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Abstract. One of the most important issues in multicast is how to achieve a 

balanced traffic load within a communications network. In the context of mul-

ticast with network coding, this paper formulates a load balancing optimization 

problem and proposes a modified population based incremental learning (PBIL) 

algorithm for tackling it. A novel probability vector update scheme is developed 

to enhance the global exploration of the stochastic search by introducing extra 

flexibility when guiding the search towards promising areas in the search space. 

Experimental results demonstrate that the proposed PBIL outperforms a number 

of the state-of-the-art evolutionary algorithms in terms of the quality of the best 

solution obtained. 

Keywords: load balancing; multicast; network coding; population based incre-

mental learning 

1 Introduction 

With the popularity of the Internet, network traffic has been dominated by a dramati-

cally increasing number of multimedia applications, e.g. online games, IPTV, VoD, 

remote education, and video conferencing. It has been reported that over 90% of the 

Internet traffic comes from multimedia. Multicast is one of the efficient technologies 

developed for supporting one-to-many multimedia applications with stringent quality-

of-service (QoS). Therefore, this technology has drawn significant amount of research 

attention from both academia and industry [1]. Unfortunately, multicast with store-

and-forward forwarding cannot guarantee a theoretical maximal throughput is always 

obtained. Network coding allows intermediate nodes to perform mathematical opera-

tions to incoming information if necessary. When incorporated into multicast, it can 
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always have the theoretical maximal throughput achieved and hence becomes an ideal 

technique for point-to-multipoint data transmission [2]. 

Load balancing is an issue inherited from the adaption of network resource alloca-

tion. Network service providers are eager to make use of the network infrastructure as 

fully as possible so as to accommodate more users with different QoS guarantees. 

Undoubtedly, a more balanced traffic load helps make use of the remaining network 

resources functioning more efficiently. Hence, load balancing has been a hot spot in 

the field of communications for many years [3]. There are some research efforts dedi-

cated to the load balancing in network coding based multicast (NCM). A NCM algo-

rithm was presented and compared with two traditional multicast routing algorithms 

with respect to the achievable throughput and load balancing [4]. A reliable data dis-

semination protocol, which adapts network coding for decreasing the broadcast traffic 

in code updates, was developed in [5]. In [6], the problem of exploiting the abilities of 

next generation terminals in satellite systems with network coding was investigated. 

In multi-hop wireless networks, a flexible energy-efficient multicast routing algorithm 

with network coding was put forward [7]. However, all work above assumes that 

coding recombination has to be executed at all coding-possible nodes within a net-

work, which would consume serious network computational and buffering resources 

as coding incurs expensive computational overhead [8-10]. Since coding might only 

be necessarily performed at a limited number of coding-possible nodes, it is of vital 

importance to consider the load balancing issue in NCM, where coding is to be per-

formed when needed. However, this issue has received little attention.  

Population based incremental learning (PBIL) is an estimation of distribution algo-

rithm, incorporating competitive learning concept into genetic algorithm (GA). PBIL 

builds a probability model and evolves it to lead the search towards promising areas 

in the search space. Due to the simplicity and efficiency, the algorithm has applied to 

a wide range of optimization problems, including the stabilizer design problem in 

power system [11], the dynamic optimization problem [12], the robot soccer system 

optimization [13], the antenna design problem [14], the network coding resource min-

imization problem [15,16], etc.  

In this paper, a load balancing optimization problem in the context of NCM is for-

mulated, where coding is performed only when necessary. A modified PBIL with a 

new probability vector update scheme is adopted to optimize the problem above. The 

new scheme maintains a set of best-so-far samples obtained during the evolution. At 

each generation, a proportion of samples in the set are randomly selected and used to 

update the probability vector, which to a certain extent, helps improve the global ex-

ploration. Performance comparisons show that the proposed PBIL is superior to a 

number of state-of-the-art evolutionary algorithms (EAs) with respect to the solution 

quality. 

2 Problem Formulation 

We represent a communications network by a directed graph G = (V, E), where V and 

E are sets of nodes and links, respectively. The number of links in E is denoted by |E|. 



Assume every link in G is numbered and let ei∈E denote link i, where ei is associated 

with a maximum bandwidth Bi
max

 and a currently consumed bandwidth Bi
csmd

, where 

Bi
max

 ≥ Bi
csmd

. There is a source node s∈V, a set of receivers T = {t1,…, td}, tk∈V, k = 

1, …, d, and an expected bandwidth Rs→T from s to each receiver in T [8,9].  

