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Abstract 

Accurate virial coefficients BN (λ,ε )  (where ε  is the well depth) for the three-

dimensional square-well and square-step potentials are calculated for orders N = 5 – 9 

and well widths λ = 1.1− 2.0  using a recursive method that is much faster than any 

previously used methods. The efficiency of the algorithm is enhanced significantly by 

exploiting permutation symmetry and by storing integrands for re-use during the 

calculation. For N = 9 the storage requirements become sufficiently large that a 

parallel algorithm is developed. The methodology is general and is applicable to other 

discrete potentials. The computed coefficients are precise even near the critical 

temperature, and thus open up possibilities for analysis of criticality of the system, 

which is currently not accessible by any other means. 
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1. Introduction 

The pressure P of a fluid at temperature T can be expanded in powers of the number 

density ρ  as 

 
P
kBT

= ρ + BN (T )ρ
N

N=2

∞

∑   (0) 

where kB  is the Boltzmann constant and  BN  is the virial coefficient of order N. 

Despite the fact that this equation of state has a well-established theoretical 

foundation and is important in the physical sciences, its applications are still rather 

limited. This is partly because high-order virial coefficients are needed to investigate 

the convergence properties of the series, and to improve the convergence by, for 

example, resummation via rational functions or other forms [1–8], but such 

coefficients are difficult to calculate. Much work has been devoted to the hard-sphere 

model, for which orders N ≤10  have been calculated [9–11], before a breakthrough 

in the algorithm was made [12] that gave access to higher orders [12–14]. Recently, 

the algorithm also made possible calculations beyond N = 8 for the Lennard-Jones 

potential [15]. 
 

The square-well (SW) potential is perhaps the simplest model that exhibits behavior 

that is common to most fluids, including vapor-liquid equilibrium and a critical point. 

It has been employed to investigate a variety of interesting problems, including 

interfacial phenomena, surface adsorption, wetting and capillary condensation [16–

18]. The temperature dependence of all virial coefficients of the SW potential can be 

expressed in an exact closed form (polynomial) and the calculation of the virial 

coefficients is more tractable than other realistic potentials. The virial coefficients of 

the SW potential have been studied for more than half a century [19–26]. However, 

the maximum order attainable through calculation only reached N = 6 quite 

recently [26], which emphasizes the difficulties in obtaining higher order virial 

coefficients for model fluids in general, and for the SW potential in particular, relative 

to the hard-sphere case.  

 

In this paper, we propose an efficient algorithm that enables us to obtain the virial 

coefficients BN (λ, f ) , of orders N = 5 to 9 for the three-dimensional, pairwise-

additive, square-well potential E, which is defined by E = +∞  for an inter-particle 
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separation r ≤σ , E = −ε  for σ < r < λσ , and E = 0  for r ≥ λσ . The hard-core 

diameter is σ .  The virial coefficients depend on the reduced well depth ε / kBT , 

which is represented here by f, the Mayer function evaluated in the well region 

f = exp(ε / kBT )−1( ) , and on the reduced well width λ . The calculations cover the 

range 1.1≤ λ ≤ 2.0 , for which thermodynamic properties such as the critical 

temperatures and densities are available for comparison. The focus of this paper is 

primarily on method development and two similar but distinct Monte Carlo methods 

are discussed. 

 

2. Methods 

The calculated virial coefficients are expressed in reduced form as 

BN
* = BN / [B2 (HS)]

N−1 , where BN (HS)  is the Nth  virial coefficient for the hard-

sphere core, with diameter σ , and B2 (HS) =
2π
3
σ 3 . As a function of f, the virial 

coefficients take their hard-sphere values at f = 0  (no well): 

BN
* (λ,0) = BN (HS) / [B2 (HS)]

N−1 = BN
* (HS) . Negative values of f, −1≤ f < 0 , 

correspond to a square-step potential with positive potential energy, with f = −1  

representing an infinitely high step, for which BN
* (λ,−1) = λ 3(N−1)BN

* (HS) . 

Increasingly positive values of f correspond to square-well potentials of greater well 

depth, and for f > fc  a bulk liquid phase is possible [27], where fc = exp(1 /Tc
*)−1   

and Tc
*   is the reduced critical temperature. 

 

Numerical integration (Monte Carlo) is used to calculate the virial coefficients, using 

the standard integral 

 BN (λ, f ) =
1− N
N!

