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Abstract 13 

A new Torradovirus tentatively named Carrot torrado virus (CaTV) was an incidental finding following 14 

a next generation sequencing study investigating internal vascular necrosis in carrot. The closest 15 

related viruses are Lettuce necrotic leaf curl virus (LNLCV) found in the Netherlands in 2011 and 16 

Motherwort yellow mottle virus (MYMoV) found in Korea in 2014.  Primers for reverse transcriptase-17 

PCR (RT-PCR) and RT-qPCR were designed with the aim of testing for the presence of virus in plant 18 

samples collected from the field. Both methods successfully amplified the target from infected 19 

samples but not from healthy control samples. The specificity of the CaTV assay was also checked 20 

against other known carrot viruses and no cross-reaction was seen. A comparative study between 21 

methods showed RT-qPCR was the most reliable method, giving positive results in samples where 22 

RT-PCR fails. Evaluation of the Ct values following RT-qPCR and a direct comparison demonstrated 23 

this was due to improved sensitivity. The previous published Torradovirus genus specific RT-PCR 24 
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primers were tested and shown to detect CaTV. Also, virus transmission experiments carried out 25 

suggest that unlike other species of the same genus, Carrot torrado virus could be aphid-transmitted. 26 

1. Introduction 27 

The genus Torradovirus, within the family Secoviridae was first described to place two new viruses, 28 

Tomato torrado virus (ToTV) and Tomato marchitez virus (ToMarV) (Sanfaҫon et al., 2009, Verbeek 29 

et al., 2007, Verbeek et al., 2008). More recently, new species have also been proposed as members 30 

of the genus: Tomato chocolàte virus (ToChV), Tomato chocolàte spot virus (ToChsV), Lettuce 31 

necrotic leaf curl virus (LNLCV), Motherwort yellow mottle virus (MYMoV) and Cassava torrado-like 32 

virus (CsTLV) (Verbeek et al., 2010, Batuman et al., 2010, Verbeek et al., 2013a, Seo et al., 2014, 33 

Carvajal-Yepes et al). ToTV is considered the type species of the genus, it was first found in Spain in 34 

2004 and since then, isolates have been described all around the world (Van der Vlugt et al, 2015). 35 

Analysis of its genome structure indicates there are two (+)ssRNA of ~7.7kb (RNA1) and ~5.2kb 36 

(RNA2) (Verbeek et al., 2007, Budziszewska et al., 2008). RNA1 contains one open reading frame 37 

(ORF) and has coding regions for the protease (Pro), helicase (Hel) and RNA-dependent RNA 38 

polymerase (RdRp). RNA2 has two ORFs: The function of ORF1 is still unclear whilst ORF2 encodes 39 

three coat proteins (Vp35, Vp26 and Vp23) and the movement protein (MP). Specific primers were 40 

designed for the detection of the ToTV (Pospieszny et al., 2007) and two generic primer sets, 41 

Torrado-1F/Torrado-1R and Torrado-2F/Torrado-2R, were also designed for the detection and 42 

identification of all the other viruses in the genus (Verbeek et al., 2012). Additional sets of primers 43 

have been recently developed to detect ToTV isolates from different sources (Herrera et al., 2015). 44 

Previous studies showed that torradoviruses are transmitted by the whiteflies Trialeurodes 45 

vaporariorum, Trialeurodes abutilonea and Bemisia tabaci, suggesting also that they are transmitted 46 

in a semi-persistent and stylet-borne manner (Amari et al., 2008, Barajas-Ortiz et al., 2013, Verbeek 47 

et al., 2013b). However, experiments with LNLCV and whiteflies using the same acquisition and 48 

inoculation periods did not lead to virus transmission suggesting another vector species could be 49 

responsible (Verbeek et al., 2013). 50 

Internal necrosis has been seen in carrots (Daucus carota) in the UK for at least ten years and has 51 

been associated with virus infection (Fox, 2011). Recent analysis using next generation sequencing 52 
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(NGS), found that Carrot yellow leaf virus (CYLV) was strongly associated with the development of 53 

internal necrosis symptoms in carrots (Adams et al., 2014). Several novel viruses were also identified 54 

in that study including a new torrado virus tentatively named as Carrot torrado virus (CaTV) 55 

