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Abstract: The dynamics of predator-prey systems relate strongly to the density 19 

(in)dependent attributes of the predator's feeding rate, i.e. its functional response. The 20 

outcome of functional response models is often used in theoretical or applied ecology 21 

in order to extract information about the mechanisms associated with the feeding 22 

behavior of predators. The focus of this study centres upon Holling's type II functional 23 

response model, commonly known as the disc equation, which describes an inverse-24 

density dependent mortality caused by a single predator to its prey. A common 25 

method to provide inference on functional response data involves nonlinear least 26 

squares optimization, assuming independent Gaussian errors, an assumption often 27 

violated in practice due to the heteroscedasticity which is typically present in the data. 28 

Moreover, as prey depletion is common in functional response experiments, the 29 

differential form of disc equation ought to be used in principle. We introduce a related 30 

statistical model and adopt a Bayesian approach for estimating parameters in ordinary 31 

differential equation models. In addition, we explore model uncertainty via Bayes 32 

factors. Our approach is illustrated via the analysis of several data sets concerning the 33 

functional response of a widespread ladybird beetle (Propylea quatuordecimpunctata 34 

L.) to its prey (Aphis fabae Scopoli), predicting the efficiency of this predator on a 35 

common and important aphid species. The results showed that the approach 36 

developed in this study is towards a direction for accurate estimation of the 37 

parameters that determine the shape of the functional response of a predator without 38 

having to make unnecessary assumptions. The R (www.r-project.org) code for fitting 39 

the proposed model to experimental data is made freely available.  40 
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Introduction 41 

The concept of functional response, a fundamental aspect of community 42 

ecology, d\escribes the relationship between per capita predator consumption and prey 43 

density (Solomon 1949). Holling (1959a) proposed various types of functional 44 

response to provide a better understanding of the components of predator-prey 45 

interactions; namely, a linear (type I), a decelerating (type II), and a sigmoid (type 46 

III). In other words, the prey consumption is assumed to increase linearly with prey 47 

density or increase asymptotically to a plateau under type I and type II respectively, 48 

while in a type III functional response one assumes that the prey consumption is 49 

supposed to be of a sigmoid form (S-shaped) as prey density increases. Although 50 

more complex forms of the classical prey-dependent functional responses exist (see, 51 

for example Jeschke et al. 2002), a significant amount of interest has been drawn to 52 

Holling's type II and III functional responses because of their simplicity and 53 

tractability, balancing between reality and feasibility (see, for example Englund et al. 54 

2011). Holling's modelling approach for type II functional responses illustrates an 55 

inverse-density-dependent prey mortality model which is common among invertebrate 56 

predators (Hassell et al. 1977). Examining the workings of predator's individuals, 57 

Holling (1959b) developed a mechanistic model to explain their feeding behaviour, 58 

commonly known as the disc equation, which is an ordinary differential equation 59 

(ODE) of the form: 60 

 
 

NaT

aN

dt

tdN

h


1
 (1) 61 

where N denotes the prey density, a the predator's attack rate, i.e. the per capita prey 62 

mortality at low prey densities, and Th the handling time which reflects the time that a 63 

predator spends on pursuing, subduing, eating and digesting its prey. Despite its 64 

potentially simplified assumptions, a vast literature indicates that researchers often 65 
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focus on the disc equation to describe predator's feeding behaviour, developing 66 

several concepts in ecology theory or modelling predator-prey dynamics (see, for 67 

example Beddington 1975, Englund et al. 2011, Jeschke et al. 2002, Okuyama 2012a). 68 

Thus, it has become a baseline model in the sense of its determinant effect on much of 69 

modern ecology theory (Englund et al. 2011). 70 

Given the importance of the disc equation on natural ecosystems, a number of 71 

early published papers investigated various statistical methods to infer the attack rate 72 

(a) and the handling time (Th) from experimental data (see for example Fan and Petitt 73 

1994, Livdahl 1979, Livdahl and Stiven 1983, Okuyama 2012b). One approach that 74 

has been commonly used is to linearize the disc equation to enable estimation of a and 75 

