L, a] = l̂(ev(L⊗ a)). Evaluating this equation on some a′ ∈ A, we obtain

ev
(
[L, a]⊗ a′

)
= ev

(
l̂(ev(L⊗ a))⊗ a′

)
. (3.14)

Using now the evaluation identity (2.31a) and also item (i) of Lemma 2.5, we can simplify this
equation and obtain

ev
(
(φ(1) ⊲ L)⊗

(
(φ(2) ⊲ a) (φ(3) ⊲ a′ )

))

− (−1)|L| |a| (φ(1)R(2) ⊲ a) ev
(
(φ(2)R(1) ⊲ L)⊗ (φ(3) ⊲ a′)

)
= ev

(
L⊗ a

)
a′ , (3.15)

for all homogeneous a, a′ ∈ A and L ∈ der(A). For the special case of trivial R-matrix R = 1⊗1
and associator φ = 1⊗ 1⊗ 1 the last equation reduces to L(a a′ ) = L(a) a′ +(−1)|L| |a| aL(a′ ),
which is exactly the Leibniz rule for a graded derivation. Hence, the equalizer (3.11) provides us
with a suitable generalization of the graded Leibniz rule that is consistent with the structures
in the braided closed monoidal category HM .

Finally, we prove a structural result for our derivations.

Proposition 3.7. Let H be a triangular quasi-Hopf algebra and A any object in HA com. Then
the HM -object given by the derivations der(A), together with the internal commutator [ · , · ]
given in (3.1), is a Lie algebra in HM .

Proof. We already know from Corollary 3.3 that, under our hypotheses, end(A) together the
internal commutator [ · , · ] is a Lie algebra in HM . Moreover, der(A) is by construction an
HM -subobject of end(A), so it remains to prove that the image of the restricted internal
commutator

[ · , · ] : der(A)⊗ der(A) −→ end(A) (3.16)

is an HM -subobject of der(A). Using Lemma 3.5 this is the case if and only if

[[L,L′ ], a] = l̂
(
ev
(
[L,L′ ]⊗ a

))
, (3.17)

for all L,L′ ∈ der(A) and a ∈ A. One can now easily show that this equality holds true by using
the braided Jacobi identity and antisymmetry (cf. items (ii) and (i) of Proposition 3.2), the
derivation property of Lemma 3.5 and finally the evaluation identity (2.31a). For simplifying
the resulting expressions one also needs standard R-matrix properties, which are listed in
e.g. [BSS15, Section 5.1].

3.3 Cochain twisting of derivations

We shall briefly study the deformation of derivations under cochain twisting. For a more com-
plete introduction to these deformation techniques we refer to Part I. Let H be a quasitriangular
quasi-Hopf algebra and F a cochain twisting element, i.e. F ∈ H ⊗H is an invertible element
with the normalization (ǫ⊗ id)(F ) = 1 = (id ⊗ ǫ)(F ). Any cochain twisting element defines a
braided closed monoidal functor F : HM → HF M , where HF is the twisted quasitriangular
quasi-Hopf algebra of H by F , see e.g. [BSS15, Theorem 5.11]. The functor F : HM → HF M
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acts on objects and morphisms as the identity, and the coherence maps for the braided monoidal
structures are the HF M -isomorphisms

ϕ : F(V )⊗F F(W ) −→ F(V ⊗W ) ,

v ⊗F w 7−→
(
F (−1) ⊲ v

)
⊗

(
F (−2) ⊲ w

)
, (3.18a)

where F−1 = F (−1) ⊗ F (−2) denotes the inverse cochain twisting element, and

ψ : IF −→ F(I) , c 7−→ c . (3.18b)

The coherence maps for the internal hom-structures are the HF M -isomorphisms

γ : homF

(
F(V ),F(W )

)
−→ F

(
hom(V,W )

)
,

L 7−→
(
F (−1) ⊲ ·

)
◦ L ◦

(
S
(
F (−2)

)
⊲ ·

)
. (3.19)

The braided closed monoidal functor F : HM → HF M induces functors (denoted with abuse
of notation by the same symbols) F : HA com → HF A com and F : HAM

sym
A → HF

F(A)M
sym
F(A),

which allow us to twist quantize algebras and bimodules in HM to algebras and bimodules in
HF M . Details can be found in [BSS15, Proposition 5.16].

Proposition 3.8. Let A be any object in HA com and let F be any cochain twisting element
based on H. Then the coherence map γ : endF (F(A)) → F(end(A)) restricts to an HF M -
isomorphism

γ : derF (F(A)) −→ F(der(A)) . (3.20)

Proof. The braided closed monoidal functor F : HM → HF M is an equivalence of categories,
hence it preserves all limits and colimits. It then follows that F(der(A)) is the equalizer of the
HF M -diagram

F(end(A))
F(ζ(l̂◦ev))

//

F(ζ([ · , · ]))
// F(hom(A, end(A))) . (3.21)

On the other hand, the object derF (F(A)) in HF M is defined according to Definition 3.4 as
the equalizer of the HF M -diagram

endF (F(A))
ζF (l̂F ◦evF )

//

ζF ([ · , · ]F )
//

homF (F(A), endF (F(A))) . (3.22)

A straightforward but slightly lengthy calculation shows that the HF M -diagrams (3.21) and
(3.22) are isomorphic: The HF M -diagram

endF (F(A))

γ

��

ζF (l̂F ◦evF )

//

ζF ([ · , · ]F )
//

homF (F(A), endF (F(A)))

γ◦( · )
��

homF (F(A),F(end(A)))

γ

��

F(end(A))
F(ζ(l̂◦ev))

//

F(ζ([ · , · ]))
// F(hom(A, end(A)))

(3.23)
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commutes (i.e. the diagram obtained by taking either both upper or lower horizontal arrows
commutes) and the vertical arrows are all HF M -isomorphisms. Due to the universality of lim-
its there must be a unique isomorphism between derF (F(A)) and F(der(A)). The assertion
now follows from the fact that we describe our derivations as a subobject of the internal endo-
morphisms (cf. (3.12)) and hence the unique isomorphism between derF (F(A)) and F(der(A))
is the one induced by the isomorphism between endF (F(A)) and F(end(A)), which is pre-
cisely γ.

3.4 Internal homomorphisms

In [BSS15, Section 4] we gave an explicit description of the internal hom-functor homA :(
H
AMA

)op ×H
AMA → H

AMA by imposing a suitable weak right A-linearity condition on the
internal hom-functor hom in HM . We shall now give an easier but equivalent construction of
homA for the case where A is an object in HA com and we restrict ourselves to the full subcat-
egory H

AM
sym
A of symmetric A-bimodules in HM . This construction involves a generalization

of the internal commutator [ · , · ] from Definition 3.1, and it will allow us later on to interpret
the internal hom-objects homA(V,W ) as zeroth order differential operators.

