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Abstract 
Recently, interest in solving real-world problems that change over the time, so called 

dynamic optimisation problems (DOPs), has grown due to their practical applications. A 

DOP requires an optimisation algorithm that can dynamically adapt to changes and several 

methodologies have been integrated with population-based algorithms to address these 

problems. Multi-population algorithms have been widely used, but it is hard to determine the 

number of populations to be used for a given problem. This paper proposes an adaptive multi-

population artificial bee colony (ABC) algorithm for DOPs. ABC is a simple, yet efficient, 

nature inspired algorithm for addressing numerical optimisation, which has been successfully 

used for tackling other optimisation problems. The proposed ABC algorithm has the 

following features. Firstly it uses multi-populations to cope with dynamic changes, and a 

clearing scheme to maintain the diversity and enhance the exploration process. Secondly, the 

number of sub-populations changes over time, to adapt to changes in the search space. The 

moving peaks benchmark DOP is used to verify the performance of the proposed ABC. 

Experimental results show that the proposed ABC is superior to the ABC on all tested 

instances. Compared to state of the art methodologies, our proposed ABC algorithm produces 

very good results.   

 

Keywords: dynamic optimisation, artificial bee colony algorithm, adaptive multi-population 

method, meta-heuristics 

 

1. Introduction  
Many real-world optimisation problems have the characteristic of changing over time in 

terms of decision variables, constraints and the objective function [1], [2]. These problems 
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are referred to as dynamic optimisation problems (DOPs) in the scientific literature.  A DOP 

requires an optimisation algorithm that can dynamically adapt to the changes and track the 

optimum solution during the execution of the algorithm [2]. Given their practical applications 

and complexity, DOPs have attracted a lot of research attention. Population-based algorithms, 

which are a set of methodologies that utilise a population of solutions distributed over the 

search space, have attracted particular attention, due to their good performance [1], [2]. A key 

challenge in developing an optimisation algorithm for DOPs is how to maintain population 

diversity during the search process in order to keep track of landscape changes [3]. Several 

interesting diversity schemes have been developed in order to improve the search capability 

of population-based algorithms so that they can adapt effectively to the problem as it 

changes.  

 

Prediction based methods is one of the diversity schemes which has been widely integrated 

with other algorithms to maintain the diversity. This methodology uses an algorithm to learn 

patterns from previous searches, which are then used to predict future changes. It should be 

noted that memory methods can be categorised as a special case of the prediction method as 

they store a set of solutions to be used when a problem changes [2]. The prediction method is 

suitable for problems with cyclic changes. Hatzakis and Wallace [4] proposed a hybrid 

algorithm that combines an evolutionary algorithm and a forecasting methodology for DOPs. 

Forecasting is used to predict the movement of the optimum based on previous movements. 

The results demonstrate that this method is suitable for problems which change quickly if the 

movement of the optimum solution is predicted correctly. Sim et al. [5]  used a prediction 

based method to predict how the environment would change and the time of the next change. 

The authors utilised a Markov chain that uses the previous movement of the search in order to 

predict future changes and a linear regression to predict when the change will occur. The 

results demonstrate that the hybrid algorithm performs with prediction, than without.  Branke 

and Mattfeld [6] proposed an anticipation-based algorithm for DOPs. This algorithm attempts 

to simultaneously search for a good quality solution and move the search into a different area 

based on the previous changes. This proposed algorithm was tested on a dynamic job-shop 

scheduling problem and it was shown to produce very good results compared to other 

algorithms. The advantage of the prediction method is that it can be effective in detecting the 

global optima quickly, if the predictions are accurate [2]. The main drawback with this 

method is that it depends on the training model and in many cases the data used during the 



training process does not capture real world scenarios and there is a possibility of training 

errors due to lack of training data [7], [2]. 