Th within the framework of linear regression models. Linearizing a non-linear model, 76 

sometimes by making simplifying assumptions, is a method that has been attractive in 77 

the literature due to its ease of implementation. In this particular case, this can be done 78 

easily; setting N = N0 on the right hand side of (1), where N0 denotes the initial prey 79 

density, an analytic expression of N(t) is available:  
0

0

0
1 NaT

taN
NtN

h
 . By 80 

rearranging and taking the reciprocals, one can derive expressions of the least square 81 

estimates of a and Th explicitly (i.e. without numerical optimization). Nevertheless, 82 

such an approach relies on the assumption that the resource is not depleted during the 83 

experimental progress. Whilst there are cases in which that assumption is not 84 

unreasonable, such as in parasitoid-host systems, there are several cases where the 85 

resources are depleted over time; for instance, in predator-prey systems. Therefore, in 86 

such cases the differential form of the disc equation is to be preferred over its linear 87 

approximation, or the random predator equation (Rogers 1972) which is the integrated 88 

form of the disc equation.  89 
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Another approach to estimate the parameters of the disc equation given 90 

experimental data involves non-linear least squares optimization assuming identically 91 

and independently distributed (additive) Gaussian errors. However, such an 92 

assumption not only is likely to be violated by the heteroscedasticity which often 93 

arises in functional response data (Trexler et al. 1988), but this particular error 94 

distribution does not seem natural either, especially at early stages of the experiment 95 

where the number of prey consumed is low. 96 

An interesting approach to modelling predation in functional response was 97 

developed by Fenlon and Faddy (2006) who studied two alternative model classes for 98 

such systems, one using likelihood-based inference for a beta-binomial model 99 

accounting for overdispersion and a counting-process-based framework. Although 100 

there are similarities to our basic modelling framework there are also important 101 

differences, namely we follow a distinct (Bayesian) approach to inference and model 102 

selection and our computational framework does not resort to asymptotic normality. 103 

In addition, our model differs in the way it accounts for density dependence.  104 

The main aim of this paper is to introduce a hierarchical model which in 105 

principle can incorporate any of Holling's various types of functional response and 106 

accounts for heteroscedasticity. Also, in spite of numerical differential equation 107 

solvers making it perfectly feasible to use richer ODE models, there is still a tendency 108 

for researchers to use simpler models on grounds of convenience (e.g. the random 109 

predator equation). Therefore, we aimed to show that it is perfectly feasible to work 110 

with the richer models, providing clear statistical evidence of the benefit of doing so. 111 

In addition, we illustrate how one can estimate the parameters of this model within a 112 

Bayesian framework and select between competing models (hypotheses) given 113 

experimental data. The proposed model and methodology are illustrated via the 114 



6 
 

analysis of eight data sets which involve the functional response of a predatory insect 115 

to its prey. In particular, the ladybird beetle Propylea quatuordecimpunctata L. 116 

(Coleoptera: Coccinellidae) and its essential prey Aphis fabae Scopoli (Hemiptera: 117 

Aphididae) were used as case study organisms. Aphis fabae is well recognized as a 118 

serious pest of cultivated plants worldwide (Blackman and Eastop 2000), where P. 119 

quatuordecimpunctata is a widely distributed aphidophagous coccinellid (Hodek et al. 120 

2012). As a thoroughly estimating of biological control agents' functional response is 121 

of importance, with this application we provide a quantified analysis of the intake rate 122 

of P. quatuordecimpunctata as a function of A. fabae density.  123 

 124 

Materials and Methods 125 

Data Collection and Experimental Conditions 126 

An A. fabae colony originated from a stock colony at the Biological Control 127 

Laboratory, Benaki Phytopathological Institute, reared on Vicia faba L. plants at 20 ± 128 

1 °C, 65 ± 2% RH and a photoperiod of 16:8 L:D. Propylea quatuordecimpunctata 129 

was collected from Zea mays L. plants infested with Rhopalosiphum maidis Fitch in 130 

Arta County (Northwestern Greece). The coccinellid was reared in large cylindrical 131 

Plexiglass cages (50 cm length 30 cm diameter) containing A. fabae prey on potted V. 132 

faba plants at 25 ± 1 °C, 65 ± 2% RH and a photoperiod of 16:8 L:D. The 133 

experiments were carried out at 20 ± 1 °C, 65 ± 2% RH and a photoperiod of 16:8 134 

L:D. The experimental arena consisted of a plastic container (12cm height x 7cm 135 

diameter) with a potted V. faba plant host (at 8-9cm height, top growth was cut) with 136 

different A. fabae densities (3-3.5 days-old). An individual larva, female or male of P. 137 

quatuordecimpunctata was placed into plastic containers, having starved for 12h. 138 