Let A be an object in HA com and let V,W be two objects in H
AM

sym
A . We define an HM -

morphism (denoted with abuse of notation by the same symbol as the internal commutator)

[ · , · ] := • ◦
(
id⊗ l̂

)
− • ◦

(
l̂ ⊗ id

)
◦ τ : hom(V,W )⊗A −→ hom(V,W ) , (3.24)

where l̂ was defined in (3.9). Then

[L, a] = L • l̂(a)− (−1)|L| |a| l̂
(
R(2) ⊲ a

)
•
(
R(1) ⊲ L

)
, (3.25)

for all homogeneous L ∈ hom(V,W ) and a ∈ A.

Definition 3.9. The object homA(V,W ) in HM is defined by the equalizer

homA(V,W ) // hom(V,W )
0

//

ζ([ · , · ])
//

hom(A,hom(V,W )) (3.26)

in HM . This equalizer can be realized explicitly in terms of the HM -subobject

homA(V,W ) = Ker
(
ζ([ · , · ])

)
⊆ hom(V,W ) (3.27)

of the internal hom-object hom(V,W ) in HM .

Lemma 3.10. Let A be any object in HA com and let V,W be any two objects in H
AM

sym
A .

An HM -subobject U ⊆ hom(V,W ) is an HM -subobject of homA(V,W ) if and only if

[L, a] = 0 , (3.28)

for all L ∈ U and a ∈ A.

Proof. Denoting by f := [ · , · ] : hom(V,W ) ⊗ A → hom(V,W ) and j : U → hom(V,W ) the
inclusion HM -morphism, we have to show that ζ(f) ◦ j = 0 if and only if f ◦ (j⊗ id) = 0. This
is a consequence of item (ii) of Lemma 2.5.

The object homA(V,W ) in HM given by (3.27) carries a natural left and right A-action
given by the HM -morphisms

l := • ◦ ( l̂ ⊗ id) : A⊗ homA(V,W ) −→ homA(V,W ) , (3.29a)

r := • ◦ (id ⊗ l̂ ) : homA(V,W )⊗A −→ homA(V,W ) . (3.29b)
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It is moreover an object in H
AM

sym
A because the result of Lemma 3.10 is precisely the symmetry

condition for the left and right A-action given in (3.29) (see also (3.24)). The assignment of
these objects homA(V,W ) in H

AM
sym
A is functorial and we denote the corresponding functor

by

homA :
(
H
AM

sym
A

)op × H
AM

sym
A −→ H

AM
sym
A . (3.30)

To any
(
H
AM

sym
A

)op × H
AM

sym
A -morphism (fop : V → V ′, g :W →W ′ ) this functor assigns

homA(f
op, g) : homA(V,W ) −→ homA(V

′,W ′ ) , L 7−→ g ◦ L ◦ f . (3.31)

Finally, we show that (3.30) is an internal hom-functor in H
AM

sym
A .

Proposition 3.11. The braided monoidal category H
AM

sym
A is closed: There is a natural

bijection ζA : HomH
A

M
sym
A

(–⊗A –, –) ⇒ HomH
A

M
sym
A

(–,homA(–, –)) with components given by

ζA(f) : V −→ homA(W,X) ,

v 7−→ f
((
φ(−1) ⊲ v

)
⊗A

((
φ(−2) β S(φ(−3))

)
⊲ ( · )

))
, (3.32)

for all HAM
sym
A -morphisms f : V ⊗AW → X. The components of its inverse are

(ζA)−1(g) : V ⊗AW −→ X ,

v ⊗A w 7−→ φ(1) ⊲
(
g(v)

((
S(φ(2))αφ(3)

)
⊲ w

))
, (3.33)

for all HAM
sym
A -morphisms g : V → homA(W,X).

Proof. With a proof analogous to [BSS15, Lemma 4.2] one shows that (3.32) and (3.33)
are the components of a natural bijection between the functors HomH

A
M (– ⊗A –, –) and

HomH
A

M
A
(–,hom(–, –)). It thus remains to prove that (1) the image of ζA(f) is contained in

homA(W,X) for all HAM
sym
A -morphisms f : V ⊗AW → X, and that (2) (ζA)−1(g) is a right

A-linear map for all HAM
sym
A -morphisms g : V → homA(X,Y ).

Due to Lemma 3.10, point (1) is shown by the calculation
(
ζA(f)(v)

)
a = ζA(f)(v a)

= (−1)|a| |v| ζA(f)
(
(R(2) ⊲ a) (R(1) ⊲ v)

)

= (−1)|a| |v|
(
R(2) ⊲ a

) (
R(1) ⊲ ζA(f)(v)

)
, (3.34)

for all homogeneous a ∈ A and v ∈ V . In the first equality we have used the right A-linearity
of ζA(f), in the second equality the symmetry of the A-bimodule V , and in the last equality
the left A-linearity and H-equivariance of ζA(f).

Point (2) is likewise shown by a short calculation

(ζA)−1(g)
(
(v ⊗A w) a

)
= (ζA)−1(g)

(
(φ(1) ⊲ v)⊗A

(
(φ(2) ⊲ w) (φ(3) ⊲ a)

))

= ev
(
g(φ(1) ⊲ v)⊗A

(
(φ(2) ⊲ w) (φ(3) ⊲ a)

))

= ev
(
(g(v) ⊗A w) a

)

= (−1)|a| (|v|+|w|)
(
R(2) ⊲ a

) (
R(1) ⊲ ev

(
g(v) ⊗A w

))

=
(
(ζA)−1(g)(v ⊗A w)

)
a , (3.35)

for all homogeneous a ∈ A, v ∈ V and w ∈W . The second equality holds by direct inspection
(see also Lemma 2.5 (i) for a similar statement) and in the fourth equality we have used the
symmetry of the A-bimodules W and homA(V,W ) as well as the H-equivariance of ev. The
last equality uses the symmetry of the A-bimodule X.
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3.5 Differential operators and calculi

Let A be an object in HA com and V any object in H
AM

sym
A . We define the internal multi-

commutator of order n ∈ Z>0 to be the HM -morphism

[ · , · ](n) :
(
· · ·

(
(end(V )⊗A)⊗A

)
· · ·

)
⊗A −→ end(V ) , (3.36a)

where the source contains n factors of A, given by the composition

[ · , · ](n) := [ · , · ] ◦
(
[ · , · ]⊗ id

)
◦ · · · ◦

(
(· · · (([ · , · ]⊗ id)⊗ id) · · · )⊗ id

)
. (3.36b)

We have suppressed as before the precomposition of the internal multi-commutator with
(· · · ((id⊗ l̂ )⊗ l̂ ) · · · )⊗ l̂ , where l̂ is the HA -morphism given in (3.9). We further denote by
Φ(−n) the combination of associators required to re-bracket the expressions

end(V )⊗
(
A⊗ (A⊗ (· · · (A⊗A) · · · ))

) Φ(−n)
//
(
· · ·

(
(end(V )⊗A)⊗A

)
· · ·

)
⊗A , (3.37)

where again the source and target contain n factors of A. We shall denote the source of this
HM -isomorphism also by end(V )⊗A⊗n.

