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Abstract 

Previous work by the authors, using the discrete element method (DEM) has used the octahedral shear 

stress within a sphere together with a Weibull distribution of strengths and a size effect on average 

strength, to determine whether fracture occurs or not.  This leads to fractal particle size distributions 

and a normal compression line which are consistent with experimental data.  However there is no 

agreement in the literature as to what the fracture criterion should be and as yet it is not clear whether 

other criteria could lead to the correct evolution of voids ratio and particle size distribution under 

increasing stress.  Various possibilities for the criterion have been studied in detail here to ascertain 

whether these other criteria may give the correct behaviour under normal compression. The use of the 

major principal stress within a particle, the mean stress, and the stress calculated from the maximum 

contact force on a particle are each investigated as alternatives to the octahedral shear stress.  Only the 

criterion based on the maximum contact force is shown to give behaviour observed experimentally 

and the simulations shed further insight into the micro mechanics of normal compression. 

Introduction 

Particle crushing is usually modelled using the discrete element method (DEM) using one of two 

methods: either agglomerates or replaceable particles. Agglomerates involve representing individual 

soil grains by groups of smaller sub-particles that are bonded together and can fragment as/when the 

bonds are broken. The replacement method, favoured by the authors involves modelling grains with 

single particles and replacing them with smaller fragments once some characteristic stress within the 

original particle is deemed to have overcome the particle strength. 

The most obvious advantage of using the replacement method is computational efficiency, the number 

of particles in such a model is equal to the number of soil grains modelled, with no need for large 

quantities of smaller sub-particles; and there is no arbitrary comminution limit imposed by the 

existence of elementary particles. The replacement method also avoids the problems inherent in 

determining the current voids ratio for an aggregate of agglomerates, which are porous and have 

internal voids. Although useful in a qualitative sense, agglomerates are limited in their ability to 

correctly quantitatively model the evolution of voids ratio. 

A prerequisite for the replacement method is a suitable breakage criterion, i.e. a measure of some 

characteristic particle stress which can be related to experimentally-obtained particle strengths. Such 

strengths are typically measured by crushing single particles diametrically between flat platens 

(McDowell and Amon, 2000; McDowell, 2002; Nakata et al., 2001). Jaeger (1967) suggested that the 

tensile strength of particles could be measured as: 

 𝜎 =
𝐹

𝑑2
 (1) 

where F is the diametric force at failure, and d the particle size. Measured in this way, the average 

particle strength, σav, is usually found to be a function of size, with smaller particles exhibiting higher 

average strengths and therefore being statistically stronger. This is usually expressed in the form: 
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 𝜎av ∝ 𝑑−𝑏 (2) 

where the parameter b is a constant and is a function of the statistical distribution of flaws in the 

material. 

The key task then is relating available particle strength data, for the case of diametric compression, to 

some characteristic measure of particle stress which may result from any number of complex loading 

configurations. Any suitable measure of characteristic particle stress in DEM must be easily linked to 

the stresses measured experimentally, i.e., for diametric compression, the characteristic stress should 

be proportional to F/d
2
. Furthermore, the ideal measure of particle stress must be physically 

reasonable and give the correct results with regard to experimental data, i.e. lead to the emergence of 

a fractal particle size distribution during compression, and the evolution of a normal compression line 

when (the logarithm of) voids ratio is plotted against the logarithm of effective stress. Following 

McDowell and Bolton (1998), the emergence of a fractal particle size distribution (PSD) implies that 

any suitable breakage regime must take into consideration the coordination number, whereby smaller 

particles (which have higher strengths but fewer contacts) suffer higher stresses than comparatively 

larger particles (lower strengths but more contacts)—otherwise, if it were simply the weakest particles 

that are most likely to crush, then the result would be a uniform matrix of fine particles, behaviour 

which is not evident in geotechnical literature. 

In their previous work, the authors’ used the octahedral shear stress, q, as the characteristic particle 

stress (and therefore to determine whether a particle should break), defined as: 

 𝑞 =
1

3
[(𝜎1 − 𝜎2)

2 + (𝜎2 − 𝜎3)
2 + (𝜎1 − 𝜎3)

2]1 2⁄  (3) 

and calculated from the average principal stresses. Although the internal stresses within a loaded 

sphere are not uniform, and vary with position, it is generally accepted that the maximum tensile 

stress is proportional to F/d
2
 (e.g. Chau et al., 2000; Hiramatsu and Oka, 1966; Jaeger, 1967). In the 

DEM software used, it was found that q is proportional to F/d
2
, for a particle subject to diametric 

compression by forces F, so the octahedral shear stress could easily be related to the strengths 

according to Eq. (1). The software, PFC3D (Itasca, 2015), returns the average stress tensor, σij for a 

particle according to: 

 𝝈𝑖𝑗 =
1

𝑉
∑(𝑥𝑖

(c) − 𝑥𝑖
(p)
)

𝑁c

𝐹𝑗
(c,p) (4) 

where V is the particle volume, Nc the total number of contacts on the particle, x
(c)

 and x
(p)

 are 

locations of the contact and particle respectively, and Fj
(c,p)

 is the force acting on the particle at 

contact (c). Hence, for two equal and opposite loads F acting on particle, the major principal stress is: 

 
𝝈11 =

1

(
4
3
𝜋 (
𝑑
2
)
3

)

× 2 × (
𝑑

2
× 𝐹) 

𝝈11 =
6𝐹

𝜋𝑑2
 

(5) 

 

 

while the other two principal stresses are zero. Therefore the octahedral shear stress q is 

approximately 0.9 F/d
 2
 (McDowell et al., 2013).  
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The octahedral shear stress also provides a convenient way of taking into account multiple contacts; it 

seemed logical that a particle is more likely to break if it has few contacts and a large shear stress, 

whereas if a particle has many contacts, and is uniformly loaded with a low shear stress (but 

potentially large hydrostatic stress), the particle will be less likely to break. This reasoning agrees with 

the widely-accepted notion that coordination number plays a pivotal role in the emergence of fractal 

particle size distributions from the crushing of granular materials (McDowell and Daniell, 2001; 

Palmer and Sanderson, 1991; Steacy and Sammis, 1991; Turcotte, 1986). The use of Eq. (3) means 

that a particle with 3 orthogonal pairs of equal opposing forces would not break, as q = 0. In reality, 

such a particle might fail, although one would expect larger forces would be required when compared 

to the case of 2 (diametric) contact forces (e.g. Ben-Nun and Einav, 2010; Tsoungui et al., 1999); 

however, if 6 alternative orthogonal and equal forces are superposed and superposed again then the 

particle, under a large hydrostatic stress but zero octahedral shear stress, would be unlikely to break – 

so the desired effect is for all intents and purposes achieved by using q.  