...∫ fB(λ, f ,r
N )dr2...drN∫   (0) 

and a recursive method of calculation [12] is modified (see Supplemental 

Material [28]) to evaluate the integrand fB , which defined as 

   
fB(λ, f ,rN ) = f (rij )

ij∈G
∏⎡
⎣
⎢

⎤

⎦
⎥

G
∑ , where G is a biconnected graph. The integrand, and 

hence the virial coefficients, are terminating polynomials in f  [23,26], which enables 

the thermodynamic properties of all square-well and square-step potentials to be 
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obtained in closed form, for each well width considered, at all temperatures and 

densities for which the virial series converges. The polynomial expansion of the 

reduced virial coefficients is given in terms of the coefficients BN , j
* (λ)  as 

 BN
* (λ, f ) = BN , j

* (λ)
j=0

m

∑ f j   (1) 

The upper summation limit m = N(N −1) / 2  is the number of pairs of particles. From 

the limiting cases above, it follows that BN ,0
* = BN

* (HS)  and 

 BN , j
*

j=0

m

∑ (−1) j = λ 3(N−1)BN
* (HS)   (1) 

The recursive method [12] takes as its starting point the quantity exp(−E / kBT )  for a 

set of N particles and for all subsets thereof. For the pair-additive square-well 

potential, this quantity is either zero, if any hard-core overlaps occur in the (sub)set, 

or ( f +1)p , if p pairs of particles are in the well region and the rest are outside it. The 

implementation of the recursive method is modified to retain this explicit polynomial 

dependence on ( f +1)  at each stage. The resulting integrand fB  is integrated 

stochastically to give BN  as a polynomial in ( f +1) , which is then converted to the 

required polynomial in f.  

 

The computer time required for the recursive algorithm scales as 3N N  when 

numerical values are used, but since polynomials of order up to m = N(N −1) / 2  are 

required in this work, the time increases further. It is therefore highly beneficial to 

invoke the method on a configuration of particles only when needed. One strategy to 

this end is to store the integrand for re-use during the calculation for each λ and N. 

The integrand depends only on the graph that describes whether each pair separation 

is in the hard-core region, the well, or the zero-energy long-range region, and not 

explicitly on the particle positions within these regions. Given that there are three 

possibilities per pair, there is a maximum of 3m  possible graphs. For N = 5 and 6 (m = 

10 and 15) the number of graphs is sufficiently small that all the integrands fB  can be 

stored when first needed, and looked up thereafter.  

 

Two similar but distinct Monte Carlo methods, designated A and B, are implemented 

to compute SW virial coefficients within this framework, each following respective 
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approaches analogous to previous work for hard spheres [12,14]. Both execute a 

repeated process of: (1) generating a configuration at random by placing each particle 

in succession relative to a previously-positioned particle, starting with the first at the 

origin; (2) evaluating some simple metrics for the resulting configuration to determine 

whether to compute fB for it; (3) if so indicated, computing fB using the recursive 

method, and also computing the total probability w for producing the configuration, 

considering how step (1) could yield it for all N! permutations of the particles; (4) 

incrementing an average with fB/w.  

 

In Method A [12], the particles are placed in a chain, such that each new particle is 

inserted relative to the one just preceding it, with probability that is uniform within 

the sphere for distances r from 0 to λσ , and decreasing proportionally to r−12  for 

larger distances; this probability tail is needed so that all biconnected diagrams have a 

nonzero chance of being produced. Dynamically generated lookup tables are used to 

evaluate the integrand.  

 

For N ≥ 7 , the invariance of the integrand to permutation of particle labels is used, 

giving a storage requirement of order up to 3m / N!. To exploit the permutation 

symmetry, the particle labels should be re-ordered to produce a canonical labelling, 

that is, the re-ordering procedure should produce the same end result regardless of the 

initial labelling of particles. In Method A, the re-ordering is done as follows. An 

adjacency matrix is created with elements Aij  equal to 1 if i = j , 2/3 if the separation 

between i and j is in the core region, 1/3 if it is in the well and 0 if it is outside the 

well. The eigenvalues and eigenvectors of the adjacency matrix are calculated, the 

eigenvector coefficients are squared, and degenerate eigenvectors are added together. 