(KF533719 and KF533720). Analysis of sequence data showed the closest related virus in the genus 56 

Torradovirus was LNLCV (Adams et al., 2014). The acronym CaTV for Carrot torrado virus was later 57 

proposed in order to avoid confusion with Carrot tristeza virus (CTV) (van der Vlugt et al., 2015).   58 

This study describes the development of a rapid and reliable molecular detection method for the 59 

identification of the first Torradovirus found in carrots, Carrot torrado virus, using reverse-transcriptase 60 

(RT)-PCR and RT-qPCR and describes the first report of aphid transmission of one member of the 61 

Torradovirus genus.  62 

 63 

 64 

2. Methods 65 

 66 

2.1. Source of samples  67 

Carrot leaves exhibiting a range of foliar symptoms (interveinal chlorosis, generalised chlorosis, tip 68 

reddening and tip necrosis) and asymptomatic leaves were taken from Elveden Estate Field, Thetford, 69 

Norfolk, UK (Latitude 52.3656, Longitude -0.56407). Weed samples from the Apiaceous family, 70 

assumed to be more likely infected with carrot viruses, were also taken from the margins of Bratleys 71 

Field, Stamford Bridge, Yorkshire, UK (Lat. 53.9992, Long. -0.8855) and Sutton Park field, Sutton on 72 

the Forest, Yorkshire, UK (Lat. 54.0577, Long. -1.0518). ToTV infected plants were kindly supplied by 73 

the Plant Protection Service in the Netherlands for comparative testing.  74 

 75 

2.2. Nucleic Acid extraction 76 

Carrot leaves and weed samples were extracted using the Kingfisher® mL system (Thermo 77 

labsystems) following the method described in Mumford et al., 2002 and 2003. Leaf material was 78 
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ground in lysis buffer and centrifuged at 13000 rpm for 1 min. Samples were then loaded into the 79 

instrument and the extraction protocol was followed as described. RNA was eluted in 200 µl of 80 

molecular grade water and stored at -20 °C. 81 

 82 

2.3. Conventional RT-PCR assay setup 83 

Two pairs of CaTV primers were designed using Primer Express 2 (Applied Biosystems) for a RT-84 

PCR assay according to the sequencing data obtained by Adams et al., (2014) (table 1). The primers 85 

designed to RNA1 amplify a fragment of 262 bp and RNA2 primers a fragment of 299 bp. The 86 

extracted sample (1 µl) was added to a 24 µl reaction mix, containing Verso™ 1-Step RT-PCR 87 

ReddyMix™ Kit (Thermo Scientific) and 400 mM of each primer. Assays were carried out in a Bio-Rad 88 

C1000
TM

 thermal cycler (Bio-Rad laboratories) and PCR conditions consisted of 45 min at 48 °C for 89 

cDNA synthesis, 2 min at 94 °C, then 40 cycles of, 30 sec at 94 °C, 1 min at 56°C and 1 min at 68 °C 90 

and a final extension step for 6 min at 68 °C. These conditions followed the method described in 91 

Verbeek et al. 2012, but primer annealing temperature of 56 °C was chosen for CaTV when a 92 

gradient primer annealing temperature test was performed on a CFX96 Touch Thermal cycler (Bio-93 

Rad laboratories) for optimization. PCR products were separated using a 1.8 % agarose gel (130 V) 94 

stained with ethidium bromide, visualized in a UV transilluminator. Products were purified using the 95 

QIAquick
®
 PCR Purification kit (Qiagen) before being sent for sequencing. Generic Torradovirus 96 

genus assays were performed following the method described in Verbeek et al., (2012). 97 

 98 

2.4. One step reverse-transcriptase (RT)-qPCR assay 99 

2.4.1. Development of a RT-qPCR assay for CaTV detection 100 



Primers and probes for the real-time assay were designed using Primer Express 2 (table 1). The 5’- 102 

and 3’- ends of the probes were labelled with the reporter dye FAM (6-carboxyfluorescein) and 103 

quencher dye TAMRA (tetra-methylcarboxyrhodamin). A concentration of 300 nM of each primer and 104 