By using the octahedral shear stress within particles to govern breakage, and an accurate size-effect 

on strength, the authors reproduced the correct behaviour when simulating the normal compression of 

silica sand, with the correct normal compression line and realistic particle size distributions 

(McDowell and de Bono, 2013). However, there remains some uncertainty over the use of the 

octahedral shear stress, as it is not practical to obtain measures of particle strengths for an unlimited 

combination of contact forces experimentally in order to validate use of the q. Additionally, there 

appears to be no clear consensus in the literature as to what measure of stress should be used (a point 

often raised by the referees of our previously published work and so this paper is essentially a detailed 

study provoked by the thoughts of previous referees); similar work by other researchers employ a 

variety of breakage criteria. Some of these criteria will now be summarised, although the list is by no 

means exhaustive. 

A Review of Breakage Criteria used in DEM 

One of the earliest attempts to model particle crushing in DEM using the replacement method was by 

Åström and Herrmann (1998). In two-dimensions, they investigated two breakage criteria, one based 

on the total pressure from all compressive contact forces on a particle, the other based on the largest 

contact force acting on a particle. The first regime, using the total pressure, led to unstable breakage 

that was concentrated in a single location (which was mitigated somewhat by the inclusion of 

gravity). However, it is difficult to gauge if this unstable breakage was a function solely of the 

breakage criteria, or the lack of a size-hardening effect or their replacement mechanism. Their latter 

regime, using the largest contact force on a particle to govern breakage resulted in more stable 

breakage, and their results suggested that an increasing number of contacts reduces the magnitude of 

associate forces. This breakage criterion was also later used by Couroyer et al. (2000) in 3D. 

However, a difficulty in assessing these criteria lies in the fact that no size-effect on strength was 

present, and Couroyer et al. (2000) did not replace broken particles. 

In a different approach, Tsoungui et al. (1999) calculated the principal stresses for each (2D) particle, 

meaning that arbitrary sets of contact forces could be represented simply by two pairs of opposing 

stresses or forces, which they assumed analogous to biaxial loading. They used finite element analysis 

to compare the maximum tensile stress in a particle under diametric loading, to the maximum tensile 

stress from biaxial loading. They found that the presence of minor principal forces reduced the 

maximum tensile stress, and therefore their characteristic stress was a function of both the major and 

minor principal forces. Employing a hardening-law of the form given in Eq. (2), their simulations 

(and therefore their breakage criterion) resulted in realistic particle size distributions, however, with 
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increasing stress their material reached a state of reduced breakage, most probably due to the 

comminution limit they imposed on the fragments. 

Later, Lobo-Guerrero et al. (2005; 2006) elected to calculate particle stress using the maximum 

contact force, as Fmax/d (in 2D), and employing a size-effect on particle strength. Use of the maximum 

contact forces does not consider any additional contacts on a particle, however, they took particle 

coordination number into account by only allowing particles with 3 or fewer contacts to break. This 

imposition however is somewhat artificial, and may prevent a true fractal distribution from 

emerging—if only the smallest particles may break (larger particles will have more contacts), 

eventually larger particles (although only very few of them) will need to fragment in order to maintain 

fractal proportions. Hence this obfuscates the suitability of their breakage criteria, as does the fact 

their model did not obey conservation of mass when replacing broken particles, meaning it would not 

be capable of modelling the evolution of voids ratio. This breakage criterion was also used by 

Marketos and Bolton (2009) and Elghezal et al. (2013) but in three dimensions, measuring particle 

stress as Fmax/d
 2
, with similar difficulties associated with judging the suitability of this criterion. 

In another approach, Ben-Nun & Einav (2008) used the average normal contact force, Fave as the 

basis of their breakage criterion. They measured the characteristic stress in any particle as Fave/d (in 

2D) but then used a number of empirical multiplicative factors to account for the effects that the 

particle curvature, imperfections, and coordination number have on the induced stress and likelihood 

of breakage, with an appropriate hardening law for particle strengths. While the use of Fave does not 

give attention to the number of contact forces, their position or magnitude, their coordination number 

multiplier meant that the probability of breakage decreased with an increasing number of contacts, 

giving preference to smaller particles, but not preventing larger particles from breaking. Their 

compression simulations resulted in encouraging fractal particle size distributions, and notably their 

simulations obeyed conservation of mass and did not have an arbitrary comminution limit. 

Subsequently Ben-Nun and Einav (2010) compared their breakage rule to that used previously by 

Tsoungui et al. (1999) (based on a measure of average shear stress), and found that both breakage 

rules resulted in similar fractal particle size distributions. 

Esnault and Roux (2013) presented a DEM study which compared the use of a Von Mises criterion 

(using the average particle stresses), with the stress calculated from the largest contact force on a 

particle (Fmax/d
 2
). However, like many others, they allowed a 52% volume loss with each breakage, 

which, as they mentioned, neglects the mechanical role of smaller particles, something which we are 

more interested in here.  

More recently, several other researchers have also opted to use the maximum contact force to 

calculate the particle stress using Fmax/d
 2

. Amongst them, Hanley et al. (2015) presented large-scale 

DEM results with a focus on the triaxial behaviour of crushable sand. The ultimate PSDs after 

shearing appeared realistic, suggesting that their choice of criterion could be appropriate for use in 

DEM, although they started with an already well-graded distribution. Ciantia et al. (2015) also used a 

criterion of the form F/d
 2
, while also considering varying contact area. This was following work by 

Russell et al. (2009; 2009), who, using a modified Von Mises type criterion (Christensen, 2000) 

demonstrated that the maximum mobilised stress (not the maximum tensile stress) inside a sphere is a 

function solely of the largest compressive contact force, occurring almost directly below it, 

independent of all other contacts. However, in the context of leading to fractal particle size 

distributions, it is difficult to gauge whether this was an appropriate breakage rule, as, like some of the 

aforementioned work, their simulations involved a comminution limit and did not obey conservation 
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of mass—which inevitably influences the evolving/resultant particle size distribution (as well as the 

mechanical response).  

Tapias et al. (2015), used yet another set of criteria for particle breakage, using what can be described 

as a combination of agglomerates and the replacement method. As mentioned above, there are several 

problems associated with agglomerates when modelling large-scale problems; nonetheless, they 

calculated particle stress from the largest contact force, and allowed their agglomerates to fragment 

when one of two conditions was met. The first of these was largely similar to those outlined above, 

when the stress intensity factor (∝ Fmax/d
 2
) reached the fracture toughness for the particle. The second 

condition was when an initial particle flaw (which were distributed randomly, and limited by particle 

size) had grown to the size of the particle. Initial flaws were allowed to grow under any stress 

intensity resulting from contacts, meaning that given enough time, any loaded particle could 

eventually fail, although larger initial flaws and greater intensities would result in faster crack growth. 