Definition 3.12. Let A be an object in HA com and V any object in H
AM

sym
A . The differential

operators of order n ∈ Z≥0 of V is the object diffn(V ) in HM which is defined by the equalizer

diffn(V ) // end(V )
0

//

ζ([ · , · ](n+1)◦Φ(−(n+1)))
//

hom(A⊗n, end(V )) (3.38)

in HM . This equalizer can be realized explicitly in terms of the HM -subobject

diffn(V ) = Ker
(
ζ
(
[ · , · ](n+1) ◦ Φ(−(n+1))

))
(3.39)

of the internal endomorphism object end(V ) in HM .

Remark 3.13. Comparing Definitions 3.12 and 3.9 we observe that the order 0 differential
operators diff0(V ) are the internal endomorphisms endA(V ) in the category H

AM
sym
A .

Lemma 3.14. Let A be any object in HA com and let V be any object in H
AM

sym
A . An HM -

subobject U ⊆ end(V ) is an HM -subobject of diffn(V ) if and only if

[[
· · ·

[
[L, a1], a2

]
, · · ·

]
, an+1

]
= 0 , (3.40)

for all L ∈ U and a1, a2, . . . , an+1 ∈ A.

Proof. Denoting by f := [ · , · ](n+1) ◦Φ(−(n+1)) : end(V )⊗A⊗n → end(V ) and j : U → end(V )
the inclusion HM -morphism, it follows from Lemma 2.5 (ii) that ζ(f) ◦ j = 0 if and only if
f ◦ (j ⊗ id) = 0. The latter condition is equivalent to [ · , · ](n+1) ◦

(
(· · · ((j ⊗ id) ⊗ id) · · · ) ⊗

id
)
◦Φ(−(n+1)) = 0, and the assertion now follows because Φ(−(n+1)) is an isomorphism.

There is an HM -subobject relation diffn(V ) ⊆ diffm(V ) for all n ≤ m, which immediately
follows from Lemma 3.14 and (3.39). These subobject relations give rise to the sequence of
HM -monomorphisms

diff0(V ) // diff1(V ) // diff2(V ) // · · · // diffn(V ) // · · · . (3.41)

We shall now show that differential operators can be composed with respect to the internal
composition.
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Proposition 3.15. The internal composition • : end(V ) ⊗ end(V ) → end(V ) restricts to an
HM -morphism

• : diffn(V )⊗ diffm(V ) −→ diffn+m(V ) , (3.42)

for all n,m ∈ Z≥0.

Proof. Restricting • : end(V ) ⊗ end(V ) → end(V ) to the corresponding HM -subobjects of
differential operators yields an HM -morphism • : diffn(V )⊗ diffm(V ) → end(V ) and we have
to prove that its image lies in diffn+m(V ). As the image of this HM -morphism is an HM -
subobject of end(V ), by Lemma 3.14 it is enough to show that

[[
· · ·

[
[L • L′, a1], a2

]
, · · ·

]
, an+m+1

]
= 0 , (3.43)

for all L ∈ diffn(V ), L′ ∈ diffm(V ) and a1, a2, . . . , an+m+1 ∈ A. This equality follows by itera-
tively using the derivation property of the internal commutator, cf. item (iii) of Proposition 3.2,
and applying Lemma 3.14 to L and L′.

Forming the colimit in HM of the diagram given in (3.41) we can define the object diff(V )
of differential operators on V . This colimit can be represented explicitly as the union of
differential operators of all orders n ∈ Z≥0, i.e.

diff(V ) =
⋃

n∈Z≥0

diffn(V ) ⊆ end(V ) . (3.44)

Corollary 3.16. The differential operators diff(V ) is an HA -subobject of the algebra of inter-
nal endomorphisms end(V ) (cf. Example 2.6).

Proof. By Proposition 3.15 the internal composition closes on diff(V ), i.e. there is an HM -
morphism

• : diff(V )⊗ diff(V ) −→ diff(V ) . (3.45)

The unit η : I → end(V ) has its image in the degree 0 differential operators because of the
calculation

[c 1, a] = c 1 • l̂(a)− c l̂
(
R(2) ⊲ a

)
•
(
R(1) ⊲ 1

)
= c l̂(a)− c l̂

(
R(2) ǫ(R(1)) ⊲ a

)
= 0 (3.46)

and Lemma 3.14; here we used the normalization (ǫ⊗ id)(R) = 1 of the R-matrix.

Remark 3.17. Combining Lemmas 3.5 and 3.14 we see that for any object A in HA com,
der(A) ⊆ diff1(A) is an HM -subobject, i.e. the derivations of A are differential operators of
order 1.

With the techniques developed above we can now introduce the notion of a differential
calculus in HM . In the following we shall denote by I[1] the object in HM which is obtained
by shifting the unit object I = (k, ⊲) in Z-degree by 1: I[1]1 = k and I[1]n = 0, for all n 6= 1.

Definition 3.18. Let H be a quasitriangular quasi-Hopf algebra. A differential calculus (A,d)
in HM is an object A in HA com together with an HM -morphism d : I[1] → der(A) which is
nilpotent in the sense that the composition of HM -morphisms

I[1] ⊗ I[1]
d⊗d

// der(A)⊗ der(A) // diff(A)⊗ diff(A)
•

// diff(A) (3.47)

is 0; here the second arrow is defined using Remark 3.17.

Remark 3.19. Given a differential calculus (A,d) in HM there is a distinguished H-invariant
derivation of Z-degree 1, which is given by d(1) ∈ der(A) and is called the differential.

Example 3.20. Building upon Example 2.7, examples of differential calculi are provided by the
exterior algebras of differential forms Ω♯(M) on G-manifolds M , equipped with the de Rham
differential, and cochain twist quantizations thereof. See Proposition 3.22 for details on the
twist deformation quantization of differential calculi.
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3.6 Cochain twisting of differential operators and calculi

The cochain twist deformation quantization functor preserves differential operators and differ-
ential calculi.