100 nM of probe were used in each 25 µl reaction and same conditions were used for both RNAs. 105 
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Reactions were carried out in 96 well plates using the ABI 7900 (Applied Biosystems). Positive 106 

controls consisting of a CaTV sample obtained by NGS and negative controls consisting of healthy 107 

leaf material and water were used to validate the results. RT-qPCR cycling conditions were: 10 min at 108 

55 °C for the reverse transcription followed by 8 min at 95 °C and then 40 cycles of 10 sec at 95 °C 109 

and 1 min at 60 °C. Results were analysed using the SDS 2.4 Software (Applied Biosystems). A 110 

threshold cycle (Ct) value below 40 was considered as a positive result and was fixed by default 111 

parameters of the Software. 112 

 113 

2.4.2. Validation experiments 114 

 115 

The efficiency of the new assays for both RNAs was measured using serial 10-fold dilutions (from 116 

1 to 10
-8

) of total RNA from plant infected extracts quantified using the Nanodrop ND-1000 117 

Spectrophotometer (Labtech). Samples were chosen from a pool of positive samples previously 118 

tested using RT-qPCR and all the dilutions were tested in duplicate in the same run. Standard curves 119 

were generated using the Ct values obtained and the logarithm of the dilution and regression 120 

coefficient represented.  Specificity of the real-time test was assessed using a panel of carrot and 121 

other viruses. Analytical sensitivity was also compared to a RT-PCR assay comparing RT-qPCR Ct 122 

values with band intensity of the PCR product after gel electrophoresis. 123 

 124 

2.5. Transmission experiments 125 

Infected leaves were ground in potassium phosphate buffer, pH 7.7., mixed with cellite and 126 

inoculated onto leaves of ten plants of Nicotiana benthamiana, Anthriscus cerefolium (chervil) and 127 

Daucus carota (carrot). Plants were kept in the green house with a 12 hours photoperiod and an 128 

average temperature between 18-20 °C. Five mock inoculated plants of each species were also used 129 

as controls and kept in the same conditions. All plants were assessed weekly for symptom 130 

development and tested for virus presence using RT-qPCR from random leaves.  131 

Cavariella aegopodii and Myzus persicae collected from a CaTV infected field plant were 132 

collected and cultured on chervil and carrot plants in a glasshouse (20°C, 60% RH, L16h:D 8h with 133 
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supplemental lighting). Aphids were then used to inoculate 3x50 trays of healthy cotyledon stage 134 

N.benthamiana, chervil and carrots. Healthy plants of each species were also used as negative 135 

controls. Each aphid was transferred onto an individual indicator plant and covered with a plastic tube 136 

(30 mm dia. x 110 mm) to prevent it from escaping. The tubes were removed after 24h and the aphids 137 

killed by spraying the plants with Bug Clear Ultra (0.05gl-1 acetamiprid, The Scotts Company (UK) 138 

Ltd), following the manufacturer’s instructions. The plants were grown on in a plant growth room (20 139 

°C, 60 % RH, L16h:D 8h) for three weeks when they were tested for virus presence using RT-qPCR. 140 

 141 

3. Results 142 

 143 

3.1. Diagnostic performance of RT-PCR  144 

Comparison of primer sequences to sequences in Genbank using BLAST did not indicate 145 

significant homology with any other species except the targets. Assays for RNA1 and RNA2 were 146 

evaluated using extracts of carrot leaf samples from the field. Amplification products were analysed 147 

using agarose gel electrophoresis and results showed a single amplicon of the desired size for both 148 

primer sets, 262 bp for RNA1 and 299 bp for RNA2 (figure 1a). RT-PCR products were purified and 149 

sequenced confirming CaTV virus presence. No PCR products were amplified from the healthy or 150 

water controls and primer pairs did not produce non-specific amplicons. 151 

Specific Torradovirus genus primers developed by Verbeek et al., (2012) were evaluated for the 152 

detection of CaTV and compared with the species specific assays. As expected the Generic set of 153 

primers detected an amplicon of 514 bp from CaTV and 515 from ToTV (figure 1b). The CaTV assay 154 

developed did not cross react with ToTV, similarly, the ToTV assay did not amplify CaTV. 155 