We call an intermediate node in G as a merging node if it is non-source, non-

receiver and has multiple incoming links. Only merging nodes can perform coding 

operations. So, all coding-possible nodes in G are merging nodes. Given a NCM re-

quest, the task is to find a connected subgraph (i.e. sub-network) in G to deliver NCM 

data traffic [9]. We refer to such subgraph as NCM subgraph and denote it by Gs→T. A 

NCM subgraph consists of multiple paths, with each path originating from source s 

and terminating at a receiver. We refer to link-disjoint paths as paths which do not 

have any common link. More details can be found in [9]. 

In this paper, identical bandwidth consumption, denoted by Bs→T, incurs in each 

link occupied by the NCM subgraph. So, R link-disjoint paths to the same receiver 

will incur R·Bs→T bandwidth consumption, where R is an integer. Let ωi be the band-

width utilization ratio in ei∈E, Φ be the number of link-disjoint paths to each receiver 

in Gs→T, and Ωz(s→tk) be path z from s to tk in Gs→T, z=1, …, Φ, respectively. Let 

ρz(s→tk) and r(s→tk) denote the link set of Ωz(s→tk) and the achievable bandwidth 

from s to tk∈T in Gs→T, respectively.  

In a communications network, each link is associated with a bandwidth utilization 

ratio (BUR) which reflects the percentage of how much bandwidth has been used. 

The task of this paper is to find a NCM subgraph in G, with the average BUR mini-

mized and a number of constraints met. A smaller average BUR implies a more bal-

anced traffic load in G.  

 

    Minimize:                                                 𝜔                                                             (1) 

where, 

𝜔̅ = (∑ 𝜔𝑖𝑖∈|𝐸| ) |𝐸|⁄                                (2) 

𝜔𝑖 = (𝐵𝑠→𝑇 ∙ 𝑐𝑖 + 𝐵𝑖
𝑐𝑠𝑚𝑑)/𝐵𝑖

𝑚𝑎𝑥                                    (3) 

𝑐𝑖 = {
1,    𝑒𝑖 ∈ 𝐺𝑠→𝑇

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                               (4) 

Subject to:  

 

𝐵𝑠→𝑇 + 𝐵𝑖
𝑐𝑠𝑚𝑑 ≤ 𝐵𝑖

𝑚𝑎𝑥 , ∀𝑖 = {1, … , |𝐸|}                         (5) 

𝑟(𝑠 → 𝑡𝑘) = 𝛷 · 𝐵𝑠→𝑇 , ∀𝑡𝑘 ∈ 𝑇                                 (6) 

𝜌𝑚(𝑠 → 𝑡𝑘) ∩ 𝜌𝑛(𝑠 → 𝑡𝑘) = ∅, ∀𝑚, 𝑛 ∈ {1, … , 𝛷}, 𝑚 ≠ 𝑛         (7) 

 



The objective of the problem concerned is to minimize the average BUR, which is 

shown in Eq. (1). Eq. (2) defines the average BUR. The BUR value associated with 

each link is calculated based on Eq. (3). Eq. (4) defines the coefficient ci. Constraint 

(5) explains the bandwidth constraint. The achievable bandwidth r(s→tk) is Φ times 

larger than Bs→T because Φ link-disjoint paths from the source to each receiver are to 

be constructed, which is shown in Constraint (6). Constraint (7) reflects that any two 

paths in Gs→T, cannot have common link, as long as they terminate at the same receiv-

er. 

3 The Proposed PBIL 

This section first introduces the new probability vector (PV) update scheme and then 

describes the overall procedure of the proposed PBIL in detail. 

3.1 New PV update scheme 

In the original PBIL, best-so-far sample (i.e. solution/individual) is used to update 

PV. But this update scheme may cause serious prematurity very easily, which is be-

cause depending on a single sample might lead the search to local optima quickly. A 

number of improved PV update schemes are thus developed including the famous 

Hebbian-inspired rule [17]. This rule defines that PV should be updated by a set of 

samples obtained during the evolution rather than a single sample and to some extent 

helps maintain a relatively high level of diversity.  

The new PV update scheme is based on the Hebbian-inspired rule. Different from 

other variants, the proposed scheme operates an external population (EP) which only 

records the best-so-far samples obtained during the evolution. At each generation, a 

subset of samples is randomly selected from EP and their statistical information is 

then extracted and used to update PV. 

Let P(t) and N denote the PV at generation t and the number of samples generated 

at each generation, respectively. Let SSEP = {B1, …, BM} be the subset of samples 

randomly selected from EP, where M is smaller than N and Bi is the i-th selected sam-

ple, i = 1, …, M. Denote the probability distribution of all samples in SSEP and the 

learning rate by PSS and α, respectively. The update of P(t) is defined in Eq. (8) and 

Eq. (9).  