However, the limitations of agglomerates outlined previously hinder any assessment of such breakage 

criteria. 

Hence, there is no agreement in the literature as to what the characteristic stress which governs 

breakage should be.  The focus of this paper is therefore to examine alternative criteria for crushing to 

ascertain whether each gives rise (a) to a realistic normal compression line and (b) a fractal 

distribution of particle sizes with the correct fractal dimension. In this way, it is hoped that further 

micro mechanics of normal compression can be exposed and that a suitable breakage criterion can be 

established, based on comparison with existing experimental data. 

Background to Compression and Breakage Model 

The simulations presented here all use a mono-disperse, cylindrical sample, initially 20 mm x 20 mm, 

subjected to one-dimensional normal compression by applying vertical stress increments with a 

resulting vertical strain. When a particle is deemed to have broken, it is replaced by two smaller 

spherical fragments, equal in size, which together have the same volume as the original sphere (details 

of the breakage criteria investigated will be given shortly). Particles split into 2 fragments, with the 

size ratio between any new fragment and its ‘parent’ particle constant. Newly-placed fragments 

overlap, aligned in the direction of the minor principal stress axis of the breaking particle, and within 

the original particle boundaries. Breakage is implemented by checking all particles at once, and any 

particle in which the stress is equal or greater than the strength is replaced by new fragments. The 

fragments are then allowed to move apart, by completing a number of timesteps during which no 

breakages may occur.  The approach is fully described by McDowell and de Bono (2013). 

The first step in the sequential modelling procedure is to apply a macroscopic stress increment to the 

upper wall of the sample. Particles are then checked and allowed to break. Any particles that break are 

replaced by fragments, which are then allowed to move apart, releasing the energy induced by the 

artificial overlap. This continues until no further breakages occur, after which the macroscopic stress 

is re-applied. After achieving a macroscopic stress with no subsequent breakage, the next stress 

increment is applied and the simulation continues. This process continues until the simulation reaches 

a point where the quantity and size of the smallest particles renders the timestep too small to be 

computationally economical. The macroscopic stress increment used is 125 kPa, and maximum 

velocity of the upper boundary is limited to 0.1 m/s. Model specifics are given in Table 1. For further 

details on the modelling procedure, including discussion of its limitations, the breakage mechanism, 

readers are directed to prior publications (de Bono, 2013; McDowell and de Bono, 2013; McDowell et 

al., 2013). 
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Table 1 General DEM parameters 

General Simulation Properties 
Oedometer Size: Height x Diameter (mm) 20 x 20 

Wall Friction Coefficient 0 

Contact Model Hertz-Mindlin 

Initial (Largest) Particle Size, d (mm) 2 

Initial No. of Particles 857 

Particle Friction Coefficient 0.5 

Particle Shear Modulus, G (GPa) 28 

Poisson’s Ratio, ν 0.25 

Particle Density (kg/m3) 2650 

Initial Voids Ratio 0.75 

 

Investigating 4 Breakage Regimes 

The results consist of four simulations, each using a different breakage regime, i.e. a different method 

of measuring particle stress and the associated strengths. The first simulation uses the octahedral shear 

stress, q, as the characteristic measure of stress, and is the same as that used previously by the authors 

(de Bono and McDowell, 2015, 2014; McDowell and de Bono, 2013). A further two simulations use 

the mean particle stress, p and the major principal particle stress, σ1 to determine particle breakage. 

The remaining simulation will use a stress criterion calculated from the maximum contact force, with 

the particle stress calculated as σFm = Fmax/d
 2
, referred to herein as the Fmax stress. The Fmax stress is 

one of the more commonly used criteria in the literature, although it does not relate to any 

characteristic stress calculated from the stress tensor for the sphere (readily retrieved in the DEM 

software), but rather to a critical stress within the sphere (e.g. Chau et al., 2000; Russell and Muir 

Wood, 2009). The Fmax stress will be of particular interest due to a combination of its relatively 

common use and the uncertainty of the role of coordination number in such a regime. It has been 

suggested that using the Fmax stress to govern breakage indirectly accounts for the number of contacts 

on a particle, whereby (larger) particles with many contacts will, on average, have smaller contact 

forces. However, it remains to be seen if the number of contacts on a particle has the correct effect on 

the maximum contact force, especially since much of the published work using the Fmax stress as a 

criterion imposes artificial conditions relating to the coordination number.  

The particle strengths used here are taken from McDowell (2002), who reported the strengths of 

various sizes of silica sand particles. The average crushing force and average crushing stress 

calculated according to Eq. (1) are reproduced in Table 2. McDowell found that the strengths of the 

silica sand particles fitted Weibull distributions. A Weibull distribution is described by a characteristic 

value, in this case referred to as the Weibull strength, σ0 (a value whereby 37% of particles are 

stronger); and the Weibull modulus, m, which defines the variability. The Weibull strength is similar 

to, and proportional to the mean, while the modulus is directly related to the coefficient of variation. 

The Weibull strengths for each size of particle are also given in Table 2.  

Table 2 Experimental Particle Strengths from McDowell (2002) 

Particle 

Size (mm) 

Average Crushing 

Force (N) 

Average Strength, 

σav (MPa) 

Weibull Crushing 

Force (N) 

Weibull Strength, 

σ0 (MPa) 

2 149.05 37.26 166.8 41.7 

1 59.01 59.01 66.7 66.7 

0.5 33.12 132.48 36.85 147.4 
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For the silica sand, the Weibull modulus m, a material property, was found to be approximately 3.3, 

and from Weibull’s survival probability for a block of material under tension, it is possible to express 

the size effect on strength as: 

 𝜎0 ∝ 𝑑
−3 𝑚⁄  (6) 

assuming that ‘bulk fracture’ dominates (if surface-initiated fracture dominates then this equation 

would use d
 -2/m

). This equation is the hardening law used in all simulations, and is used when 

attributing random strengths to new fragments, i.e., the Weibull strength of any particle size is 

determined by Eq. (6), and together with the Weibull modulus, defines the distribution from which 

random strengths are attributed. Details of the strengths and stresses for each simulation will now be 

outlined, and are summarised in Table 3. 

Criteria I: Octahedral Shear Stress, q 

This simulation uses the octahedral shear stress as the characteristic particle stress, defined by Eq. (3). 