 

 

Memory based methodologies aim to maintain diversity. They use a memory with a fixed 

size to store some of promising solutions that are captured during the search process. When a 

change is detected, the stored solutions will be reinserted into the current population and the 

population will be filtered to include only the best solutions. Examples of memory based 

methodologies can be found in [8], [9], [10], [11]. These methodologies have worked well 

when the dynamic problems are periodical or cyclic. The drawback is that they have 

parameter sensitivities that need to be determined in advance, and most real world problems 

are not cyclic in nature. 

 

Self-adaptive algorithms attempt to adaptively improve the diversification of population-

based algorithms based on environmental changes. They use mechanisms to adapt the 

algorithm to the changes in the search space [2]. Adaptive mechanisms can improve 

algorithm search behaviour and also reduce the need for manual parameter tuning. The idea is 

to apply different operators or parameter values for different problems by adaptively 

changing them during the search process [7], [2]. Grefenstette [12] proposed a self-adaptive 

genetic algorithm for DOPs. The proposed algorithm adaptively selects different 

crossover/mutation operators at each generation. The author uses an agent based concept to 

control the selection process, and each agent represents a crossover or mutation operator. All 

agents are executed simultaneously and the one that generates the best solution is selected for 

the current instance. Promising results were achieved when compared to other algorithms. 

Grefenstette [12] also proposes an idea called a genetic mutation rate for the DOP. The idea 

is to set the value of the mutation rate based on the fitness of the population. This idea was 

shown to generate better results compared to the basic genetic algorithm. Ursem [13] 

proposed a multinational genetic algorithm for the DOP. The main parameters are encoded 

with the decision variables and are evolved during the solution process. The results show that 

this algorithm is very good for simple instances in which the velocity of the moving peaks is 

constant. It is also able to adapt by changing the algorithm parameters during the search. 

However, encoding the parameters with the solution decision variables requires specialist 

evolutionary operators. In addition, it is also very difficult to determine the values of the 

parameters [2]. 



 

 

Multi-population methods improve diversity by dividing the population of solutions into 

several sub-populations and distributing them throughout the search landscape so that they 

can more effectively capture the problem changes. The idea is to maintain population 

diversity by assigning a different sub-population to a different area, where each one is 

responsible for either intensifying or diversifying the search process [7], [2]. These sub-

populations interact with each other via a merge and divide process when a change in the 

environment is detected. The multi-population method has been shown to be effective in 

dealing with various problem changes, whether they are cyclic or non-cyclic, and it has 

outperformed other methods on various problem sizes. Branke et al. [14] proposed a self-

organising scouts multi-population evolutionary algorithm for the DOP. The population of 

solutions is divided into two groups; small and large. The small population group is 

responsible for tracking promising solutions found so far, while the large population group 

tries to find a new region of the search space that has a new peak. The proposed algorithm 

was tested on the moving peaks benchmark (MPB), obtaining very good results. Blackwell 

and Branke [15] proposed a multi-swarm optimisation algorithm for the DOP. The swarm is 

divided into subsets of swarms. These multi-swarms interact with each other locally, through 

algorithm parameters, and globally by using an anti-convergence mechanism. The anti-

convergence mechanism searches for new peaks by removing the worst ones and re-

initialising them into a different area in the search space. The proposed algorithm obtained 

very good results when tested on MPB problems. Mendes and Mohais [16] presented a multi-

population differential evolution algorithm for the DOP. The population of solutions is 

divided into several sub-populations. Each sub-population is assigned to a different area of 

the search space. The experimental results show that this algorithm obtains very good results 

for MPB problems. Li and Yang [17] proposed a fast multi-swarm Particle Swarm 

Optimisation (PSO) algorithm for the DOP. The swarm population is divided into two types 

of swarms; parents and children. The parent swarm explores the entire search space to seek 

the global optima, while the child swarm is responsible for monitoring the search behaviour 

around the best solution obtained by the parent swarm. The position of the child swarm is 

dynamically updated during the process. The algorithm was tested on the MPB problems and 

produced good results when compared to other methods.  Yang and Li [18] presented a 

clustering-based particle swarm optimiser for the DOP. The swarm is divided based on a 

hierarchical clustering method to locate and track multiple peaks. The algorithm achieved 