Proposition 3.21. Let A be any object in HA com, V any object in H
AM

sym
A and F any

cochain twisting element based on H. Then the coherence map γ : endF (F(V )) → F(end(V ))
restricts to an HF M -isomorphism

γ : diffnF (F(V )) −→ F(diffn(V )) , (3.48)

for all n ∈ Z≥0.

Proof. The proof is analogous to the proof of Proposition 3.8.

Proposition 3.22. Let
(
A,d : I[1] → der(A)

)
be any differential calculus in HM and let F

be any cochain twisting element based on H. Then F(A) together with the HF M -morphism

dF := γ−1 ◦ F(d) ◦ ψ : IF [1] −→ derF (F(A)) (3.49)

is a differential calculus in HF M , where ψ is the coherence morphism in (3.18b).

Proof. By Proposition 3.8, the target of dF is as claimed in (3.49). Moreover, dF is nilpotent
(in diffF (F(A))) because of the short calculation

dF (c) •F dF (c
′ ) = γ−1

((
F (−1) ⊲ γ(dF (c))

)
•
(
F (−2) ⊲ γ(dF (c

′ ))
))

= γ−1
(
d
(
F (−1) ⊲ c

)
• d

(
F (−2) ⊲ c′

))

= γ−1
(
d(c) • d(c′ )

)
= 0 , (3.50)

for all c, c′ ∈ I[1]. In the first equality we have used [BSS15, Proposition 2.16], in the second
equality the definition of dF and theH-equivariance of d, in the third equality the normalization
of the cochain twist, and in the last equality the nilpotency of d.

4 Connections

For a given differential calculus (A,d) in HM , we shall develop the notion of connections on
objects in H

AM
sym
A by again using universal constructions in the category HM . We will show

that connections of objects V,W in H
AM

sym
A can be canonically lifted to connections on the

tensor product object V ⊗AW and on the internal hom-object homA(V,W ). Throughout this
section H is an arbitrary quasitriangular quasi-Hopf algebra.

4.1 Connections on symmetric bimodules

Let
(
A,d : I[1] → der(A)

)
be a differential calculus in HM . Connections on an object V in

H
AM

sym
A are distinguished differential operators of order 1 which satisfy a Leibniz rule with

respect to the HM -morphism d. We shall again formalize this algebraic property in terms of
an equalizer in HM . Denoting by × the categorical product in HM and recalling that I[1]
denotes the shifted unit object in HM , there are two parallel HM -morphisms

(
end(V )× I[1]

)
⊗A

l̂◦ev◦(d⊗id)◦(pr2⊗id)

//

[ · , · ]◦(pr1⊗id)
//

end(V ) , (4.1)

18



where pr1 : end(V ) × I[1] → end(V ) and pr2 : end(V ) × I[1] → I[1] are the projection HM -
morphisms. The upper arrow in (4.1) is the mapping

(L, c)⊗ a 7−→ [L, a] (4.2a)

and the lower arrow is the mapping

(L, c) ⊗ a 7−→ l̂
(
ev(d(c)⊗ a)

)
. (4.2b)

Definition 4.1. Let (A,d) be a differential calculus in HM and V any object in H
AM

sym
A .

The connections of V is the object con(V ) in HM which is defined by the equalizer

con(V ) // end(V )× I[1]
ζ(l̂◦ev◦(d⊗id)◦(pr2⊗id))

//

ζ([ · , · ]◦(pr1⊗id))
//

hom(A, end(V )) (4.3)

in HM . This equalizer can be realized explicitly in terms of the HM -subobject

con(V ) = Ker
(
ζ
(
[ · , · ] ◦ (pr1 ⊗ id)− l̂ ◦ ev ◦ (d⊗ id) ◦ (pr2 ⊗ id)

))
(4.4)

of the object end(V )× I[1] in HM .

Lemma 4.2. Let (A,d) be any differential calculus in HM and let V be any object in H
AM

sym
A .

An HM -subobject U ⊆ end(V )× I[1] is an HM -subobject of con(V ) if and only if

[L, a] = l̂
(
ev(d(c)⊗ a)

)
, (4.5)

for all (L, c) ∈ U and a ∈ A.

Proof. Denoting by f := [ · , · ]◦(pr1⊗id)−l̂◦ev◦(d⊗id)◦(pr2⊗id) : (end(V )×I[1])⊗A → end(V )
and j : U → end(V )× I[1] the inclusion HM -morphism, we have to show that ζ(f) ◦ j = 0 if
and only if f ◦ (j ⊗ id) = 0. This is a consequence of item (ii) of Lemma 2.5.

Remark 4.3. By Lemma 4.2, any element (L, c) ∈ con(V ) satisfies the condition (4.5) for all
a ∈ A. In particular, the Z-degree 1 elements ∇ = (L, 1) ∈ con(V ) satisfy the Leibniz rule
with respect to the differential d(1). Hence, our notion of connections contains the standard
notion of connections as distinguished points. It is important to notice that our definition has
the advantage that con(V ) is by construction an object in HM while the subset of all ordinary
connections ∇ = (L, 1) ∈ con(V ) is just an affine space over the k-module of all Z-degree 1
elements (L, 0) ∈ con(V ), hence it is not an object in HM .

Finally, we prove an important structural result for connections.

Proposition 4.4. Let (A,d) be any differential calculus in HM and let V be any object in
H
AM

sym
A . Then con(V ) is an HM -subobject of diff1(V )× I[1].

Proof. The object con(V ) is by construction an HM -subobject of end(V )× I[1] and hence the
image of pr1 : con(V ) → end(V ) is an HM -subobject of end(V ). We have

[[L, a], a′ ] =
[
l̂
(
ev(d(c)⊗ a)

)
, a′

]
= 0 , (4.6)

for all (L, c) ∈ con(V ), which by using Lemma 3.14 shows that the image of pr1 : con(V ) →
end(V ) is an HM -subobject of diff1(V ) and hence that con(V ) is an HM -subobject of diff1(V )×
I[1].
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4.2 Connections on tensor products

We shall now develop a lifting prescription for connections to tensor products of objects in
H
AM

sym
A . Let us first notice that for any two objects V,W in H

AM
sym
A there are two HM -

morphisms given by the compositions

end(V )
ρ−1

// end(V )⊗ I
id⊗η

// end(V )⊗ end(W )
⊗•

// end(V ⊗W ) (4.7a)

and

end(W )
λ−1

// I ⊗ end(W )
η⊗id

// end(V )⊗ end(W )
⊗•

// end(V ⊗W ) . (4.7b)

These HM -morphisms are given explicitly by the mappings

L 7−→ L⊗• 1 and L′ 7−→ 1⊗• L′ , (4.8)

respectively.