 

𝑷(𝑡) = (1.0 − 𝛼) ∙ 𝑷(𝑡 − 1) + 𝛼 ∙ 𝑷𝑆𝑆                                  (8) 

𝑷𝑆𝑆 =
1

𝑀
∑ 𝑩𝑘

𝑀
𝑘=1                                 (9) 

By introducing extra uncertainty to the PV update process, the proposed scheme 

helps guide the search exploring unknown areas in the search space as much as possi-

ble where optimum may reside. With a certain level of diversity preserved, it helps to 

prevent the search getting stuck at local optima and hence improves global explora-

tion. 



3.2 The Overall Procedure of the Proposed PBIL 

In the literature, the binary link state (BLS) individual representation has been 

widely adopted when tackling network coding related optimization problems 

[9,10,15,16,18,19]. The proposed PBIL is also based on BLS encoding. Details can be 

found in [9,10].  

Assume there is an individual (sample) X. In terms of fitness evaluation, we first 

check the feasibility of X. We call X feasible if it results into a valid NCM subgraph 

Gs→T(X) and infeasible otherwise. If X is feasible, its fitness value is set to the average 

BUR in G; otherwise, its fitness value is set to a sufficiently large number (100% in 

this paper since BUR is in the range [0, 100%]). Note that a feasible individual re-

quires more time than infeasible ones for evaluation since those feasible not only 

undergo feasibility checking but also NCM subgraph construction. And constructing a 

NCM subgraph consumes more time than feasibility checking. 

 

Initialization 

1. Set t = 0 

2. Set P(t) = {0.7,...,0.7} 

3. Generate N samples by sampling P(t) and put them in set H(t) 

4. Put the N samples into EP 

repeat 

5. Set t = t + 1 

6. Evaluate all samples in H(t-1) 

7. Update EP by finding N best samples from H(t-1) and EP 

8. Randomly select M samples from EP and put them into SSEP 

9. Update P(t) by using the proposed PV update scheme in Sub-

section 3.1 

10. Mutate P(t) by Eq.(10) 

11. Generate N samples by P(t) 

until termination condition is met 

Fig. 1. Overall procedure of the proposed PBIL 

The overall procedure of the proposed PBIL is shown in Fig. 1. PV P(t) is initial-

ized as {0.7,…,0.7}, meaning the probability of generating ‘1’ at each position in P(t) 

is 0.7. This helps guide the search to explore promising areas in the search space. Set 

H(t) is the sampling set generated by PV at each generation. Note that an all-one indi-

vidual is inserted into H(t) to guarantee that the search begins with a feasible sample 

[10]. The initial N samples are copied into EP to form the external population. In the 

main loop, each sample in H(t-1) is evaluated and associated with a fitness value. 

Then, EP is updated. Later on, M random samples are picked up from EP and used to 

update P(t) (M = N/2 in this paper).  

Mutation operation is implemented to add probability disturbance to PV so that 

prematurity is alleviated. Let the mutation probability and the amount of mutation at 

each position in PV, Pk, denoted by pm and , respectively. Let RNDk be a random 



number (either 0.1 or 1.0, both with a probability of 0.5). If RNDk < pm, Pk is mutated 

by Eq. (10) 

𝑃𝑘 = (1.0 − 𝜎) ∙ 𝑃𝑘 + 𝑅𝑁𝐷𝑘 ∙ 𝜎                                (10) 

The termination criterion is that the evolution reaches a predefined number of gen-

erations. 

4 Performance Evaluation 

This section evaluates the proposed PBIL by comparing it with a number of state-of-

the-art EAs with respect to the solution quality. 

4.1 Test Instances 

First of all, test instances are introduced briefly. We consider 12 benchmark instances 

including 2 fixed and 10 randomly generated directed networks. These instances have 

been widely adopted for performance evaluation when handling with network coding 

related optimization problems [8-10,15,16,18-20]. The two fixed networks are F1 (i.e. 

7-copy) and F2 (i.e. 15-copy) networks, where each copy is a modified butterfly net-

work and x-copy network is constructed by cascading a number of identical copies 

[18]. As for the random instances, the network scale is from 20 to 60 nodes.  

Table 1 shows all instances for performance comparison. In all experiments, each 

link is with an identical maximum bandwidth, i.e. 100Mbps. The consumed band-

width of link ei∈E prior to NCM is randomly generated in the range [1, 50] Mbps 

with a uniform distribution. The bandwidth consumption of each link in NCM sub-

graph is set to 30 Mbps. As mentioned in Section 2, the single objective of the prob-

lem concerned in the paper is to minimize the average BUR. A smaller average BUR 

represents a better network load balancing performance. All experiments were run on 

a Windows XP computer with Intel(R) Core(TM) E8400 3.0GHz, 2G RAM. For per-

formance comparison, each algorithm is run 20 times on each instance. 