very good results when tested on the MPB.  Turky and Abdullah [19] proposed a multi-

population electromagnetic algorithm for DOPs. The proposed algorithm divides the 

population into several sub-populations to simultaneously explore and exploit the search 

process.  The algorithm was tested on MPB problems and obtained very good results when 

compared to other population diversity mechanisms. The same authors [20] also presented a 

multi-population harmony search algorithm for the DOP. The population is divided into sub-

populations. Each sub-population is responsible for either exploring or exploiting the search 

space. An external archive is utilised to track the best solutions found so far, which are used 

to replace the worst ones when a change is detected. The results show that this algorithm 

produces good results when compared to other methods. Sharifi et al. [21] proposed a hybrid 

PSO and local search algorithm for DOPs. The algorithm utilises a fuzzy social-only model 

to locate the peaks. The results show that this algorithm can produce very good results for 

MPB problems. In Li et al. [22] comprehensive experimental analysis was reported on the 

performance of a multi-population method with various algorithms in relation to DOPs. The 

authors concluded that the multi-population method is able to deal effectively with various 

DOPs and has the ability to maintain population diversity. It is also able to help the search in 

locating a new area through a divide and merge process and information exchange. The 

authors also highlighted several weaknesses of their method that relate to the number of sub-

populations, the distribution of solutions and the reaction to problem changes.  

 

Existing works on DOPs demonstrate that employing multi-population methods are the most 

effective method in maintaining population diversity. The features that make the multi-

population methodologies popular are [3]: i) it divides the population into sub-populations, 

where the overall population diversity can be maintained since different populations can be 

located in different areas of the problem landscape, ii) it has the ability to search different 

areas simultaneously, enabling it to track the movement of the optimum, and iii) various 

single population-based algorithms can be integrated within multi-population methods.   

 

Although multi-population methods have shown success when applied to DOPs, most of 

them use a number of sub-populations and the population diversity is maintained only 

through the sub-population distribution [3]. The number of sub-populations has a crucial 

impact on algorithm performance as it relates to the difficulty of the problem, which is not 

known in advance, and changes during the search. In addition, the solutions in the sub-

populations may not be diverse enough as some methods are only concerned with how to 



divide the population into sub-populations, rather than focussing on diversification. To 

address these issues, this work proposes an adaptive multi-population artificial bee colony 

(ABC) algorithm for the DOP. The proposed ABC utilises a clearing scheme to remove 

redundant solutions in order to maintain diversity and enhance the exploration process. To 

efficiently track the landscape changes, the proposed ABC algorithm adaptively updates the 

number of sub-populations based on the problem change strength. 

 

In this paper, the key objectives are: 

 

i. To propose an artificial bee colony algorithm that utilises a multi-population and a 

population clearing scheme to efficiently solve the dynamic optimisation problem. 

ii. To propose an adaptive multi-population algorithm that updates the number of the 

sub-populations based on the problem change strength. 

iii.  To test the performance of the proposed algorithm on dynamic optimisation problems 

using different scenarios and compare the results with other methodologies.  

 

We used the moving peaks benchmark DOP with a different number of peaks to evaluate the 

effectiveness of the proposed ABC. Results demonstrate that the proposed ABC performs 

better than a basic ABC on all tested scenarios. Compared to the state of the art method, the 

proposed ABC produces very good results for many instances.   

 

2. The proposed algorithm 
This section presents the basic artificial bee colony algorithm, as well as our proposed 

adaptive multi-population algorithm. 