The particle with the highest (squared) coefficient in the eigenvector with highest 

eigenvalue is labelled 1, the one with the second highest coefficient is labelled 2, and 

so on. Two particles with equal coefficients in the first eigenvector are ranked using 

their coefficients in the other eigenvectors, in descending order of eigenvalue, and if 

these are all equal, then the ranking is based on the closest connection to already-

labelled particles, particle 1 first, using the adjacency matrix.  
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This re-ordering is not fully canonical (it does not recognize the permutation 

equivalence of some graphs), but the number of reordered graphs that are generated is 

found to be less than 3m / N! in practice. If a graph is not biconnected (where a pair 

with separation in the core or well region is counted as a connected pair) then the 

integrand is zero, and is not stored. Many graphs are never produced in practice 

because they are geometrically impossible (or highly unlikely) in three dimensions. If 

the storage space is insufficient to accommodate a few rarely generated 

configurations, this is also acceptable, because the time taken to apply the recursive 

algorithm to the unstored graphs every time they are generated is not prohibitive. 

However, for N = 9 the storage requirements become sufficiently large that a parallel 

algorithm is used. Each parallel task is assigned a similar number of biconnected 

canonical graphs. Each configuration that is generated is checked for biconnectivity, 

its total probability and canonical ordering are calculated, and these data are sent to 

the appropriate task for analysis. This balances the storage and processing load 

between the tasks, and it is found that the computer time is roughly equally divided 

between the generation of random chains, checking them for biconnectivity, 

calculating the total probability of generating the chain configurations, performing the 

canonical re-ordering, and computing the integrands. More details on this are given in 

the result section. 

 

Method B [14] generates configurations via sequential insertion, following tree and 

ring templates in addition to the chain used by Method A; the insertion probability 

does not include the r-12 tail employed by Method A, because the combination of ring, 

tree, and chain templates is sufficient to ensure a nonzero probability of generating 

each biconnected graph without it. The choice of template is made at random, with 

the tree/ring/chain weight adjusted in preliminary runs to reduce the variance of the 

average. Averages of fB/w are collected in bins, with each bin defined by 5-12 metrics 

(depending on N; see Supplemental Material [28]) and is uniquely specified for the 

generated configuration. The estimate of the integral in Eq. (0) depends on the 

frequency that each bin is visited and the average of fB/w for all graphs associated 

with each bin. Ideally, all graphs in a bin will have the same value, such that the 

variance within the bin is zero. In practice each bin has a non-zero variance (except 

for N = 4, for which the algorithm is equivalent to using a look-up table). The choice 
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of whether to compute fB/w for a generated configuration is made with probability that 

depends on the observed variance for its bin, and other factors (with some non-zero 

probability to compute it regardless of its bin variance), and is adjusted to optimize 

the calculation [14]. 

 

The accuracy of the calculated virial coefficients depends on the quality of the 

random number generator used; so several different pseudo-random and quasi-random 

number generators are investigated for producing the random chains. Most of the 

results presented for Method A are produced using digit-permuted Halton 

numbers [29], but the Mersenne Twister [30] and random Latin Hypercube [31] 

methods give consistent results with similar confidence limits; for Method B, the 

Mersenne Twister is used exclusively. 

 

Uncertainties represent 68% confidence intervals of the corresponding coefficient. 

For a given N, the coefficients 
  
BN , j

*   are correlated, so the uncertainty in   BN
*

 cannot be 

obtained from them via simple error propagation. Hence, the uncertainties in   BN
*  

using Method A are computed from averages of the   BN
*  at each temperature (f) value 

reported. Calculations using Method B recorded the covariances needed to propagate 

the 
  
BN , j

*  errors to  BN , and these values are included in the SM. 

 

3. Results and Discussions 

Results for the coefficients BN , j
*  with well width  1.1≤ λ ≤ 2.0  along with the 

minimum uncertainty averages of the two methods are given in the SM. A 

comparison of the uncertainty between the two methods is also provided in this 

document. For completeness, formulas and results for N = 2, 3, and 4 are also 

included in the SM. 

 

As outlined above, there are two limiting cases of the SW potential where data for the 

HS model can be extracted from the calculations: when f = 0 BN
* (HS) = BN

* (λ,0)( )  

and −1 BN
* (HS) = BN

* (λ,−1) / λ 3(N−1)( ) . These are used as a partial check on the 

calculated BN , j
* . For the fifth virial coefficient with λ = 1.5   (Table 1), the B5,0

*  value 
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is 0.1102530(22), and BN
* (HS)  obtained using f = −1 is 0.1102517(2), which agree 

well with the literature value 0.11025147(6) [9]. The coefficients BN
* (HS)  from the 

limiting case f = −1 always have better precision than those from f = 0, because the 

“large spheres” with diameter λσ  (f = −1) are sampled better than the “small 

spheres” with diameter σ  (f = 0). For N > 5 , there is similar agreement between the 

HS limiting cases and the HS data from the literature. Thus, these give confidence in 

the accuracy of all other BN , j
*  coefficients reported here.  