Comparative analysis of the sequences using MEGA 6 did not indicate cross-reaction with LNLCV or 156 

MYMoV, non-tomato Torradoviruses and the closest related viruses to CaTV. 157 

 158 

3.2.  Detection of CaTV by RT-qPCR 159 

 160 
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Each primer sequence was compared to published sequence information available and no cross-161 

reaction was found (NCBI, BLAST). The RT-qPCR assay was evaluated using samples collected from 162 

the field on an ABI 7900 HT system (Applied Biosystems). Amplification curves gave Ct values 163 

between 15.98 and 33.19 for RNA1 and 17.02 and 32.69 for RNA2, indicating virus presence in the 164 

samples. A test designed to detect the cytochrome oxidase gene sequence (COX) of the plant was 165 

also used as an internal control. Detection of one of the two RNAs was considered as a positive 166 

result. Negative controls consisting of RNA extracts from healthy plants extracts and water were used 167 

and no amplification was detected.  168 

 169 

To test the specificity of the assays, a range of UK field isolates affecting carrots, related and 170 

unrelated viruses were used: ToTV (Tomato torrado virus), CYLV (Carrot yellow leaf virus), CRLV 171 

(Carrot red leaf virus), CRLaV (Carrot red leaf associated virus), CMoV (Carrot Mottle virus), CtCV1 172 

(Carrot closterovirus 1), PYFV (Parsnip yellow fleck virus), CMV (Cucumber mosaic virus), SLRV 173 

(Strawberry latent ringspot virus), TBRV (Tomato black ring virus) and PVY (Potato virus Y). Each 174 

assay was run in triplicate for every virus and no amplification was found between the species tested 175 

or the healthy or negative controls for RNA1 and RNA2 (table 2).  For RNA1, a Ct value of 38.12 and 176 

39.9 was obtained for CYLV and CMoV respectively in one of the replicates. Those samples were 177 

tested again and no amplification was seen.  178 

                                                             179 

3.3.  RT-qPCR assay validation and sensitivity comparison with RT-PCR  180 

In order to assess the efficiency of the assays, standard curves for RNA1 and RNA2 were 181 

generated with 10-fold serial dilutions of total RNA (plant + virus) from a pool of positive samples to 182 

determine the maximum dilution detected.  For each dilution, two replicates with 1 µl of total RNA 183 

were prepared in a 25 µl well. Results showed standard curves with 0.9932 and 0.9956 regression 184 

coefficients (R
2
) for RNA1 and RNA2 respectively (figure 2a). Both assays were assessed following 185 

the guideline described in OEPP/EPPO Bulletin PM7/98 (2), 2014, (table 3). Repeatability tests were 186 

performed for both RNAs with the lowest level of dilution detected reliably in the sensitivity assays and 187 

six replicates of each sample were tested. Ct values between 33.91 and 35.17 were obtained with a 188 

standard deviation (SD) of ± 0.46 for RNA1 and between 32.15 and 32.63 with a SD of ± 0.19 for 189 

b a 

10
-1
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RNA2 were obtained. No differences were seen either when tested by two different operators in two 190 

different 7900 HT systems.   191 

Diagnostic sensitivity of the RT-qPCR assay was also compared to RT-PCR. Results showed that 192 

the developed RT-qPCR was more sensitive than the conventional method detecting dilutions ranging 193 

between 19 ng and 1.9 pg and detecting levels of dilution up to 10
-5

 for RNA1 and 10
-4 

for RNA2 194 

(figure 2b), 1000 and 10
4
 times more sensitive than the conventional method which detected levels of 195 

dilution of 10
-1

 in both RNAs (figure 2c). Further comparisons were made between both methods 196 

using a pool of 45 samples collected from the field. For RNA1, RT-qPCR detected 23 positive 197 