For a sphere loaded by two flat walls in PFC, the value of induced octahedral shear stress is 

approximately equal to 0.9 * F/d
 2
, hence the initial 2 mm particles are given a Weibull strength of 

37.5 MPa (in terms of octahedral shear stress). These 2 mm particles are given random strengths 

drawn from a Weibull distribution defined by characteristic value of 37.5 MPa and a modulus of 3.3. 

From Eq. (6), it can be seen that particles of the next smaller size, d = 1.59 mm, will have a 

characteristic strength of 46.2 MPa. 

Criteria II: Mean Particle Stress, p 

This simulation uses the mean particle stress, p to govern breakage. This breakage criterion, like one 

of those investigated by Ben-Nun and Einav (2010), enables particles to crush under hydrostatic 

stress. The mean particle stress is calculated from the principal stresses: (σ1 + σ2 + σ3) / 3, which are 

obtained from the (average) stress tensor for the particle. From Equations (4), (5), and (3), it can be 

deduced that for diametric compression, p is approximately equal to 0.64 * F/d
 2
. From the strengths 

in Table 2, this means the initial particles (2 mm) are given a characteristic Weibull strength (in terms 

of p) of 26.5 MPa. 

Criteria III: Major Principal Stress, σ1 

This simulation uses the major principal particle stress, σ1 to govern breakage, obtained from the 

average particle stress tensor. From Eq. (5), for diametric loading, the major principal stress, σ1 is 

equal to approximately 1.91 * F/d
 2
. Therefore the initial 2 mm particles have a characteristic Weibull 

strength of 79.6 MPa (in terms of σ1). 

Criteria IV: Fmax Stress, σFm
 

In this simulation, the measure of stress used to govern breakage, σFm, is calculated from the largest 

contact force, as Fmax/d
 2
, where Fmax is the largest normal contact force acting on the particle. Hence 

the Weibull strength for the 2 mm particles can be taken directly from McDowell (2002), and is 

41.7 MPa. 
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Normal Compression 

The compression results for the four simulations are presented in Figure 1, alongside the experimental 

results from the silica sand that the strengths are taken from. As discussed in the authors’ previous 

work (McDowell and de Bono, 2013), the NCL can be described by the following law: 

 log 𝑒 = log 𝑒y −
1

2𝑏
log

𝜎

𝜎y
 (7) 

 

where the slope is given by (1 / 2b). The parameter b describes the hardening law for the particles, and 

is the exponent in Equation (6) (in these simulations, b = -0.91). It has been shown that this 

compression law correctly describes the slope of the NCL for a range of hardening laws (McDowell 

and de Bono, 2013). Using the strength data used here, this law predicts NCLs with slopes of 

approximately 0.5. An ideal line with this slope is included in Figure 1, and it can be seen that the q- 

and F-simulations (as well as the experimental results) demonstrate the best agreement this 

compression law. The σ1-simulation appears to demonstrate some agreement but at high stresses the 

slope of the NCL beings to change, whilst the p-simulation does not display a linear NCL. These 

observations are reflected in the R
2
 values, obtained individually for each NCL and best fit-trend lines: 

the q-simulation reveals an R
2
 value of 0.92 (the trend-line shown), the F-simulation reveals 0.93, the 

σ1-simulation 0.85 and the p-simulation gives 0.11. The simulations are terminated when the 

computational timestep becomes too small, which although occurs at different stresses in the four 

simulations, is invariably when there is a large number of particles covering a very wide range of 

sizes. 

 

Figure 1. Compression Results for the Four Simulations 

 

The most prominent observation from Figure 1 is that the four simulations exhibit different yield 

stresses. The p-simulation yields first, at around a vertical stress of 5 MPa, while the q-simulation 

yields last at approximately σv = 11 MPa. The yield stresses for the four simulations do not correlate 

with the initial particle strengths, due to the different measures of stress increasing at different rates. 
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For each simulation, the average (mean) characteristic stress for all particles is calculated and plotted 

against applied vertical stress in Figure 2, for the stage before yielding occurs (when the four samples 

are physically similar, and consist of the same quantity of solely 2 mm particles). 

 

Figure 2. Average particle stress as a function of applied vertical stress 

 

Figure 3(a) displays the voids ratios plotted against the average particle stress normalised by initial 

characteristic strength (Table 2) for each simulation. In this case the yield points for all simulations 

coincide at a normalised particle stress of approximately 0.3. This echoes McDowell and Humphreys 

(2002), who observed yielding at applied stresses of approximately 25% of the characteristic particle 

strength for different materials, due to strong force chains forming through approximately one quarter 

(the proportionality depends on particle angularity (Nakata et al., 2001)). Yielding signifies the onset 

of particle breakage. Figure 3(b) shows the total number of particles in each simulation plotted against 

the normalised particle stress:  major crushing begins at the same point in each simulation. The 

average coordination number at yield is approximately the same for all simulations (≈ 5), although 

there is little scope for variation due to the fact that all samples initially consist of mono-disperse 

spheres in the densest possible packing. 
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Figure 3. Voids ratio (a) and total number of particles (b), in each simulation plotted against normalised average 

particle stress 

 

The compression law in Eq. (7) was based on the assumption that a fractal particle size distribution 

with a fractal dimension of approximately 2.5 emerges during compression. This was based on 

numerous historical experimental observations (McDowell and Daniell, 2001; Turcotte, 1986). 

Progressive particle size distributions (PSDs) for the four materials are plotted in Figure 4 at 1 MPa 

intervals, although some are coincident. For the q-simulation, the PSD broadens and results in a 

smooth PSD at the final stress of 45 MPa. Although not immediately clear from this style of plot, the 

grading curve does become fractal in character. The F-simulation displays similar behaviour, and 

exhibits realistic particle size distributions with increasing stress. The remaining p- and σ1-simulations 

however display an increased degree of crushing of the largest particles, and the PSDs are not fractal 

in character. 

(a) 

(b) 
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(a)       (b) 

 

(c)       (d) 

 

(e) 

 

Figure 4. Progressive Particle Size Distributions for the four simulations and corresponding experimental test 

 

To assess the fractal nature and obtain the fractal dimension, PSDs are often plotted on logarithmic 

axes (Turcotte, 1986). Because the particle size distributions are discrete, they can be plotted in terms 

of the number of particles of each particular size, given in Figure 5. In this plot, the fractal dimension 

should emerge as the slope. These graphs show that the q- and F-simulations result in realistic crushed 
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PSDs; for both simulations the final fractal dimension is approximately 2.5, and the PSDs appear 

linear across a range of sizes. This agrees with experimental data for crushed granular materials 

(Palmer and Sanderson, 1991; Turcotte, 1986), and therefore suggests that both these measures of 

stress are appropriate to govern breakage.  