 

The temperature dependence of the virial coefficients can be examined by plotting 

BN
* (λ, f )  against f. This is shown in Figures 1 and 2 for B6

*(2, f )  and B9
*(2, f )  as 

examples. Similar Figures for other BN
* (λ, f )  can be generated from the BN , j

*  data 

given in the SM. Negative f values correspond to a square-step potential with 

increasing step height for more negative f, while small positive f values correspond to 

a SW potential at supercritical temperatures, and large positive f values correspond to 

low temperatures; BN
* (λ, f )  goes to −∞  as f approaches ∞ . For N = 6  and λ = 2.0  

(Figure 1), the standard error in the virial coefficient is very small, which suggests 

that the calculated B6
*(2, f )  is useful for a wide range of well depths. The standard 

errors increase from about 1% to 10% for all well widths λ = 1.1− 2.0  near the 

critical point between order N = 5 and 8. For N = 9, the uncertainty in B9
*(2, f )  

(Figure 2) is more significant around the critical point, with a percentage error of 

~36%.  

 

The longest calculation, which is for B9
*(1.5, f ) , used a total of 5 ×1012  

configurations with Method A and took ~34,000 seconds real time per core when run 

in parallel on 1200 2.7 GHz CPU cores on a Cray XC30 supercomputer. The number 

of biconnected graphs found was ~ 4 ×1011 . The number of integrands (polynomials) 

stored was ~ 3×109 , which means that the number of integrands that has to be 

calculated using the recursive method is reduced by a factor of more than 100 by 

storing the integrands. The real times required for generating random configurations, 

checking for biconnectivity, calculating the probability, performing the canonical re-

ordering and computing the integrands are ~10,000 s, ~1500 s, ~3000 s, ~11,000 s 
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and ~7000 s respectively, which amounts to ~96% of the total time. The time taken to 

send and receive data from other processes is therefore insignificant. 

 

Some qualitative differences in behavior of the SW model with respect to λ can be 

uncovered by comparison of their temperature-dependent virial coefficients when 

reduced by critical properties. Figure 3 shows the temperature dependence of B4 and 

B6 for λ = 1.5 and 2.0, with behavior of the Lennard-Jones (LJ) model provided for 

reference.  The value of the reduced coefficients—which represents their 

contributions to  P / ρkBT  at the critical density—for λ = 1.5 is 3.0 to 5.6 times larger 

(for N = 4 and 6, respectively) than that for λ = 2.0 when evaluated at their respective 

critical temperatures. The λ = 2.0 SW coefficients are much more in line with the 

behavior of the LJ model, but still the λ = 2.0 B6 contribution is 2.6 times greater than 

that for LJ at their respective critical points. This behavior for N = 4 and 6 is 

illustrative of the other coefficients as well. Accordingly, attempts to evaluate the 

critical properties for the SW model from these coefficients do not succeed as well as 

for the LJ model [5]. The use of approximants [5,7] may improve this outcome, and 

the coefficients reported here should be very useful in formulating such treatments. 

 

4. Conclusion 

To conclude, the algorithm developed in this work is capable of obtaining high order 

virial coefficients for the SW potential efficiently and accurately. It could also be 

applied to compute higher order virial coefficients for other discrete potential models, 

including the hard-sphere model. Extension to mixtures and systems of different 

dimensionality is straightforward. 
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Figure 1. Sixth virial coefficient of λ = 2.0 . Inset shows an expansion of the 

supercritical fluid region and the arrow indicates the critical point (fc). The standard 

errors are smaller than the width of the lines in the plots. 
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Figure 2. Ninth virial coefficient of λ = 2.0 . The standard errors are smaller than the 

width of the line in the main plot. Inset shows an expansion of the supercritical fluid 

region with error bars denoting the 68% confidence level, and the arrow indicates the 

critical point (fc). 
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Figure 3. Contribution of (a) 4th and (b) 6th virial coefficients to the compressibility 

factor at the critical density, shown for several models as a function of temperature 

reduced by the critical temperature for each model. Points are for the LJ model [10], 

and solid lines are results reported here for the SW model with λ = 2.0 and 1.5, as 

indicated. Uncertainties are smaller than symbols and lines. 