 

2.1 Basic artificial bee colony algorithm 
The Artificial Bee Colony (ABC) algorithm is a simple, yet efficient, nature inspired 

algorithm for addressing numerical optimization problems. It was proposed in [23] as a 

nature inspired swarm intelligence algorithm based on the observation of bee foraging 

behaviour. In ABC, there are a set of food sources and a set of bees. The quality of the food 

sources is based on the amount of nectar they contain. Bees search and collaborate with each 

other, seeking better food sources. To address an optimization problem using ABC, food 

sources represent the population of solutions for a given problem and bees are categorised 

into three types: scout, employee and onlooker bees. The amount of nectar corresponds to the 



quality (objective function) of the problem being addressed.  The three types of bees work 

together in an iterative manner to improve the quality of the population of solutions (food 

sources).  The pseudo-code of a basic ABC is shown in Algorithm 1 [24]. ABC first sets the 

main parameters, initializes the population of solutions and then evaluates them. Next, the 

main loop is executed in an attempt to solve the given optimisation problem by calling the 

employee bees, onlooker bees and scout bees until the stopping condition is satisfied. 

 

 Algorithm 1:  The pseudo-code of basic ABC 
 Step 1: Set the parameter values 

Step 2: Initialize the population of solutions 
Step 3: Evaluate the population of solutions  
while termination condition is not met do 
     Step 4: Employed Bees step 
     Step 5: Onlooker Bees step 
     Step 6: Scout Bees step 
end while 

 

The basic ABC has the following steps: 

Step 1- Set ABC parameters. In this step the main parameters of ABC are initialized. 

These include: the maximum number of iterations (MaxIt) which represents the stopping 

condition of ABC, the number of solutions or population size (Ps) which represent how 

many solutions will be generated, the total number of bees (Sbees) which is set to be 

twice the size of Ps, where half of them are employee bees and the other half are 

onlooker bees, the limit parameter (Lit), which is used to determine if the solution should 

be replaced by a new one. 

 

Step 2- Initialise the population of solutions. A set of solutions with size equal to Ps 

are randomly generated as follows:  
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where i is the index of the solution, j is the current decision variable, Rand [0,1] 

generates a random number between zero and one and  min
, jix  and max

, jix  are the lower and 

upper bonds for the jth decision variable.  

 



Step 3- Evaluate the population of solutions. The fitness (quality) of the generated 

solutions are calculated using the objective function. The objective function is problem 

dependent. The objective function used in this work is shown in Section 3.2. 

 

Step 4- Employed bees. Each employee bee is sent to one food source (solution). Its 

main role is to explore the neighbourhood of the current solution, seeking an improving 

solution. A neighbourhood solution, v, is created by modifying the ith solution, x, as 

follows:   
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where k is a randomly selected solution from Ps and Φ is a random number between [-1, 

1]. The generated neighbourhood solution will be replaced with current solution if it has 

better fitness.  

 

Step 5- Onlooker bees. Onlooker bees seek to improve the current population of 

solutions by exploring their neighbourhood using Equation (2), the same as the employee 

bee. The difference is that onlooker bees select the solutions probabilistically based on 

their fitness values as follows: 
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That is, the solution with the higher fitness has a higher chance of being selected (i.e. 

roulette wheel selection). Onlooker bees use a greedy selection mechanism, where the 

better solution in terms of fitness is selected. 

 

Step 6- Scout bees. This step is activated if both employed and onlooker bees cannot 

improve the current solution for a number of consecutive iterations defined by the limit 

parameter, Lit. This indicates that the current solution is not good enough to search its 

neighbourhood and it should be discarded. In this case, the scout bee will generate a new 



solution using Equation (1) to replace the discarded one. This can help ABC to escape 

from a local optimum and explore a different area of the search space. 

 

2.2 The proposed artificial bee colony algorithm 
Existing works on DOPs have demonstrated that multi-population methods are state of the 

art, in that they outperform other methods on many scenarios.  However, although multi-

population methods have achieved success in solving DOPs, most of them use a fixed 

number of sub-populations and the population diversity is maintained through the sub-

population distribution. To address these issues, this work proposes an adaptive population 

ABC (denoted as Multi-pop-ABC). In Multi-pop-ABC, three major modifications are added 

to the basic ABC.  These are: 

 

i. Multi-population method. To deal with DOP, the proposed ABC uses a multi-population 

method to divide the population into several sub-populations. By using a multi-population 

method, the solutions are scattered over the search space instead of focusing on a specific 

area. Thus the algorithm can generate high quality solutions and track the problem 

changes. 