The PSD for the p-simulation appears skewed on the log-log scale in Figure 5(b), with no 

distinguished linearity (although a best-fit trendline is given to indicate the gradient). The PSD in this 

simulation can be categorised as uniform, with the majority of particles lying within a narrow size 

range compared to the q- and F-simulations. For the σ1-simulation, the grading curve is not quite 

linear, and in any case the slope is too steep, with a gradient in excess of 3, beyond the usual limit for 

a fractal dimension (McDowell and Daniell, 2001; Palmer and Sanderson, 1991; Sammis et al., 1987; 

Turcotte, 1986). 

(a)       (b) 

 

(c)       (d) 

 

Figure 5. Final Particle Size Distributions for the Four Simulations plotted on Logarithmic Axes 

 

The evolution of the fractal dimensions obtained from the q- and F-simulations is plotted in Figure 6. 

The values of the fractal dimension, D, appear to approach a constant value, despite extensive 

crushing continuing to occur once a value of approximately between 2.0–2.5 has been reached. 
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Figure 6. Evolution of fractal dimension calculated from particle size distributions 

 

In response to one of the referee’s interest in work and new surface created, there now follows an 

analysis of this issue. From the definition of a fractal, it can be stated that the number of particles N 

(of size L), equal or greater than a size d, is proportional to d
-D

. For the q- and F-simulations, the 

fractal dimension D = 2.5, as shown in Figure 5 above. Considering the surface area of any particle is 

proportional to d
2
, then the total surface area of particles equal or larger than size d can be expressed 

as:  

 𝑆(𝐿 ≥ 𝑑i) ∝ 𝑁(𝐿 ≥ 𝑑i) ∗ 𝑑𝑖
2

 

 

𝑆(𝐿 ≥ 𝑑i) ∝ 𝑑𝑖
−0.5 

 

 
(8) 

 

Hence, the total surface area of all particles can be found by using ds in this equation: 

 𝑆T(𝐿 ≥ 𝑑s) ∝ 𝑑s
−0.5 (9) 

 

Considering that the current vertical stress is proportional to the strength of the smallest 

particles(McDowell and Bolton, 1998; McDowell and de Bono, 2013), and recalling the hardening 

law in Eq.(6), one can relate the stress to smallest particle size, ds as σ ∝ ds
 -3/3.3

. If this is taken here as 

approximately σ ∝ ds
 -1

 (with b = 1), combining this with the surface area then leads to a total particle 

surface area: 

 𝑆T ∝ 𝜎
0.5 (10) 

 

The new surface area resulting from crushing is often linked to the plastic work performed on the 

system during compression, e.g. McDowell and Bolton (1998). Russell (2011) also related the surface 

area to the energy put into the system, which led to alternative compression laws to that given in 

Eq. (7).  
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The plastic work done on the sample (neglecting elastic strains) is 

 
𝑊 ∝ ∫𝜎𝑉sd𝑒 (11) 

 

For the q- and F-simulations, which obey the compression law: 

 𝑒 ∝ 𝜎−0.5 (12) 
 

according to Eq. (7) with b = 1, differentiating Eq. (12) gives: 

 d𝑒

d𝜎
∝ 𝜎−1.5 (13) 

 

Separation of the variables and multiplication by σ gives: 

 𝜎d𝑒 ∝ 𝜎−0.5d𝜎 (14) 
 

The total work done, W, during compression is then given by: 

 
𝑊 ∝ ∫𝜎−0.5 d𝜎 (15) 

 

Upon integration, substitution of the surface area, ST using Eq. (10) into the integral σ
 0.5

 leads to: 

 𝑊 ∝ 𝑆 − 𝑆0 

𝑊 ∝Δ𝑆 
(16) 

 

i.e., the plastic work is proportional to the increase in surface area. This relation is plotted in Figure 7 

for the two simulations. The work plotted (actually work done per unit volume of solids) is 

cumulative, calculated for each increment as σde (using the increment average stress). The new 

surface area created in both simulations appear to agree quite well with Eq.(16).  
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Figure 7 Increase in surface area as a function of plastic work 

 

Discussion 

The stress-strain behaviour and resulting PSDs show that both the octahedral shear stress, q and Fmax 

stress, σFm appear suitable for governing particle breakage; whilst the mean particle stress, p and the 

major principal particle stress, σ1 appear unsuitable. These latter two regimes result in compression 

lines that do not conform well with the compression law, and unrealistic PSDs. 

During normal compression, the decrease in voids ratio is facilitated by the continual crushing of the 

smallest particles, with new smaller fragments filling the voids. Simultaneously, for a fractal 

distribution to emerge and remain consistent, the largest particles must remain mostly intact; only a 

very small number of them must occasionally break to maintain the fractal dimension (e.g., assuming 

a constant D = 2.5, 1 particle of size d = 2 mm should break for approximately every 3000 particles of 

d = 0.25 mm that break).  

Smaller particles are statistically stronger than larger particles, hence they require larger stresses to 

break. In all cases, the calculated particle stresses involve the term d
-2

, so it seems reasonable that a 

typical contact force will result in larger stresses in smaller particles, which is conducive to breakage 

of the smallest particles (although clearly the quantity and magnitude of contact forces will also wield 

influence on the particle stress). However, at high values of σv, there must be some factor which 

protects the larger particles, mitigating the induced particle stress and preventing substantial quantities 

of the largest (and weakest) particles from breaking. 

It was anticipated that for the p-simulation, the mean particle stress would not be appropriate to 

govern breakage, as the many contact forces acting on large particles will contribute to large principal 

stresses (Eq. (4)), hence large mean particle stress, and therefore it would consistently be the largest 

particles breaking, resulting in a persistently uniform PSD and hindering any decrease in voids ratio. 

This indeed appears to be the case, with nearly all of the original 2 mm particles breaking 

immediately following yield, followed by nearly all of the next biggest size (1.59 mm) breaking. At 

the final stress of 17 MPa, more than 90% of the mass is finer than 1.26 mm. As shown in Figure 1, 
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this simulation displays reduced compressibility.  In other words, if particles break under hydrostatic 

stress, large particles continue to break, giving a comminution limit type effect and because the 

particle size distribution tends to a uniform mush of decreasing sized fines, the voids ratio will tend 

towards being constant; this is exactly evident in Figure 1. 

The behaviour of the σ1-simulation, interestingly appears to be between that of the q- and p-

simulations. Like the p-simulation, the largest particles, with many contact forces acting on them, will 

be subject to large σ1. Hence the use of σ1 to govern breakage means the largest particles will be very 

susceptible to breakage. However, in comparison with the p-simulation, this effect is not as 

pronounced, due to the lack of consideration of σ2 and σ3; smaller particles, with few contacts, will 

also have large σ1, even though the other principal stresses may be low. This fits with the observed 

intermediate behaviour, with evident crushing of the largest particles (but not as substantial), yet a 

slightly greater portion of smaller particles when compared to the p-simulation. 