Definition 4.5. For any two objects V,W in H
AM

sym
A we define the HM -morphism

⊞• :
(
end(V )× I[1]

)
×

(
end(W )× I[1]

)
−→ end(V ⊗W )× I[1] ,

(
(L, c), (L′, c′ )

)
7−→

(
L⊗• 1 + 1⊗• L′, c

)
. (4.9)

In order to prove that ⊞• restricts to connections, i.e. to an HM -morphism ⊞• : con(V ) ×
con(W ) → con(V ⊗W ), we require the following technical lemma.

Lemma 4.6. Let A be an object in HA com and let V,W be any two objects in H
AM

sym
A .

(i) Recalling the HM -morphisms l̂V : A → end(V ) and l̂V⊗W : A → end(V ⊗W ) given in
(3.9), one has

l̂V⊗W (a) = l̂V (a)⊗• 1 , (4.10)

for all a ∈ A.

(ii) For any L,K ∈ end(V ) and L′ ∈ end(W ), one has

[K ⊗• 1, L⊗• 1] = [K,L]⊗• 1 and [1⊗• L′, L⊗• 1] = 0 . (4.11)

(iii) For any L ∈ end(V ), L′ ∈ end(W ) and a ∈ A, one has
[
L⊗• 1 + 1⊗• L′, a

]
= [L, a]⊗• 1 . (4.12)

Proof. Let us first prove item (i). By definition of l̂V⊗W we have

ev
(
l̂V⊗W (a)⊗ (v ⊗w)

)
= a (v ⊗ w) , (4.13)

for all v ∈ V,w ∈W and a ∈ A. On the other hand, using [BSS15, Equation (5.7a)] we have

ev
(
( l̂V (a)⊗• 1)⊗ (v ⊗ w)

)
=

(
(φ(−1) ⊲ a) (φ(−2) ⊲ v)

)
⊗ (φ(−3) ⊲ w) = a (v ⊗ w) , (4.14)

for all v ∈ V,w ∈ W and a ∈ A. The assertion then follows by using Lemma 2.5 (i) and
invertibility of ζ. Item (ii) follows immediately from Lemma 2.2. Item (iii) is a consequence of
item (i) and (ii), as

[
L⊗• 1 + 1⊗• L′, a

]
=

[
L⊗• 1 + 1⊗• L′, l̂V ⊗W (a)

]

=
[
L⊗• 1 + 1⊗• L′, l̂V (a)⊗• 1

]
= [L, a]⊗• 1 , (4.15)

and the assertion follows.
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Proposition 4.7. Let (A,d) be a differential calculus in HM and let V,W be two objects in
H
AM

sym
A . Then ⊞• restricts to an HM -morphism

⊞• : con(V )× con(W ) −→ con(V ⊗W ) . (4.16)

Proof. We have to show that the image of ⊞• : con(V ) × con(W ) → end(V ⊗W ) × I[1] is an
HM -subobject of con(V ⊗W ). Using Lemma 4.2 this can be shown by the computation

[
L⊗• 1 + 1⊗• L′, a

]
= [L, a]⊗• 1 = l̂V

(
ev(d(c) ⊗ a)

)
⊗• 1 = l̂V⊗W

(
ev(d(c)⊗ a)

)
, (4.17)

for all (L, c) ∈ con(V ), (L′, c′ ) ∈ con(W ) and a ∈ A. In the first equality we used item (iii)
and in the last equality item (i) of Lemma 4.6.

The HM -morphism (4.16) describes the construction of connections on the object V ⊗W

but not on the object V ⊗AW , which is obtained by using the correct monoidal functor ⊗A in
H
AM

sym
A . As V ⊗AW can be obtained by taking a quotient of V ⊗W (cf. (2.43)), we may ask

if (4.16) induces an HM -morphism with target given by con(V ⊗AW ). For this to hold true,
we have to restrict the source of (4.16) to the fibred product con(V )×I[1] con(W ) given by the
pullback

con(V )×I[1] con(W )

��

// con(W )

pr2
��

con(V ) pr2
// I[1]

(4.18)

in the category HM . Then con(V ) ×I[1] con(W ) is the HM -subobject of con(V ) × con(W )
with elements given by pairs ((L, c), (L′, c′ )) such that c = c′. We can now state one of the
main results of this section.

Theorem 4.8. Let (A,d) be a differential calculus in HM and let V,W be two objects in
H
AM

sym
A . Then ⊞• induces an HM -morphism

⊞• : con(V )×I[1] con(W ) −→ con(V ⊗AW ) . (4.19)

Proof. Let ((L, c), (L′, c)) ∈ con(V ) ×I[1] con(W ) be an arbitrary element. Applying ⊞• gives
the element

(
L⊗• 1 + 1⊗• L′, c

)
∈ con(V ⊗W ) ⊆ end(V ⊗W )× I[1] , (4.20)

where we regard K := L ⊗• 1 + 1 ⊗• L′ simply as a k-linear map K : V ⊗W → V ⊗W . We
have to prove that K descends to a well-defined k-linear map K : V ⊗AW → V ⊗AW on the
quotient (2.43). Denoting by π : V ⊗W → V ⊗AW the quotient map, this amounts to showing
that

π ◦K
((
v a

)
⊗ w − (φ(1) ⊲ v)⊗

(
(φ(2) ⊲ a) (φ(3) ⊲ w)

))
= 0 , (4.21)

for all v ∈ V , w ∈ W and a ∈ A. Let us for the moment consider the case of trivial associator
φ = 1 ⊗ 1 ⊗ 1. Then the equality (4.21) can be easily verified on homogeneous elements by
using

π ◦ (L⊗• 1)
(
(v a)⊗ w

)
= L(v a)⊗A w

= (−1)|v| |a| L
(
(R(2) ⊲ a) (R(1) ⊲ v)

)
⊗A w

= (−1)(|v|+|L|) |a|
(
R̃(2)R(2) ⊲ a

) (
R̃(1) ⊲ L

)(
R(1) ⊲ v

)
⊗A w

+ (−1)|v| |a|
(
d(c)

)(
R(2) ⊲ a

) (
R(1) ⊲ v

)
⊗A w

= L(v)⊗A

(
aw

)
+ (−1)|v| |L| v ⊗A

((
d(c)

)
(a)w

)

= π ◦ (L⊗• 1)
(
v ⊗ (aw)

)
+ (−1)|v| |L| v ⊗A

((
d(c)

)
(a)w

)
(4.22a)
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and

π ◦ (1⊗• L′ )
(
(v a)⊗w

)
= (−1)(|v|+|a|) |L′|

(
(R(2) ⊲ v) (R̃(2) ⊲ a)

)
⊗A

(
R̃(1)R(1) ⊲ L′

)(
w
)

= (−1)|v| |L
′|

((
R(2) ⊲ v

)
⊗A

(
R(1) ⊲ L′

)(
aw

)
− v ⊗A

((
d(c)

)
(a)w

))

= π ◦ (1⊗• L′ )
(
v ⊗ (aw)

)
− (−1)|v| |L| v ⊗A

((
d(c)

)
(a)w

)
, (4.22b)

where in the last equality we used |L| = |L′ |. The equality (4.21) also holds for the case
of nontrivial associators, however the corresponding calculation is much more lengthy and
involved, and hence we will not write it out in detail.