4.2 Overall Performance Evaluation 

In this subsection, performance comparison is carried out among a number of state-of-

the-art EAs on 12 benchmark instances. The following lists all algorithms for compar-

ison. 

－ GA1: GA with BLS representation [9].  

－ GA2: GA with block transmission state (BTS) representation [10].  

－ UMDA: univariate marginal distribution algorithm (UMDA) in [21]. Different 

from PBIL, UMDA utilizes statistics of the last generation to generate a new genera-

tion of samples.  

 

  



Table 1.   Benchmark instances for performance comparison 

Instances Nodes Links Receivers Rate 

F1 57 84 8 2 

F2 121 180 16 2 

R1 20 37 5 3 

R2 20 39 5 3 

R3 30 60 6 3 

R4 30 69 6 3 

R5 40 78 9 3 

R6 40 85 9 4 

R7 50 101 8 3 

R8 50 118 10 4 

R9 60 150 11 5 

R10 60 156 10 4 

 

－QEA1: Quantum-inspired evolutionary algorithm (QEA) [22]. Based on BLS 

representation, QEA1 adopts rotation angle step (RAS) and quantum mutation proba-

bility (QMP) to update individuals, where RAS is randomly generated and QMP is 

based on the current fitness value of the associated individual.  

－ QEA2: Another variant of QEA [23]. Different from QEA1, QEA2 modifies 

the values of RAS and QMP according to the current and previous fitness values of 

the associated individual.  

－ PBIL1: PBIL devised for the network coding resource minimization problem 

[16].  

－ PBIL2: The proposed PBIL with the novel PV update scheme in Section 3.  

All EAs above uses BLS representation except GA2. The population size and the 

number of iterations are set to 20 and 200 for each algorithm, respectively. We adopt 

suggested parameter settings for GA1, GA2, UMDA, QEA1, QEA2, and PBIL1 

[9,10,21-23,16]. In PBIL2, we set the learning rate α = 0.1, the mutation probability 

pm = 0.02, and the probability variance at each position σ = 0.05, respectively. The 

number of random samples selected at each generation from EP is 10. All results are 

collected by running each algorithm 20 times.  

Table 2 shows the results of mean value (%) and standard deviation (SD). It is 

clearly seen that the proposed algorithm, PBIL2, performs the best if considering all 

test instances. For each instance, PBIL2 obtains the smallest mean value and promis-

ing SD, indicating that PBIL2 has a stabilized and outstanding optimization perfor-

mance in finding near-optimal solutions. By building an evolving probabilistic model, 

PBIL2 can generate promising samples from the PV at a relatively high probability, 

which to a certain extent guides the search towards promising areas in the search 

space. The novel PV update scheme helps PBIL2 gain better global exploration ability 

and avoid prematurity since the PV update is no longer dependent on a single sample 

but a random set of samples at each generation. With global exploration enhanced, 



PBIL2 has more opportunity to reach the global optima and thus obtains the best per-

formance. Fig. 2 shows the box plots of the seven algorithms in six selected instances 

including F2, R1, R3, R5, R7, and R9. One can find that PBIL2 always outperforms 

the rest of the EAs for comparison.  

 

Table 2.   Results of mean value (%) and SD (Best results are in bold) 

Instances GA1 GA2 UMDA QEA1 QEA2 PBIL1 PBIL2 

F1 45.33 

(0.34) 

45.29 

(0.32) 

45.11 

(0.00) 

45.17 

(0.13) 

45.35 

(0.29) 

45.31 

(0.22) 

45.11 

(0.00) 

F2 46.20 

(0.24) 

46.41 

(0.28) 

46.37 

(0.15) 

46.57 

(0.09) 

46.74 

(0.08) 

46.74 

(0.04) 

46.10 

(0.06) 

R1 44.25 

(0.86) 

44.49 

(1.06) 

44.54 

(0.68) 

43.78 

(0.41) 

43.64 

(0.25) 

43.69 

(0.40) 

43.43 

(0.00) 

R2 41.73 

(1.06) 

42.24 

(1.25) 

41.58 

(0.52) 

41.36 

(0.37) 

41.19 

(0.33) 

40.87 

(0.43) 

40.52 

(0.00) 

R3 39.95 

(1.22) 

40.32 

(1.48) 

39.73 

(0.46) 

39.33 

(0.47) 

39.25 

(0.42) 

39.26 

(0.41) 

38.89 

(0.26) 