The F-simulation, by contrast, demonstrates realistic behaviour and results that are similar to the q-

simulation. This at first seems surprising, as the use of the single largest contact force (σFm = Fmax/d
 2
) 

is indiscriminate to the number of contacts acting on a particle, and would not appear to minimise the 

crushing of the largest, weakest particles. This behaviour, and the similarity with the q-simulation can 

be understood by considering how comparatively large and small particles are loaded. 

Small particles have few contacts and will generally not be loaded isotropically, so if Fmax is large, 

then both q and Fmax/d
 2
 will be large, due to the absence of additional (lateral) contacts. In both 

simulations the smallest particles will have high stresses and continually break. The factor preventing 

excessive breakage of large particles in the F-simulation can be attributed to the contact forces 

required to break particles. In this case the particle stress is a function of the single largest contact 

force only, so the size-effect on strength can be rewritten in term of force as Fm,0 ∝ d
 1.1

. It is evident 

that larger particles require greater critical forces to break. Hence, statistically, a large particle will 

break if it comes into contact with an equal- or larger-sized particle which can sustain the contact 

force. Statistically, if a large particle is in contact with a much smaller one, the mutual maximum 

contact force will cause the smaller particle to break. This implies that once there are few enough of 

the largest and dispersed particles remaining, they would not be susceptible to breakage. The PSD for 

this simulation in Figure 5(d) shows limited evidence of this: there are a larger proportion of 2 mm 

particles than expected, and after further crushing of the smaller sizes this would dislocate the fractal 

distribution. 

To illustrate these phenomena, one can consider an idealised loaded particle, such as in Figure 8. 

Figure 8(a) shows a single particle, size d = 1 m, subjected to unit forces. For diametric loading, the 

different measures of stress within this sphere are: q = 0.9, σ1 = 1.91, p = 0.64, and σFm = 1 (units of 

Pa), as labelled. If this sphere is now subjected to additional unit forces, but in an isotropic manner 

(i.e. 3 orthogonal pairs), as demonstrated in (b), then the shear stress q decreases, whilst there is no 

change in the major principal stress σ1, nor the Fmax stress, σFm. The mean stress p however increases. 

If this particle is subjected to an additional set of isotropic, orthogonal forces, offset by some rotation, 

shown in (c), then both the octahedral shear stress q and the Fmax stress σFm do not change, whilst the 

major principal stress σ1 and mean stress p both double in magnitude. This is similar to what happens 

in the simulations—where the largest particles accumulate contacts as crushing progresses. However, 

as noted, in such cases the contact forces will generally be smaller in magnitude; such a case is shown 

in (d), which shows an identical configuration to (c) but with smaller forces. Again the octahedral 

shear stress will be zero. The Fmax stress is also smaller, but σ1 and p are still relatively large compared 

to case (a), despite smaller contact forces. Although highly-idealised, this serves to show that for a 
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given size of particle, those with fewest contacts will, in general, be under the largest shear stress q, 

and the largest Fmax stress, σFm, whilst those with the most contacts, even if the contact forces are 

smaller, will exhibit the largest major principal and mean stresses. Meanwhile, the smallest particles 

will always be loaded with the fewest contacts, such as in (e), which shows a smaller particle loaded 

diametrically. In this case, all measures of stress are larger than an equivalently-loaded larger sphere 

(a), despite smaller forces. However in comparison to (d), which represents the state of larger 

particles, the small particle (e) has much larger q, σFm, and σ1, but a smaller value of p. Lastly, it is 

also worth noting that in the q- and F-simulations, for a large particle to break, there would need to be 

either anisotropic or relatively large contact forces acting on it, respectively. These scenarios are 

illustrated in (f), which is similar to (d) apart from one pair of opposing contact forces larger in 

magnitude. Compared to (d), in this case, q and σFm (and σ1) have increased significantly, whilst p has 

increased by a much lesser extent. Hence, there is a clear similarity in the q- and F-simulations, 

whereby the smallest particles (regardless of their actual size), are consistently subjected to the fewest 

contacts but largest stresses. 
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(a)    (b)    (c) 

 

(d)    (e)    (f) 

 
Figure 8. Diagram showing how the four measures of stress vary with changing F, d and number of contacts 

 

Figure 9 shows how the average coordination number increases with particle size, the data 

corresponding to points where the total number of particles is approximately 25000 in all simulations. 

The same trend is seen for all simulations. The smallest particles have average coordination numbers 

less than 1, this is because a portion of them are not in contact with other particles; while those that 

are carrying load have between 3–5 contacts. The 4 sets of data appear almost identical, despite quite 

different gradings; the q- and F-simulations at this point consist of fractal PSDs, in contrast to the p-

simulation, which comprises a narrower distribution of particle sizes (so although the average 

coordination number with respect to particle size is similar in all simulations, the frequency 

distribution of coordination numbers are different). The observed trends are the same at any point 

during the simulations, i.e. regardless of the range of sizes of particles or their quantity, the smallest 
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particles always have the same number of contacts, while the largest particles gain more as crushing 

progresses. 

 

Figure 9. Average coordination number with respect to particle size when each simulation contains approximately 

25,000 particles. 

 

The average characteristic particle stress as a function of particle size is plotted in Figure 10, the data 

corresponding to the final vertical stress (which is different for each simulation). The average particle 

stresses in this instance are calculated only considering load-carrying particles (particles with 0–1 

contacts are neglected, if they weren’t, then the average stresses for the smallest sizes of particles 

would be lower). The data is plotted on logarithmic axes, and for comparison, the average particle 

strengths are also shown. These are the actual particle strengths, which differ slightly from the 

theoretical strengths according to Eq. (6) (which would dictate a slope of -0.91), due to the fact that 

particles of a particular size have a distribution of strengths, and the weaker particles crush first. 

Nonetheless, although different in magnitudes, the average particle strengths follow the same 

relationship with size in all simulations. For the q- and F-simulations, the average particle stress 

increases steadily with reducing particle size, and the average stress curve is approximately parallel 

with the average strengths. The data for p-simulation however, displays no linear trend between 

average stress and particle size, and although the very smallest particles exhibit slightly higher 

average stresses, the values for most sizes are similar. The difference between the average stress and 

strength in this (p) simulation is narrowest for the largest 2 mm particles, and in general the average 

particle stress increases with particle size relative to its strength. 