samples (51.1%) while RT-PCR detected virus presence in a total of 20 samples (44.4%) (data not 198 

shown). When tested for RNA2, RT-PCR gave positive results in 27 of the samples (60%) in 199 

comparison with the 31 positives obtained by RT-qPCR (68.8%) (figure 2d). 200 

3.4. CaTV transmissionMechanical transmission experiments with N. benthamiana, chervil and 201 

carrots resulted in one symptomless N. benthamiana CaTV infected plant. Weed samples 202 

surrounding carrot fields consisting of 30 cow parsley (Anthriscus sylvestris), and 19 hogweed 203 

(Heracleum sphondylium), were collected and tested to look for possible sources of CaTV infection in 204 

carrots but all tested negative for the virus (data not shown). Aphid transmission experiments with M. 205 

persicae and C. aegopodii resulted in some symptomatic chervil and N benthamiana plants when 206 

tested by RT-qPCR.  Transmission rates of 35.3% and 12.7% were found in chervil and tobacco 207 

plants respectively with M. persicae . Lower transmission rates were achieved when using 208 

C.aegopodii in both plant species (table 4). Carrot to carrot transmission of 10% and 2.7% was also 209 

seen with M. persicae and C. aegopodii respectively. Virus was successfully transmitted from infected 210 

Chervil to healthy carrots using M. persicae and 2% of the plants tested positive for the virus. All the 211 

negative controls consisting of healthy carrot, N. benthamiana and chervil plants were also used for 212 

each experiment and tested negative for CaTV.  213 

 214 

4. Discussion 215 

CaTV was firstly detected in the UK in 2013 in a study investigating the agent responsible of the 216 

development of necrotic symptoms in carrots (Adams et al., 2014). In order to detect CaTV infected 217 
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plants from the field and study its transmission, RT-PCR and RT-qPCR assays were developed and 218 

optimized. Both methods are routinely used in diagnostic laboratories for the detection of pathogens. 219 

In this study both methods successfully amplified CaTV RNA1 and RNA2 in infected samples 220 

collected from the field. Neither assay cross-reacted with ToTV, the first Torradovirus found and type 221 

member of the genus, indicating the specificity of the assays. Several studies had been performed 222 

previously using RT-PCR and two generic primer sets were developed for the detection of all the 223 

viruses of the Torradovirus genus (Verbeek et al., 2012). These sets of primers were evaluated and 224 

the detection of CaTV RNA1 and CaTV RNA2 using the same cycling conditions was confirmed. 225 

Assays were subjected to the EPPO validation international standard method and all the requirements 226 

were met. Validation experiments using RT-qPCR were carried out and it was seen to detect virus 227 

levels up to 1.9 pg. In specificity assays, samples with Ct values between 36 and 40 were re-tested to 228 

confirm if there was cross-reaction or low level contamination due to late amplification of some 229 

random samples. Re-testing confirmed there was no cross-reaction with any of the species tested. 230 

Similar results were obtained when the assays were performed by different people, different days in 231 

different 7900 HT systems indicating the reproducibility and repeatability for both RNAs and the 232 

robustness of the developed assays. RT-qPCR method gave positive results in field samples where 233 

RT-PCR failed and further comparison between both methods indicated this was due to improved 234 

sensitivity. 235 

Some samples were found to be only positives for RNA1 but negative for RNA2 and vice-versa when 236 

tested using RT-PCR or RT-qPCR, describing possible replication differences between RNAs when 237 

infection takes place in the host. The performance of the tests for both RNAs is recommended to 238 

avoid any false negative result. 239 

CaTV was successfully inoculated and transmitted to healthy N. benthamiana and Chervil plants but 240 

symptom description was not possible due to infection with Carrot red leaf virus too. Previously 241 

studies suggested that tomato infecting Torradoviruses were transmitted by different whiteflies 242 

species (Amari et al., 2008, Verbeek et al., 2013b). However, aphid transmission experiments 243 