Total exposure time of prey and predator was 24h. Aphis fabae densities were 2, 4, 8, 139 
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16 and 32 aphids for 1
st
 instar larvae, 2, 4, 8, 16, 32 and 64 aphids for 2

nd
 instar larvae, 140 

4, 8, 16, 32, 64 and 128 aphids for 3
rd

 and 4
th

 instar larvae as well as female and male 141 

adults. We used 20-30 day old P. quatuordecimpunctata adults. Ten replicates of each 142 

prey density were formed. Functional response experiments were also run at 25 ± 1 143 

°C for female and male adults. The data sets concerning the functional response of 144 

larvae were used in a previous study of Papanikolaou et al. (2011). 145 

 146 

A Hierarchical Model 147 

Denote by  tNe  the number of prey eaten by time t. Since a prey item is either 148 

dead or alive by time t  (which often denotes the end of the experiment), we assume 149 

that  tNe  follows a Binomial distribution with parameters 0N  and  tp , where 0N  is 150 

the initial prey population and  tp  is the probability that a prey item has been eaten 151 

by time t : 152 

 tNe    Binom   tpN ,0  153 

     00 /,, NTatNNTatp hh   (2) 154 

where  tN  is given by the solution of the ordinary differential equation (1) and 155 

evaluated at time t . Notice that (1) cannot be solved analytically and hence the 156 

solution has to be derived numerically. Furthermore, in principle any functional 157 

response model for  tN  can be used and not just the model as given in (1).  158 

Bayesian Inference 159 

Preliminaries 160 

Traditionally, parameter estimation for models concerned with functional response 161 

has been done by searching for the set of parameters (i.e. attack rate, handling time, 162 

etc) for which the model and data match most closely according to some criterion, 163 
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such as the sum of squared differences. Such an ordinary least squares (OLS) 164 

approach provides an estimate for the parameter values that gives the “best fit” to the 165 

experimental data, but it gives no information about uncertainty in the estimate; for 166 

example, whether or not there are other plausible values of parameters that also give 167 

equally good fits. Thus, being able to quantify the uncertainty surrounding the ability 168 

of our point estimates to reflect the (unknown) truth is an equally important aspect in 169 

parameter estimation. Typically, researchers resort to normality assumptions whence 170 

OLS coincide with the maximum likelihood estimators (MLEs), leading to 171 

quantification of the uncertainty around the MLEs. 172 

In this paper we adopt the Bayesian paradigm which enables us to quantify the 173 

uncertainty of our estimates in a coherent, probabilistic manner (e.g. Bolker 2008). 174 

We utilise a Markov Chain Monte Carlo (MCMC) algorithm (see, for example, 175 

Brooks et al. 2011) to sample from the posterior density of the parameters of interest 176 

 177 

Likelihood, Prior and Posterior Distributions 178 

Prior Distributions 179 

We assume little prior knowledge of the attack rate (a) and handling time (Th) 180 

when making inference for the parameters of our model. In particular, we assume that 181 

both of them have independent slowly varying Exponential distributions: 182 

a    Exp  1  (3) 183 

hT    Exp  2  (4) 184 

and we typically set λ1 and λ2 to 10
-6

 in order to achieve large prior variance. 185 

Assigning Exponential distribution with low rates is a typical choice when one is 186 

interested in assuming a non-informative distribution about the parameters. In other 187 

words, our prior belief is expressed via a practically flat density over realistically 188 
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plausible positive real numbers (e.g. between 0 and 100), allowing for the data to 189 

mostly inform the posterior density of a and Th. We have used non-informative priors 190 

for the attack rate and the handling time. Although the maximum likelihood estimates 191 

will coincide with the maximum a posteriori probability estimates in this case, we 192 

advocate the use of a Bayesian approach since, in principle, one can assign 193 

informative priors to either parameter (e.g. using information from past experiments) 194 

and most importantly, offers a particularly natural way to select between candidate 195 

models. 196 

Likelihood 197 

We now derive the likelihood of the observed data under the proposed 198 

hierarchical model. Given that all the experiments lasted for 24 hours and for the ease 199 

of exposition, we drop the dependence of t in the notation. Denote by X = xi,ni( )
k{ } , 200 

mi ,....,1  and Kk ,....,1 the observed data of a functional response experiment; the 201 