The σ1-simulation displays intermediate behaviour; smaller particles are under larger stresses than the 

larger particles, with average stress increasing with reducing size, but the rate of increase is less than 

the q- and F-simulations. As such, a disproportionate quantity of the large particles break as the 

overall stress increases. 
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(a)       (b) 

 

(c)       (d) 

 

Figure 10. Average particle stresses with respect to size 

 

The average stresses for individual particle sizes are plotted against the applied stress in Figure 11. 

Only the first 6 sizes of particle are shown for clarity. In all simulations, the particle stresses increase 

with applied stress, however there are markedly different patterns of behaviour between the q- and F-

simulations and the p- and σ1-simulations. In the former, the average stress in the largest, 2 mm 

particles increases approximately linearly, until smaller particles come into existence, at which point 

the rate of increase reduces, with little change beyond a vertical stress of 20 MPa. The average stress 

of the next-smallest size of particle, d = 1.59 mm, at first increases, to a value higher than that of the 

2 mm particles, but then the rate of increase also reduces; this pattern continues with subsequently 

smaller sizes bearing increasingly larger stresses. It appears that the average stress for any size of 

particle stops increasing rapidly once there are many smaller particles in existence, at which point 

these particles will become surrounded and have additional contacts. For the q-simulation, this will be 

due to the additional contacts mitigating the induced octahedral shear stress. For the F-simulation, this 

will be due to the scarcity of contacts with similar or larger sized particles, which are able to bear 

large contact forces. 

In contrast, in the p- and σ1-simulations, it appears that the average stress for all particle sizes 

increases linearly with increasing vertical stress. In the p-simulation, the 6 particle sizes shown exhibit 

similar values of average stress, which will be of most significance for the largest and weakest 
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particles, and is consistent with the PSDs shown in Figure 4(b) which show very few of the largest 

particles remaining after compression. The σ1-simulation shows similar behaviour, with the average 

stress in the largest particles increasing rapidly with increasing vertical stress; however, the smallest 

particles are under moderately greater stresses. This is consistent with the notion of intermediate 

behaviour between the q- and p-simulations. 

These graphs, as well as those in the previous two figures, demonstrate the similarity between the q- 

and F-simulations, where the average stress in the smallest particles (whatever their actual size) 

increases approximately linearly with increasing σv, whilst the average stresses in the larger particles 

are mitigated and tend to approximately steady values. So in both cases, the smallest particles, always 

with the fewest number of contacts, are consistently subjected to the largest stresses, causing many of 

them to break, creating new ‘smallest’ particles, which then start ‘protecting’ the previously smallest 

particles. This process is continuous, and is the same regardless of scale. 

 

(a)       (b) 

 

(c)       (d) 

 

Figure 11. Average particle stresses in different sized-particles as a function of applied stress 
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Conclusions 

This work has sought to clarify the suitability of various breakage criteria when modelling particle 

breakage in DEM, which was achieved by investigating the use of four different common measures of 

stress to determine whether or not a particle should break. In each case, the strengths used were from 

experimental single particle crushing tests on a silica sand. 

The simulation using the octahedral shear stress resulted in the correct macroscopic stress-strain 

behaviour, as well as a realistic fractal particle size distribution, which was consistent with all 

previous work by the authors, which used the same breakage regime. Notably, the simulation using 

the Fmax stress: Fmax / d
 2
, also produced the correct macroscopic behaviour. Although this is one of the 

more common breakage criteria used in DEM by other researchers, it has often been chosen arbitrarily 

with no justification, or due to the theory that the maximum critical stress within a solid sphere is a 

function only of the maximum contact force (e.g. Chau et al., 2000; Ciantia et al., 2015; Russell et al., 

2009). However, it was unclear whether this criterion would result in the correct behaviour in DEM. 

Both of these two breakage criteria were shown to result in continuous breakage of the smallest 

particles with increasing applied stress, whilst minimising breakage of the largest and weakest 

particles, leading to the correct normal compression line and fractal particle size distributions. 

For the simulation that used the octahedral shear stress, q, the additional contacts acting on 

comparatively larger particles act to mitigate the induced stress, thus enabling these weaker particles 

to survive when the applied vertical stress is high. This effect means that it is the particles with fewest 

contacts that will be most likely to be subjected to high shear stresses. This in turn means that 

particles in contact with those much larger will be subjected to high shear stresses, as large 

neighbouring particles physically prevent additional particles from forming contacts. 

For the simulation that considered the particle stress calculated from the maximum contact force 

(Fmax / d
 2
), a similar effect was evident. Once comparatively large particles were in contact with many 

surrounding smaller particles, the only way in which these particles would break is if they were in 

contact with equal- or larger-sized particles. Hence, the use of both of these alternative measures of 

stress to determine breakage result in a regime whereby contacts between same- or larger-sized 

particles is minimised, and both lead to the emergence of a fractal distribution with a dimension of 

2.5, consistent with experimental results.  

Of the other two criteria investigated: the mean particle stress, p and the major principal stress σ1, both 

resulted in poor modelling of the macroscopic behaviour in comparison to experimental results. The 

use of mean particle stress p meant that the largest particles, which have many contacts (all of which 

contribute to the mean stress), will always be the most likely to break, and as such, it is primarily the 

largest particles that are continuously breaking; this resulted in a uniform particle size distribution and 

the evolution of a constant voids ratio. The use of σ1 in governing breakage resulted in somewhat 

intermediate behaviour. In this case the largest particles, with many contact forces contributing to 

large principal stresses, will be under large values σ1, but so too will many of the smallest particles, 

which have fewer contacts and therefore low values of σ2 and σ3. 

This paper has therefore served as a detailed investigation into the factors affecting particle breakage 

during normal compression and has provided insight into the evolution of fractal distributions of 

particle sizes which accompany a normal compression line. 



24 

 

Acknowledgements 

The authors are grateful to the Engineering and Physical Sciences Research Council for their financial 

support through Research Grant EP/L019779/1 and the reviewers for their contributive comments. 

 

  



25 

 

References 

 

Åström, J. a., Herrmann, H.J., 1998. Fragmentation of grains in a two-dimensional packing. Eur. 

Phys. J. B 5, 551–554. doi:10.1007/s100510050476 

Ben-Nun, O., Einav, I., 2008. A refined DEM study of grain size reduction in uniaxial compression. 

12th Int. Conf. Int. … 1–6. 