R4 34.88 

(0.62) 

34.56 

(0.40) 

34.82 

(0.37) 

34.45 

(0.23) 

34.54 

(0.25) 

34.46 

(0.25) 

34.42 

(0.19) 

R5 43.12 

(1.70) 

43.38 

(2.16) 

43.03 

(0.38) 

43.09 

(0.53) 

42.80 

(0.43) 

43.09 

(0.42) 

42.40 

(0.22) 

R6 42.69 

(0.49) 

42.83 

(0.63) 

42.97 

(0.41) 

42.62 

(0.27) 

42.66 

(0.31) 

42.47 

(0.15) 

42.40 

(0.05) 

R7 38.73 

(1.72) 

38.43 

(1.79) 

38.09 

(0.52) 

38.14 

(0.62) 

38.18 

(0.45) 

38.26 

(0.39) 

37.09 

(0.41) 

R8 40.89 

(0.93) 

41.59 

(1.64) 

40.76 

(0.44) 

41.56 

(0.41) 

41.51 

(0.47) 

41.39 

(0.56) 

40.28 

(0.24) 

R9 39.38 

(0.17) 

39.62 

(0.36) 

39.48 

(0.22) 

39.79 

(0.20) 

39.85 

(0.20) 

39.92 

(0.19) 

39.26 

(0.09) 

R10 36.32 

(0.89) 

36.45 

(0.95) 

36.20 

(0.29) 

36.50 

(0.31) 

36.36 

(0.37) 

36.66 

(0.30) 

36.05 

(0.14) 

 

The average computational time (ACT) is another important performance indicator 

when evaluating EAs. Table 3 shows ACT values of all algorithms in all instances. 

On the one hand, it can be observed that PBIL2 obtains a relatively large ACT, which 

means it takes long time for navigating each evolutionary search. This is because 

PBIL2 does well in global exploration and feasible samples are generated at a high 

probability. As mentioned in Subsection 3.2, feasible samples consume more time 

than infeasible ones. If more feasible samples are generated during the evolution, an 

algorithm definitely incurs more computational cost and hence more ACT. With the 

novel PV update scheme integrated, PBIL2 generates significant number of feasible 

samples and hence consumes relatively large amount of ACT. On the other hand, 

PBIL2 is not the one with the largest ACT either, compared with the others. One may 

dramatically reduce ACT of PBIL2 by using parallel computation techniques. 



 
(a) F2                                                                 (b) R1 

 
(c) R3                                                                 (d) R5 

 
(e) R7                                                                 (f) R9 

Fig. 2. Box plot of 6 selected instances 

5 Conclusions 

This paper formulates a load balancing optimization problem in network coding based 

multicast (NCM), where the objective is to keep the network traffic load as balanced 

as possible when supporting data transmission of NCM. Average bandwidth utiliza-

tion ratio is used to measure to what extent network traffic load is balanced. To han-

dle with the problem above, we present a modified PBIL with a novel probability 

vector (PV) update scheme. This scheme introduces additional flexibility in guiding 

the search by updating the PV by a number of random best samples, which helps en-

hance the global exploration capability and prevent the search from local optima. 

Experimental results show that the proposed PBIL gains the best optimization per-

formance compared with a number of state-of-the-art evolutionary algorithms regard-

ing the quality of the solution obtained. Due to the advantages of the proposed algo-

rithm, it can be applied to a number of optimization problems in wireless communica-



tions, e.g. traffic control and network configuration in Long Term Evolution (LTE) 

cellular systems [24,25]. 

 

Table 3.   Results of ACTs (sec.) 

Instances GA1 GA2 UMDA QEA1 QEA2 PBIL1 PBIL2 

F1 2.2 2.6 2.9 2.2 1.7 0.7 2.6 
F2 15.4 12.3 18.1 6.1 4.4 3.1 15.2 
R1 0.9 1.0 1.0 1.3 1.0 0.6 1.0 
R2 0.9 0.8 1.1 1.3 1.0 0.5 1.1 
R3 2.1 1.9 2.5 2.6 2.2 1.1 2.5 
R4 2.5 2.8 2.7 3.4 2.6 1.5 2.7 
R5 3.6 3.4 3.9 3.0 2.8 1.1 3.4 
R6 2.9 2.5 2.9 2.1 1.5 1.2 2.6 
R7 4.8 4.9 5.9 5.2 4.6 2.3 5.7 
R8 8.8 5.8 8.7 5.3 4.7 2.2 7.2 
R9 14.9 10.4 14.5 7.6 7.3 4.4 13.0 

R10 13.4 12.6 15.4 14.3 12.8 7.5 15.1 
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