index i refers to the different initial prey densities that were used in the experiment 202 

and k refers to each replication. Essentially, the observed data consist of pairs of 203 

initial prey density and number of prey eaten after 24 hours. 204 

An observed dataset is presented in Table 1 for illustration; the second column 205 

nj( )consists of the initial prey densities for 6,....,1j  and the rest, x1,...., xj( )  refer 206 

to the number of prey eaten by the predator after 24 hours. 207 

The probability of observing x j  prey items eaten out of nj prey after 24 hours is 208 

given by: 209 

     xnxj

hjj
jpp

x

n
TanxxP
















 1,,0  (5) 210 
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where  hTatPp ,  is given in Equation 2 for 24t  and therefore is implicitly 211 

dependent upon a  and hT  via (1). Assuming independence between the k  replicates 212 

in each experiment as well as between the different experiments, the likelihood of the 213 

observed data X  given the parameters  hTa,  after 24T  hours is written as 214 

follows: 215 

     



j

hjjh TanxPaXTaL .,,,,  (6) 216 

Posterior Distribution 217 

Equations 3, 4 and 6 give rise to the posterior distribution whose density is given as 218 

follows: 219 

      
k j

hhjjh TaTanxPXTa 2121 exp,,,   (7) 220 

The posterior density of interest (Equation 7) is not of a closed form due to its 221 

normalising constant not being available explicitly. Therefore, in this study we 222 

employed to a random walk Metropolis algorithm (Gamerman and Lopes 2006)  to 223 

draw samples from  XTa h, . 224 

Bayesian Model Choice 225 

Statistical inference, in general, is not limited to parameter estimation. Another 226 

common goal is hypothesis testing, in which we are interested in discriminating 227 

models in order to gain a better understanding of the structure of the statistical 228 

model(s) of interest and facilitate for model-robust decision making. Here we are 229 

interested in observing the extent to which the observed data support the scientific 230 

hypothesis that the differential form of the disc equation is to be used when prey is 231 

depleted during the functional response experiments. 232 

Bayes Factors 233 
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The Bayesian approach to model selection (or discrimination) is based upon an 234 

extension to the posterior distribution to include not only uncertainty regarding the 235 

model parameters but also for the model itself. Consider the following framework: 236 

suppose we observe data X  and have a series of plausible models indexed by 237 

Ww ,....,1 . Denote by w  the vector of parameters associated with model wM  and 238 

by  ww X   the likelihood of the observed data under model w . Then by specifying 239 

a prior distribution  wkp   for the model parameters under each model and a prior 240 

probability for each model,  wMp , we can derive the joint posterior distribution over 241 

both the model and parameter spaces, given by 242 

       wwwwwww MXXM  ,  (8) 243 

Assuming prior independence between wM  and w , the joint posterior distribution 244 

can then be written down (using Bayes Theorem) as product of two components: 245 

     XwXwXw ww  ,,   (9) 246 

where  XM ww ,  is the posterior distribution of the parameters under model wM  247 

and  XM w  denotes what we refer to as the “posterior model probability” which 248 

represents our beliefs, after observing data X , of what is the chance that model wM  249 

is the true model given that one of models W,....,1  is true. 250 

Once these posterior model probabilities are obtained they can then be used to 251 

discriminate between the competing models by computing the Bayes Factor which is 252 

simply defined as the ratio of the posterior odds, i.e. the ratio of the posterior to the 253 

prior model probability: 254 

   
   22

11
12






ww

ww

MMX

MMX
BF




 (10) 255 

In other words rearranging Equation 10 shows that 256 
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posterior odds = Bayes factor    prior odds.  257 

The value of the Bayes factor represents the relative likelihood of 
1M  to 

2M  and is of 258 

practical appeal because its value is independent of the choice of the prior model 259 

probabilities (see Kass and Raftery 1995). It is easy to see that when the models are 260 

equally probable a priori so that     5.021  ww MM  the Bayes factor is 261 

equal to the posterior odds in favour of 
1M . The quantity  wMX  for 2,1k  in 262 

(10) is obtained by integrating over the parameter space, 263 

     

w

wwwwww dMXMX


 ,  264 

where w  is the parameter vector under model wM  and  ww   is its prior density. 265 

The term  wMX  is the marginal probability of the data and is often called the 266 

marginal or integrated likelihood in the statistical literature while it is typically 267 

referred to as the evidence in the physics and machine learning communities. The 268 