developed in the glasshouse with CaTV, indicated that M. persicae could be the natural vector of the 244 

virus to carrots. Equally, LNLCV did not result in transmission when experiments with whiteflies were 245 

carried out suggesting there could be another different species involved (Verbeek et al., 2013). These 246 
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results might conclude the possibility that non-tomato infecting Torradoviruses could be transmitted by 247 

different species than tomato infecting Torradoviruses. Back transmission experiments also showed 248 

the virus can be transmitted between members of the Apiaceae family. Additional studies are 249 

currently being carried out with M. persicae in order to establish virus acquisition and virus inoculation 250 

periods. 251 

In 2008, ToTV was found in weed species from Amaranthaceae, Caryophyllaceae, Chenopodiaceae, 252 

Cruciferae, Malvaceae, Polygonaceae, and Solanaceae families (Alfaro-Fernandez et al., 2008) 253 

indicating they could act as reservoir hosts for this virus before their transmission to tomatoes by 254 

aphids.  However, limited surveys carried out in 2014 and 2015 with weeds from several species, 59 255 

Hogweed (Heracleum sphondylium), 27 Cow Parsley (Anthriscus sylvestris), one Hemlock (Conium 256 

maculatum) and three Rough chervil (Chaerophyllum temulum) did not identify any alternative host for 257 

CaTV suggesting that infection could come from another different source. Due to the limited number 258 

of weed samples tested, further studies need to be carried out in order to establish possible sources 259 

of infection in carrots with CaTV.  260 

The study describes the development of a new, reliable, and sensitive RT-qPCR method for the 261 

detection of CaTV and the first report of aphid transmission of a member of the Torradovirus genus. 262 

However, additional studies are also currently being carried out evaluating CaTV host range, 263 

transmission and further weed testing. Symptom development and incidence of this virus in the UK 264 

will also be assessed in order to obtain a complete characterization of this new finding.  265 

  266 
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Tables 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 Primer  Sequence (5’-3’) Location (nt) 

R
T

-P
C

R
 

 

CaTVPCR 1F 

CaTVPCR1R 

 

CaTVPCR 2F 

CaTVPCR 2R 

 

TCAATCAGTATTAAGCGAGGAATGG 

CCTCAATGGGCTTGTAATGA 

 

TGTGCAACCACGAGGAATACA  

GATGCCTCATAGCAAACTGTCAT 

 

2742 - 2762 

2985 – 3004 

 

3942 – 3962 

4219 - 4241 

R
T

-q
P

C
R

 

 

CaTV-1F 

CaTV-1R 

CaTV-1P 

 

CaTV-2F 

CaTV-2R 

CaTV-2P 

 

CCGTTGTTATTCGTCTTCCTCAA 

TGGATGATTGTAAATACTGCACCAT 

FAM-TTCAGAGGTGTTTACGTGAGATCGGGATG-TAMRA 

 

TTACAAAGACTACTGGTGATCGTGACTT 

ATTCGTACAAACCCACCTCAAAG 

FAM-AGAGTTGGAAATGATGCAACCCATGATAGC-TAMRA 

 

2819 – 2841 

2918 - 2942 

 

 

2654 – 2681 

2730 - 2752 

Table 1 

RT-PCR and RT-qPCR CaTV RNA1 and RNA2 primers used during the study.  
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 CaTV ToTV CYLV CRLV CRLaV CMoV CtCV1 PYFV CMV SLRV TBRV PVY HC 

 RNA1 Ct 15.98 ± 0.0 (3/3) - 38.12 (1/3)** - - 39.9 (1/3)** - - - - - - - 

RNA2 Ct  17.47 ± 0.14 (3/3) - - - - - - - - - - - - 

Table 2 

CaTV RT-qPCR assay specificity was tested against ToTV, carrot viruses and non-target viruses*.   

*ToTV (Tomato torrado virus), CYLV (Carrot yellow leaf virus), CRLV (Carrot red leaf virus), CRLaV (Carrot red leaf associated virus), CMoV (Carrot Mottle virus), CtCV1 (Carrot closterovirus 1), PYFV (Parsnip yellow fleck virus), CMV (Cucumber mosaic virus), SLRV (Strawberry 

latent ringspot virus), TBRV (Tomato black ring virus), PVY (Potato virus Y). 