The following result allows us to consistently lift connections to tensor products of an
arbitrary (finite) number of objects in H

AM
sym
A .

Theorem 4.9. Let (A,d) be a differential calculus in HM and let V,W,X be three objects in
H
AM

sym
A . Then the HM -diagram

con(V )×I[1] con(W )×I[1] con(X)

⊞• ◦
(
id×⊞•

)
��

⊞• ◦
(
⊞• ×id

)
// con

(
(V ⊗AW )⊗A X

)

Φ◦( · )◦Φ−1
ss❢❢❢

❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢

con
(
V ⊗A (W ⊗A X)

)

(4.23)

commutes.

Proof. Let
(
(L, c), (L′, c), (L′′, c)

)
∈ con(V )×I[1] con(W )×I[1] con(X) be an arbitrary element.

Applying ⊞• ◦ (⊞• × id) yields

⊞• ◦ (⊞• × id)
((
(L, c), (L′, c), (L′′, c)

))
=

(
(L⊗• 1)⊗• 1 + (1⊗• L′ )⊗• 1 + (1⊗• 1)⊗• L′′, c

)

(4.24a)

while applying ⊞• ◦ (id ×⊞• ) yields

⊞• ◦ (id×⊞• )
((
(L, c), (L′, c), (L′′, c)

))
=

(
L⊗• (1⊗• 1) + 1⊗• (L′ ⊗• 1) + 1⊗• (1⊗• L′′ ), c

)
.

(4.24b)

The assertion then follows by using Lemma 2.3.

4.3 Connections on internal homomorphisms

We shall now develop a lifting prescription for connections to the internal hom-objects in
H
AM

sym
A . Let (A,d) be a differential calculus in HM and V,W two objects in H

AM
sym
A . Then

there are two HM -morphisms

L := ζ(•) : end(W ) −→ end(hom(V,W )) , (4.25a)

R := ζ(• ◦ τ) : end(V ) −→ end(hom(V,W )) . (4.25b)

Definition 4.10. For any two objects V,W in H
AM

sym
A we define the HM -morphism

ad• :
(
end(W )× I[1]

)
×

(
end(V )× I[1]

)
−→ end(hom(V,W )) × I[1] ,

(
(L′, c′ ), (L, c)

)
7−→

(
L (L′ )− R(L), c′

)
. (4.26)

We shall require the following two technical lemmas.
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Lemma 4.11. Let A be an object in HA com and let V,W be any two objects in H
AM

sym
A .

Recalling the HM -morphisms l̂W : A → end(W ) and l̂hom(V,W ) : A → end(hom(V,W )) given
in (3.9), one has

l̂hom(V,W )(a) = L
(
l̂W (a)

)
, (4.27)

for all a ∈ A.

Proof. Recalling (3.29) and using naturality of the currying bijection yields

l̂hom(V,W )(a) = ζ
(
• ◦( l̂W ⊗ id)

)
(a)

= ζ
(
HomHM

( l̂ op
W ⊗ idop, id)(•)

)
(a)

= HomHM

(
l̂
op
W ,hom(idop, id)

)(
ζ (•)

)
(a)

= ζ(•)
(
l̂W (a)

)
= L

(
l̂W (a)

)
, (4.28)

for all a ∈ A.

Lemma 4.12. Let V,W be two objects in H
AM

sym
A . Then

L (L) • L (L′ ) = L (L • L′ ) , (4.29a)

R(K) • L (L) = (−1)|K| |L|
L

(
R(2) ⊲ L

)
• R

(
R(1) ⊲ K

)
, (4.29b)

for all homogeneous L,L′ ∈ end(W ) and K ∈ end(V ).

Proof. First, let us notice that both sides of (4.29a) can be regarded as HM -morphisms
end(W ) ⊗ end(W ) → end(hom(V,W )): The morphism on the left-hand side is given by
• ◦ (L ⊗ L ) and on the right-hand side by L ◦ •. By invertibility of the natural curry-
ing bijections, these two morphisms agree if and only ζ−1(• ◦ (L ⊗ L )) = ζ−1(L ◦ •) as
morphisms (end(W ) ⊗ end(W )) ⊗ hom(V,W ) → hom(V,W ). This can be shown by using
Lemma 2.5 (i) and the calculation

ζ−1(• ◦ (L ⊗ L ))
(
(L⊗ L′ )⊗M

)
= ev

(
(L (L) • L (L′ ))⊗M

)

= ev
(
L (φ(1) ⊲ L)⊗ ev

(
L (φ(2) ⊲ L′ )⊗ (φ(3) ⊲ M)

))

= (φ(1) ⊲ L) •
(
(φ(2) ⊲ L′ ) • (φ(3) ⊲ M)

)

= (L • L′ ) •M

= ev
(
L (L • L′ )⊗M

)

= ζ−1(L ◦ •)
(
(L⊗ L′ )⊗M

)
, (4.30)

for all L,L′ ∈ end(W ) andM ∈ hom(V,W ), where we have also used Lemma 2.1. The equality
(4.29b) can be shown similarly.

Proposition 4.13. Let (A,d) be a differential calculus in HM and let V,W be two objects in
H
AM

sym
A . Then ad• restricts to an HM -morphism

ad• : con(W )× con(V ) −→ con(hom(V,W )) . (4.31)
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Proof. We have to show that the image of ad• : con(W )× con(V ) → end(hom(V,W ))× I[1] is
an HM -subobject of con(hom(V,W )). Using Lemma 4.2 this can be shown by the computation

[
L (L′ )− R(L), a

]
=

[
L (L′ )− R(L), l̂hom(V,W )(a)

]

=
[
L (L′ )− R(L),L ( l̂W (a))

]

= L
(
[L′, a]

)

= L
(
l̂W (ev(d(c′ )⊗ a))

)

= l̂hom(V,W )

(
ev(d(c′ )⊗ a)

)
, (4.32)

for all (L′, c′ ) ∈ con(W ), (L, c) ∈ con(V ) and a ∈ A. In the second and last equality we have
used Lemma 4.11 and in the third equality we have used Lemma 4.12.