Bayes factor is, therefore, a summary of the evidence provided by the data in favour 269 

of one hypothesis represented by a statistical model as opposed to another. Note that 270 

this formulation is completely general and does not require nested models, as is 271 

typically the case with likelihood ratio tests. Additionally, no asymptotic justification 272 

is required so that these results can be used for moderate sample sizes as well. 273 

The marginal likelihoods are rarely available in analytic form. Therefore, in 274 

practice if the number of parameters in each model is not very large (typically 2-5 275 

parameters), then the marginal likelihoods and consequently the Bayes factors are 276 

obtained via straightforward numerical integration. However, if the dimension of the 277 

parameter vector θw is very large then computational tools such as trans dimensional 278 

MCMC algorithms (Green 1995) can be used instead to explore the more complex 279 

posterior distribution described above. 280 
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 281 

Results and Discussion 282 

The functional response is a fundamental characteristic of predator-prey 283 

systems. We have developed a hierarchical model which accounts for 284 

heteroscedasticity and illustrated how to infer the parameters of interest (e.g. the 285 

attack rate and the handling time) within a Bayesian framework using Markov Chain 286 

Monte Carlo methods. In addition, we showed how one can assess competing 287 

scientific hypotheses by investigating which model is mostly supported by the 288 

experimental data. Generally, ODEs are frequently used in representing consumer-289 

resource interactions and the outcome of such models is therefore of great interest to 290 

researchers. Thus, we have made our computer code implementing the present 291 

analysis in R (R Core team 2013) publicly available on http://www.maths.nott.ac.uk/ 292 

~tk/files/functional_response/, to encourage and allow researchers to fit (and compare) 293 

the proposed models to their datasets. 294 

In practice, we often summarize the posterior distribution of the parameters by 295 

calculating a variety of interpretable summary statistics such as posterior means, 296 

medians and credible intervals. The posterior means of both parameters of the disc 297 

equation obtained are presented in Table 2. By inspecting the 95% credible intervals 298 

we observe that the estimated attack rates were similar for all four larval stages of the 299 

predator, indicating that the larvae have similar abilities to respond to increasing prey 300 

densities. On the other hand, handling times decreased for the older larvae. This 301 

further indicates an increase in the upper level of the response, leading older larvae to 302 

a higher consumption of prey. Being larger gives them an advantage in handling prey. 303 

At 20 °C, the attack rate for females was higher than those for males. This means that 304 

at low prey densities (i.e. at the supplied prey densities that the predator is not 305 

http://www.maths.nott.ac.uk/~tk/files/functional_response/
http://www.maths.nott.ac.uk/~tk/files/functional_response/
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satiated) the females have the ability to consume more prey items than the males. 306 

However, comparison of handling times yielded no differences, indicating that both 307 

sexes have similar maximum predation ability. Overall, at 20 °C we expect that 308 

females, males and fourth instar larvae of P. quatuordecimpunctata to display the 309 

higher predation ability among predators stages. This could be of great interest for 310 

biological control practitioners, since these stages are to be preferred in potential 311 

release of this predator in agroecosystems, allowing an influential decrease of aphid 312 

pests. 313 

Our results also showed that at the temperature of 25 °C there was a notable 314 

difference of estimated handling times between males and females. This further 315 

indicates that females might prey and subdue prey more efficiently and faster than 316 

males. Moreover, handling time increased considerably as temperature decreased 317 

from 25 °C to 20 °C for females, but not for males. According to Papanikolaou et al. 318 

(2013), the fecundity of P. quatuordecimpunctata females is higher at 25 °C than 20 319 

°C, where females of roughly 20-30 day-old exhibit their maximum reproductive 320 

potential at 25 °C. As a consequence, higher energy requirements for egg production 321 

lead them to higher consumption of prey. Additionally, attack rate for males was 322 

lower at 20 °C than 25 °C unlike females, as it was not different among these 323 

temperatures. Attack rate might follow a hump-shaped relationship with temperature 324 

as it happens for the ladybird Coleomegilla maculata lengi DeGeer (Sentis et al. 325 