** Samples tested negative when assay was repeated, indicating there was no cross-reaction with any other viruses. 
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 CaTV RNA1 CaTV RNA2 

Sensitivity  
Ct value obtained for the smallest amount of target detected reliably 

 
36.48 ± 0.66 

 
33.6 ± 1.46 

 
Specificity 
Cross reacts with 

 
- 

 
- 

 
Repeatability 
Calculated % of agreement for a low concentrated sample (10

-5
 dilution) 

Ct  

 
 

100% 
34.33 ± 0.46 
(33.91-35.17) 

 
 

100% 
32.43 ± 0.19 
(32.15-32.63) 

 
Reproducibility 
Calculated % of agreement for a low concentrated sample (10

-4
 dilution) 

Operator 1:  
                     7900 HT system 1   Ct 

  7900 HT system 2   Ct 
 

Operator 2:  
                     7900 HT system 1   Ct 

  7900 HT system 2   Ct 
 

 
 

100% 
 

34.93 ± 0.49 
34.77 ± 0.55 

 
 

34.97 ± 0.44 
34.66 ± 0.40 

 
 

100% 
 

33.34 ± 0.23 
33.38 ± 0.83 

 
 

31.99 ± 0.11 
31.91 ± 0.27 

Table 3: Validation results obtained for CaTV RNA1 and RNA2 assays following the criteria described in OEPP/EPPO Bulletin PM 

7/98 (2). 
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Source Species M. persicae C. aegopodii 

Positives % transmission Positives % transmission 

Carrot (D. carota) 

 

N. benthamiana 10/50 
2/50 
7/50 

 

12.7 
0/0 
0/0 
0/0 

0 

Chervil  18/50 
13/50 
23/50 

 

35.3 
3/50 
0/50 
4/50 

4.7 

Carrot  5/50 
6/50 
4/50 

 

10 
1/50 
2/50 
1/50 

2.7 

Chervil ( A.cerefolium) back 

transfer 

Carrot 1/50 
2/50 
0/50 

2 
- 

- 

Table 4 

Results of transmission experiments using Cavariella aegopodii and Myzus persicae aphid species from chervil and carrot to 

three blocks of 50 Nicotiana benthamiana, Chervil and carrot plants. 

 

 

Source Species 
% transmission 

M. persicae C. aegopodii 

Carrot (D. carota) 
 

Tobacco (N. benthamiana) 12.7 0 

Chervil  35.3 5.3 

Carrot  10 2.7 

Chervil ( A.cerefolium) back transfer Carrot 2 - 

 Aphid transmission experiments showed transmission of CaTV to tobacco, chervil and carrot plants with M. persicae and 

C.aegopodii species. Back transfer experiments from infected chervil to carrots resulted in 2% of transmission with M. persicae. 
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Figure legends 1 

 2 

Figure 1: RT-PCR products for RNA1 (266 bp) and RNA2 (299 bp) using CaTV specific primers (a). 3 

CaTV and ToTV gel bands obtained when CaTV, ToTV and Torradovirus genus sets of primers were 4 

used (b).  5 

 6 

Figure 2: RT-qPCR standard curves and linear regression coefficients (R
2
) for RNA1 and RNA2 using 7 

serial 10-fold dilutions of total RNA with primers described in table 1 (2a).  Amplification plots obtained 8 

using RT-qPCR (2b). Gel bands obtained with CaTV serial diluted samples using RT-PCR (2c). 9 

Comparative test between RT-qPCR and RT-PCR using a pool of 45 samples collected from the field 10 

(figure 2d).11 
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Figure 1 
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RT-PCR 

  

  

R
T

-q
P

C
R

 

 

 
+ - Total 

+ 27 4 31 (68.9%) 

- 0 14 14 (31.1%) 

Total 27 (60%) 18 (40%) 45 (100%) 

262bp 

d 

262bp 