Restricting the source of ad• to the fibred product con(W )×I[1] con(V ) we obtain a lifting

prescription of connections to the internal hom-objects homA(V,W ) in the category H
AM

sym
A .

Theorem 4.14. Let (A,d) be a differential calculus in HM and let V,W be two objects in
H
AM

sym
A . Then ad• induces an HM -morphism

ad• : con(W )×I[1] con(V ) −→ con(homA(V,W )) . (4.33)

Proof. Let ((L′, c), (L, c)) ∈ con(W )×I[1] con(V ) be an arbitrary element. Applying ad• gives
the element

(
L (L′ )− R(L), c

)
∈ con(hom(V,W )) ⊆ end(hom(V,W )) × I[1] , (4.34)

where we regard K := L (L′ ) − R(L) as a k-linear map K : hom(V,W ) → hom(V,W ). We
have to prove that K restricts to a k-linear map K : homA(V,W ) → homA(V,W ) on the
k-submodules homA(V,W ) ⊆ hom(V,W ) given in (3.27). This amounts to showing that

ζ([ · , · ])
(
K(M)

)
= 0 ∈ hom(A,hom(V,W )) , (4.35)

for all M ∈ homA(V,W ). Let us for the moment consider the case of trivial associator φ =
1 ⊗ 1 ⊗ 1. Then the equality (4.35) can be easily verified by acting on generic homogeneous
elements a ∈ A, which yields the equation

(
ζ([ · , · ])

(
K(M)

))
(a) =

[
K(M), a

]

=
[
L′ •M − (−1)|M | |L| (R(2) ⊲ M) • (R(1) ⊲ L), a

]
= 0 . (4.36)

This equation follows from
[
L′ •M,a

]
= L′ •

[
M,a

]
+ (−1)|M | |a|

[
L′, R(2) ⊲ a

]
•
(
R(1) ⊲ M

)

= 0 + (−1)|M | |a|
(
d(c)

)(
R(2) ⊲ a

) (
R(1) ⊲ M

)

= (−1)|L| |M | M
(
d(c)

)
(a) , (4.37a)

where in the last equality we used |L| = |L′ |, and
[
(R(2) ⊲M) • (R(1) ⊲ L), a

]
= (R(2) ⊲ M) •

[
R(1) ⊲ L, a

]

+ (−1)|L| |a|
[
R(2) ⊲M, R̃(2) ⊲ a

]
•
(
(R̃(1)R(1)) ⊲ L

)

=M
(
d(c)

)
(a) + 0 . (4.37b)

The equality (4.35) is also true for the case of nontrivial associators, however the corresponding
calculation is much more lengthy and involved, and hence we will not write it out in detail.
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4.4 Cochain twisting of connections

The cochain twist deformation quantization functor preserves connections.

Proposition 4.15. Let (A,d) be any differential calculus in HM , V any object in H
AM

sym
A

and F any cochain twisting element based on H. Then the coherence map γ×ψ : endF (F(V ))×
IF [1] → F(end(V ))×F(I[1]) restricts to an HF M -isomorphism

γ × ψ : conF (F(V )) −→ F(con(V )) . (4.38)

Proof. The proof follows that of Proposition 3.8 and it requires showing commutativity of the
diagram

endF (F(V ))× IF [1]

γ×ψ

��

ζF (l̂F ◦evF ◦(dF⊗F id)◦(pr2⊗F id))

//

ζF ([ · , · ]F ◦(pr1⊗F id))
//

homF (F(A), endF (F(V )))

γ◦( · )
��

homF (F(A),F(end(V )))

γ

��

F(end(V ))×F(I[1])
F(ζ(l̂◦ev◦(d⊗id)◦(pr2⊗id)))

//

F(ζ([ · , · ]◦(pr1⊗id)))
// F

(
hom(A, end(V ))

)

(4.39)

in HF M , which is a straightforward but slightly lengthy calculation.

Remark 4.16. Applying this result to Example 2.8, we find in particular that on any cochain
twist deformation of any G-equivariant vector bundle there exists at least one connection,
because there exist connections on classical G-equivariant vector bundles (in the smooth cate-
gory).

5 Curvature

We shall develop the notion of curvature of connections on objects in H
AM

sym
A and compute ex-

plicitly the curvatures of tensor product connections given by our construction in Theorem 4.8.
We conclude by giving a brief sketch of how our formalism can be used to describe a non-
commutative and nonassociative theory of gravity that is based on Einstein-Cartan geometry.
Throughout this section we have to make the assumption that H is a triangular quasi-Hopf
algebra, which is in particular satisfied for our main examples of interest, see Examples 2.7,
2.8 and 3.20.

5.1 Definition and properties

For any object V in H
AM

sym
A , we define the HM -morphism

[[ · , · ]] : (end(V )× I[1]) ⊗ (end(V )× I[1]) −→ end(V ) ,

(L, c)⊗ (L′, c′ ) 7−→ [L,L′ ] . (5.1)

Lemma 5.1. Let H be a triangular quasi-Hopf algebra. Let (A,d) be a differential calculus in
HM and V any object in H

AM
sym
A . Then (5.1) restricts to an HM -morphism

[[ · , · ]] : con(V )⊗ con(V ) −→ endA(V ) . (5.2)
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Proof. By Lemma 3.10 it is sufficient to show that
[[[

(L, c), (L′, c′ )
]]
, a

]
=

[
[L,L′ ], a

]
= 0 , (5.3)

for all homogeneous (L, c), (L′, c′ ) ∈ con(V ) and a ∈ A. Using the braided Jacobi identity and
braided antisymmetry of Proposition 3.2 (this is where we need triangularity) we obtain

[
[L,L′ ], a

]
= −(−1)|L| (|L

′|+|a|)
[[
R

(2)
(1) φ

(2) ⊲ L′, R
(2)
(2) φ

(3) ⊲ a
]
, R(1) φ(1) ⊲ L

]

+ (−1)|a| |L
′|
[[
R̃(2) φ(−2)R

(1)
(1) ⊲ L, R̃

(1) φ(−1)R(2) ⊲ a
]
, φ(−3)R

(1)
(2) ⊲ L

′
]

= −(−1)|L| (|L
′|+|a|)

[
ev
(
d(c′ )⊗ (R(2) ⊲ a)

)
, R(1) ⊲ L

]

+ (−1)|a| |L
′|
[
ev
(
d(c)⊗ (R(2) ⊲ a)

)
, R(1) ⊲ L′

]

=
[
L, ev

(
d(c′ )⊗ a

)]
− (−1)|L| |L

′|
[
L′, ev

(
d(c)⊗ a

)]

= ev
(
d(c)⊗ ev

(
d(c′ )⊗ a

))
− (−1)|L| |L

′| ev
(
d(c′ )⊗ ev

(
d(c)⊗ a

))

= ev
((
d(c) • d(c′ )

)
⊗ a

)
− (−1)|L| |L

′| ev
((
d(c′ ) • d(c)

)
⊗ a

)
= 0 , (5.4)

where we have also used Lemma 4.2, Lemma 2.1 together with the normalization (ǫ⊗ǫ⊗id)(φ) =
1 of the associator, and nilpotency of d : I[1] → der(A) from Definition 3.18.