2012). The two temperatures examined here might have been at the plateau of the 326 

hump-shaped relationship with temperature for females and therefore no differences 327 

occurred, whereas, for males was still increasing with temperature. 328 

Although investigating the Pearson’s correlation between the estimated 329 

parameters of the disc equation appears to be mostly ignored in the ecological 330 
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literature, it is important to do so since this may reveal potential parameter non-331 

identifiability issues as well as biological insights. Table 2 reveals a moderate but 332 

statistically significant positive correlation between the estimated handling times and 333 

the estimated attack rates of the predator, based on 95% credible intervals. This is 334 

biologically intuitive since coccinellids are being highly voracious, especially larvae 335 

which consume more prey items than they need for their development (Hodek et al. 336 

2012). This trend may lead to a gradual increase of the handling time, as the attack 337 

rate increases. 338 

In a previous study (Papanikolaou et. al. 2011) the authors fitted the non-differential 339 

form of the disc equation using a non-linear least squares approach, in order to 340 

provide inference for the functional response of P. quatuordecimpunctata larvae. The 341 

values of attack rates are notably lower than those estimated in the present analysis, 342 

indicating that linearisation may induce estimation bias. The attack rate coefficient 343 

illustrates the per capita prey consumption at low prey densities, indicating the initial 344 

slope of the functional response curve. A biased estimate of this parameter leads to 345 

underestimation of prey consumption at the lower prey densities, in which the 346 

handling time is not the limiting factor of the predation. In addition, a high value of 347 

the attack rate coefficient shows that the predator may exhibit stronger density-348 

dependent predation behavior. In contrary, the values of the larvae handling times are 349 

close to those estimated in the present analysis. Handling time depicts a more 350 

complex behavior which includes a number of distinguish predator activities, such as 351 

pursuing, subduing, eating and digesting a prey item. 352 

 353 

 354 

Model Selection 355 
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We applied the proposed method in two cases: 356 

a) Our hypothesis is translated into two different models, describing type II functional 357 

responses; in particular 358 

M1: 
 

0

0

1 NaT

aN

dt

tdN

h
  359 

M2: 
 

NaT

aN

dt

tdN

h


1
 360 

Note that the model 
1M  uses the functional response used Papanikolaou et al. (2011) 361 

while 
2M  uses the hierarchical model that is proposed in Material and Methods. 362 

b) In this case, our aim was to distinguish between type II and type III functional 363 

responses, which is of importance in functional response studies (Juliano 2001), i.e.: 364 

M2: 
 

NaT

aN

dt

tdN

h


1
 365 

M3: 
 

2

2

1 NaT

aN

dt

tdN

h
 , 366 

where the model M3 describes type III functional responses. 367 

In each cases, we assumed that both models are equally likely a priori and 368 

consider Exponential prior distributions for both parameters, a Exp   , hT  Exp  369 

. It is well known that the Bayes factor can be sensitive to the choice of model 370 

parameter's prior distributions. Therefore, we computed the Bayes factor for a range 371 

of different values of  , namely, 0.01, 0.1, 1, and 10. We first computed the log of 372 

the marginal likelihoods for both models via numerical integration and then the Bayes 373 

Factors of model 
2M  versus 

1M  in the first case and M2 versus M3 in the second case. 374 

Table 3 and 4 shows the Bayes Factors of model 
2M  versus model 

1M  and M2 versus 375 

M3, respectively, for the different datasets and for different prior distributions. It is 376 

immediately apparent that 
2M  is to be preferred in all but one cases (males at 20 °C 377 
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M1 is to be preferred). Furthermore, the conclusions appear to be robust to the 378 

different choice of  . 379 

Type II functional responses are frequent in nature, especially among 380 

aphidophagous ladybirds (Hodek et al. 2012) and are typically descibed by Holling's 381 

disc equation, one of the most commonly used models in ecology. Our study allowed 382 

us to predict the efficiency of P. quatuordecimpunctata on a common and important 383 

aphid species. Since biological control practitioners often rely on functional response 384 

studies to design and use efficiently biocontrol agents, an accurate and non-biased 385 

estimation of the functional response parameters is of crucial importance. The 386 

approach developed here is towards that direction, for a more precise estimation of the 387 

parameters that determine the shape of the functional response of a predator. Also, 388 

functional response parameters of P. quatuordecimpunctata preying on A. fabae may 389 

be incorporated in predator-prey models evaluating the population dynamics of the 390 

study organisms. 391 

From a statistical viewpoint routine Bayesian inference and model selection for 392 

ODE-based models remains a challenge for a number of reasons which relate to the 393 

need for solving the ODEs numerically. With respect to the former one may extend 394 

our methods by utilising gradient-based information for the construction of efficient 395 