Ben-Nun, O., Einav, I., 2010. The role of self-organization during confined comminution of granular 

materials. Philos. Trans. A. Math. Phys. Eng. Sci. 368, 231–47. doi:10.1098/rsta.2009.0205 

Chau, K.T., Wei, X.X., Wong, R.H.C., Yu, T.X., 2000. Fragmentation of brittle spheres under static 

and dynamic compressions: experiments and analyses. Mech. Mater. 32, 543–554. 

doi:10.1016/S0167-6636(00)00026-0 

Christensen, R.M., 2000. Yield Functions, Damage States, and Intrinsic Strength. Math. Mech. Solids 

5, 285–300. doi:10.1177/108128650000500302 

Ciantia, M.O., Arroyo, M., Calvetti, F., Gens, A., 2015. An approach to enhance efficiency of DEM 

modelling of soils with crushable grains. Géotechnique 65, 91–110. doi:10.1680/geot.13.P.218 

Couroyer, C., Ning, Z., Ghadiri, M., 2000. Distinct element analysis of bulk crushing: effect of 

particle properties and loading rate. Powder Technol. 109, 241–254. doi:10.1016/S0032-

5910(99)00240-5 

de Bono, J.P., 2013. Discrete Element Modelling of Cemented Sand and Particle Crushing at High 

Pressures. University of Nottingham. 

de Bono, J.P., McDowell, G.R., 2014. DEM of triaxial tests on crushable sand. Granul. Matter 16, 

551–562. doi:10.1007/s10035-014-0500-x 

de Bono, J.P., McDowell, G.R., 2015. An insight into the yielding and normal compression of sand 

with irregularly-shaped particles using DEM. Powder Technol. 271, 270–277. 

doi:10.1016/j.powtec.2014.11.013 

Elghezal, L., Jamei, M., Georgopoulos, I.-O., 2013. DEM simulations of stiff and soft materials with 

crushable particles: an application of expanded perlite as a soft granular material. Granul. Matter 

15, 685–704. doi:10.1007/s10035-013-0406-z 

Esnault, V.P.B., Roux, J.-N., 2013. 3D numerical simulation study of quasistatic grinding process on 

a model granular material. Mech. Mater. 66, 88–109. doi:10.1016/j.mechmat.2013.07.018 

Hanley, K.J., O’Sullivan, C., Huang, X., 2015. Particle-scale mechanics of sand crushing in 

compression and shearing using DEM. Soils Found. 55, 1100–1112. 

doi:10.1016/j.sandf.2015.09.011 

Hiramatsu, Y., Oka, Y., 1966. Determination of the tensile strength of rock by a compression test of 

an irregular test piece. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 3, 89–90. 

doi:10.1016/0148-9062(66)90002-7 

Itasca, 2015. PFC3D. 

Jaeger, J.C., 1967. Failure of rocks under tensile conditions. Int. J. Rock Mech. Min. Sci. Geomech. 

Abstr. 4, 219–227. doi:10.1016/0148-9062(67)90046-0 

Lobo-Guerrero, S., Vallejo, L.E., 2005. Crushing a weak granular material: experimental numerical 

analyses. Géotechnique 55, 245–249. doi:10.1680/geot.2005.55.3.245 

Lobo-Guerrero, S., Vallejo, L.E., Vesga, L.F., 2006. Visualization of Crushing Evolution in Granular 

Materials under Compression Using DEM. Int. J. Geomech. 6, 195–200. 

doi:10.1061/(ASCE)1532-3641(2006)6:3(195) 

Marketos, G., Bolton, M.D., 2009. Compaction bands simulated in Discrete Element Models. J. 

Struct. Geol. 31, 479–490. doi:10.1016/j.jsg.2009.03.002 

McDowell, G.R., 2002. On the yielding and plastic compression of sand. Soils Found. 42, 139–145. 

McDowell, G.R., Amon, A., 2000. The application of weibull statistics to the fracture of soil particles. 

Soils Found. 40, 133–141. 

McDowell, G.R., Bolton, M.D., 1998. On the micromechanics of crushable aggregates. Géotechnique 

48, 667–679. doi:10.1680/geot.1998.48.5.667 

McDowell, G.R., Daniell, C.M., 2001. Fractal compression of soil. Géotechnique 51, 173–176. 

doi:10.1680/geot.2001.51.2.173 

McDowell, G.R., de Bono, J.P., 2013. On the micro mechanics of one-dimensional normal 

compression. Géotechnique 63, 895–908. doi:10.1680/geot.12.P.041 



26 

 

McDowell, G.R., de Bono, J.P., Yue, P., Yu, H.-S., 2013. Micro mechanics of isotropic normal 

compression. Géotechnique Lett. 3, 166–172. doi:10.1680/geolett.13.00050 

Mcdowell, G.R., Humphreys, A., 2002. Yielding of granular materials. Granul. Matter 4, 1–8. 

doi:10.10007/s10035-001-0100-4 

Nakata, Y., Kato, Y., Hyodo, M., Hyde, A.F., Murata, H., 2001. One-dimensional compression 

behaviour of uniformly graded sand related to single particle crushing strength. Soils Found. 41, 

39–51. 

Palmer, A.C., Sanderson, T.J.O., 1991. Fractal Crushing of Ice and Brittle Solids. Proc. R. Soc. A 

Math. Phys. Eng. Sci. 433, 469–477. doi:10.1098/rspa.1991.0060 

Russell,  a. R., 2011. A compression line for soils with evolving particle and pore size distributions 

due to particle crushing. Géotechnique Lett. 1, 5–9. doi:10.1680/geolett.10.00003 

Russell, A.R., Muir Wood, D., 2009. Point load tests and strength measurements for brittle spheres. 

Int. J. Rock Mech. Min. Sci. 46, 272–280. doi:10.1016/j.ijrmms.2008.04.004 

Russell, A.R., Muir Wood, D., Kikumoto, M., 2009. Crushing of particles in idealised granular 

assemblies. J. Mech. Phys. Solids 57, 1293–1313. doi:10.1016/j.jmps.2009.04.009 

Sammis, C., King, G., Biegel, R., 1987. The kinematics of gouge deformation. Pure Appl. Geophys. 

PAGEOPH 125, 777–812. doi:10.1007/BF00878033 

Steacy, S.J., Sammis, C.G., 1991. An automaton for fractal patterns of fragmentation. Nature 353, 

250–252. doi:10.1038/353250a0 

Tapias, M., Alonso, E.E., Gili, J., 2015. A particle model for rockfill behaviour. Géotechnique 65, 

975–994. doi:10.1680/geot.14.P.170 

Tsoungui, O., Vallet, D., Charmet, J., 1999. Numerical model of crushing of grains inside two-

dimensional granular materials. Powder Technol. 105, 190–198. doi:10.1016/S0032-

5910(99)00137-0 

Turcotte, D.L., 1986. Fractals and fragmentation. J. Geophys. Res. 91, 1921. 

doi:10.1029/JB091iB02p01921 

 