With these techniques we can now define the curvature of a connection. Since the curvature
is supposed to be quadratic in the connections, we cannot realize the assignment of curvatures
as an HM -morphism. We shall employ the following element-wise definition.

Definition 5.2. Let (A,d) be a differential calculus in HM and let V be an object in H
AM

sym
A .

The curvature of a connection ∇ := (L, 1) ∈ con(V ) is the element

Curv(∇) :=
[[
∇,∇

]]
∈ endA(V ) . (5.5)

Remark 5.3. Given any connection ∇ := (L, 1) ∈ con(V ), we can define the Bianchi tensor
corresponding to ∇ as

Bianchi(∇) := ev
(
ad•(∇,∇)⊗ Curv(∇)

)
∈ endA(V ) . (5.6)

In contrast to the situation in classical differential geometry, here the Bianchi tensor in general
does not vanish. Hence, it may be interpreted as a measure of the noncommutativity and
nonassociativity of A, V and ∇.

Finally, we observe an additive property of the curvature of the tensor product connections
constructed in Theorem 4.8.

Proposition 5.4. Let H be a triangular quasi-Hopf algebra, (A,d) a differential calculus in
HM and V,W two objects in H

AM
sym
A . Given any two connections ∇V := (L, 1) ∈ con(V )

and ∇W := (L′, 1) ∈ con(W ), the curvature of their sum satisfies

Curv(∇V ⊞• ∇W ) = Curv(∇V )⊗• 1 + 1⊗• Curv(∇W ) . (5.7)

Proof. The proof follows from a simple calculation

Curv(∇V ⊞• ∇W ) = [L⊗• 1 + 1⊗• L′, L⊗• 1 + 1⊗• L′ ]

= [L,L]⊗• 1 + 1⊗• [L′, L′ ]

= Curv(∇V )⊗• 1 + 1⊗• Curv(∇W ) , (5.8)

where we have used the properties in Lemma 2.2 and the braided antisymmetry of the internal
commutator from Proposition 3.2 (i).
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5.2 Einstein-Cartan geometry

We conclude with a brief sketch of how our formalism can be used to describe a noncommutative
and nonassociative theory of gravity coupled to Dirac fields. Our considerations are based
on Einstein-Cartan geometry and its generalization to noncommutative geometry which was
developed in [AC09]. Our strategy is to formulate classical Einstein-Cartan geometry in our
abstract language and then to give an outline of its cochain twist deformation quantization,
which will lead to a noncommutative and nonassociative gravity theory.

Let M be any parallelizable manifold of dimension m. Associated to M is the Hopf algebra
H = U Vec(M) (with trivial associator φ = 1⊗1⊗1) given by the universal enveloping algebra
of the Lie algebra of vector fields on M , which is triangular with trivial R-matrix R = 1 ⊗ 1.
We take A := Ω♯(M) to be the exterior algebra of differential forms on M and V := Ω♯(M,S)
to be the A-bimodule of spinor-valued differential forms. Then A is an object in HA com and V
is an object in H

AM
sym
A for our choice of triangular Hopf algebra H. A vielbein is an invertible

element E ∈ endA(V ) ≃ Ω♯(M, end(S)) of the form (here and in the following summations over
repeated pairs of indices are understood)

E = Ea γa , (5.9)

where Ea ∈ Ω1(M) are the components of the vielbein, γa are the gamma-matrices associated
with the spin representation S and a = 1, . . . ,m. A spin connection is a connection ∇ :=
(L, 1) ∈ con(V ) of the form

∇ =
(
d− 1

2 ω
ab [γa, γb] , 1

)
, (5.10)

where ωab ∈ Ω1(M) are the components of the spin connection and d is the exterior derivative.
A Dirac field is an element ψ ∈ V0 of Z-degree 0 and a conjugate Dirac field is an element
ψ ∈ V ∨

0 := homA(V,A)0 in the dual module of Z-degree 0. Using Theorem 4.14 we can induce
a connection on conjugate Dirac fields by taking

∇∨ := ad•
(
∇ , (d, 1)

)
∈ con(V ∨) . (5.11)

Since V is a free A-module there is an isomorphism V ⊗AV
∨ ≃ endA(V ), which we shall always

suppress from our notation.

We can now write down the Lagrangian of Einstein-Cartan gravity coupled to a Dirac field
in m dimensions within our formalism as the top form

L(m) := Tr
(
L(m)

)
∈ Am = Ωm(M) , (5.12)

where

L(m) :=
√
−1 Curv(∇) •E • E • · · · • E︸ ︷︷ ︸

m−2 times

•γ5

−
(
ev
(
∇⊗ ψ

)
⊗A ψ − ψ ⊗A ev

(
∇∨ ⊗ ψ

))
• E •E • · · · •E︸ ︷︷ ︸

m−1 times

•γ5 (5.13)

and γ5 ∈ endA(V ) (of Z-degree 0) is absent when m is odd. The trace in (5.12) is the HM -
morphism

Tr : endA(V ) −→ A (5.14)

given by the pointwise trace in endA(V ) ≃ Ω♯(M, end(S)).
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To obtain a noncommutative and nonassociative theory of gravity one can quantize A and
V by a suitable cochain twist F , see e.g. [MSS14, ASz15] and [BSS15, Example 6.5] for the
explicit examples of relevance to the string theory applications mentioned in Section 1. The
construction of the Lagrangian (5.12) then proceeds in the same way as above, but now with
all internal constructions made in the braided closed monoidal category HF M rather than
in HM . As cochain twisting may induce a nontrivial associator in HF M , our definition of
the Lagrangian (5.12) has to be supplemented with a bracketing convention for the internal
compositions in (5.13). The study of which choice of bracketing leads to a physically reasonable
model for noncommutative and nonassociative gravity is beyond the scope of the present paper
and will be addressed in future work.
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