MCMC proposals. The issue of model selection can be further explored by 396 

methodology based upon thermodynamic integration (Friel and Pettitt 2008). Such an 397 

approach is appealing in cases where numerical integration might be infeasible due to 398 

the large number of parameters in the model, resulting in the evaluation of high-399 

dimensional integrals. These are important directions for future research. 400 

 401 
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Table 1. Number of prey items consumed by Propylea quatuordecimpunctata 

male adults for each trial (i=1,…,10). The experiment was conducted at 20 °C 

for six different Aphis fabae prey densities (nij, j = 1, …, 6). Therefore, xij 

denotes the count of consumed prey at the j-th density at the i-th trial. 

j nj x1j x2j x3j x4j x5j x6j x7j x8j x9j x10j 

1 4 4 4 4 4 4 4 4 4 4 4 

2 8 8 8 8 8 8 2 8 8 7 7 

3 16 8 14 10 10 15 14 12 14 9 16 

4 32 16 27 18 16 23 20 17 21 31 17 

5 64 30 29 33 24 30 22 20 26 26 27 

6 128 50 36 28 26 24 41 30 38 28 42 
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Table 2. Parameter values of Holling’s disc equation obtained as posterior 

means (95% Credible Intervals), and the correlation of attack rate and handling 

time (95% Credible Intervals). 

 attack rate handling time correlation 

1
st
 instar 

0.1496 

(0.0728-0.2578) 

7.1195 

(5.6887-8.7337) 

0.2393 

(0.2197-0.2587) 

2
nd

 instar 

0.1324 

(0.0976-0.1763) 

2.6713 

(2.3351-3.0357) 

0.1035 

(0.0830-0.1239) 

3
rd

 instar 

0.1514 

(0.1230-0.1864) 

1.1567 

(1.0596-1.2605) 

0.0453 

(0.0246-0.0659) 

4
th

 instar 

0.2025 

(0.1744-0.2373) 

0.5215 

(0.4865-0.5575) 

0.0864 

(0.0659-0.1069) 

females (20 °C) 

0.2278 

(0.1898-0.2737) 

0.5058 

(0.4071-0.6273) 

0.0728 

(0.0523-0.0934) 

males (20 °C) 

0.1067 

(0.0889-0.1265) 

0.6507 

(0.5143-0.7735) 

0.1600 

(0.1396-0.1798) 

females (25 °C) 

0.2193 

(0.1910-0.2494) 

0.2565 

(0.2237-0.2881) 

0.1538 

(0.1335-0.1740) 

males (25 °C) 

0.1970 

(0.1666-0.2321) 

0.4805 

(0.4104-0.5608) 

0.1994 

(0.1795-0.2192) 
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Table 3. The Bayes Factor of M2 versus M1 for different values of the prior's 

hyperparameter  λ. 

 λ=0.01 λ=0.1 λ=1 λ=10 

1
st
 instar 8.17 7.61 4.04 0.27 

2
nd

 instar 175.91 170.71 151.21 8.50 

3
rd

 instar 1.6510
7
 1.6210

7
 1.3110

7
 1.6410

6
 

4
th

 instar 1.0910
21

 1.0610
21

 8.5010
20

 9.2110
19

 

females (20 °C) 1.3210
20

 1.2910
20

 9.9810
19

 7.9510
18

 

males (20 °C) 0.12 0.12 0.11 0.04 

females (25 °C) 7.5610
22

 7.4110
22

 6.0010
22

 7.8110
21

 

males (25 °C) 5.6010
14

 5.4910
14

 4.5010
14

 5.5610
13
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Table 4. The Bayes Factor of M2 versus M3 for different values of the prior's 

hyperparameter  λ. 

 λ=0.01 λ=0.1 λ=1 λ=10 

1
st
 instar 1.47 1.53 2.08 1.55 

2
nd

 instar 29.83 29.93 30.67 20.91 

3
rd

 instar 56.41 55.56 47.78 10.70 

4
th

 instar 1.69 1.67 1.43 0.30 

females (20 °C) 132614 130522 111268 22586 

males (20 °C) 2.6410
14

 2.6110
14

 2.3310
14

 7.3810
13

 

females (25 °C) 614829 604344 508693 91812 

males (25 °C) 6309 6230 5497 1559 
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