 

ii. Adaptive scheme. To track the landscape changes that occur during the search process, the 

proposed Multi-pop-ABC updates the number of sub-populations based on the strength of 

the problem change. That is the number of sub-populations is either decreased or increased 

during the search process. By using the proposed adaptive method, the number of sub-

populations can be changed adaptively based on the strength of the environment changes, 

which helps the search track the optimum solution and also improves the diversification 

and exploration processes. 

 
iii. Population clearing scheme. To ensure that the solutions are diverse enough, a population 

clearing scheme is called when a change is detected to delete redundant solutions and 

replace them with new solutions. This scheme removes redundant solutions in order to 

maintain diversity and enhance the exploration process. 

 

The flowchart of the proposed Multi-pop-ABC for DOPs is shown in Figure 1. It 

starts by setting the parameter values. It creates the population of solutions and then evaluates 

them. Next, the population of solutions is divided into m sub-populations. Each sub-



population utilises an ABC algorithm. If a change in the problem is detected, the algorithm 

calculates the change strength to update the sub-population size and checks the stopping 

condition. If the specified stopping condition (we set this as a maximum number of fitness 

evaluations) has been reached, the algorithm terminates and the best solution is returned. 

Otherwise, the algorithm merges all the sub-populations, updates the population, runs the 

clearing method, re-divides the population into m sub-populations and starts a new iteration.  

 

The main steps are described in further detail below: 

 

- Step 1: Set parameters. The main parameters of Multi-pop-ABC are initialised. The 

algorithm has five parameters. Four of them are the same as the basic ABC. These 

are: the maximum number of iterations (MaxIt), population size (Ps), number of bees 

(Sbees), and the limit parameter (Lit). The fifth parameter is the sub-population size 

(m), which represents the number of sub-populations (Ps/m). Initially, m=2 and during 

the search process, it is either decreased or increased.  

 

1- Step 2: Initialise the population of solutions. Same as Step 2 in the basic ABC, Section 

2.1.   

 

2- Step 3: Evaluate the population of solutions. Same as Step 3 in the basic ABC, Section 

2.1. 

 

3- Step 4: Divide the population. The population of solutions is divided into m sub-

populations (Ps/m). Each sub-population is assigned to explore a different area of the 

search space. These sub-populations interact with each other through merging and re-

dividing every time a change in the environment is detected. Each solution in the 

population is randomly assigned to a sub-population. The number of sub-populations m 

is either increased or decreased based on the environment change strength. The initial 

value of m is set to two (m=2) and it is updated during the search.  
 

4- Step 5: Assign ABC to each sub-population.  Each sub-population has its own ABC 

algorithm.  Each ABC executes all the steps presented in Section 2.1. It starts with a 



population of solutions and iteratively calls the following until the stopping condition is 

satisfied (the algorithm stops when a change in the environment is detected):  
 

i. Employee bees. Same as Step 4 in the basic ABC, Section 2.1. 

 

ii. Onlooker bees. Same as Step 5 in the basic ABC, Section 2.1. 

 

iii. Scout bees. Same as Step 6 in the basic ABC, Section 2.1.   

 

5- Step 6: Check the change strength. This step is activated when a change in the 

environment is detected. Its main role is to update the number of sub-populations based 

on the environment change strength. It first calculates the objective function of the best 

solution before and after the environment change as follows: 

 
                    )_()_( afterbestfbeforebestfCs �                                       (4) 

 

where Cs is the change strength, f(best_before) is the quality of the best solution before 

the  environment change and f(best_after) is the quality of the best solution after the  

environment change.  If the Cs is less than the defined threshold (Tv) and m is greater 

than 2, the number of sub-populations m is decreased as the algorithm needs to be more 

exploitive than explorative (m=m-1). Otherwise, m is increased by one with the aim of 

increasing the exploration aspect of the search (m=m+1). It should be noted that when m 

is an odd number, the extra solution is randomly assigned to one of the sub-populations. 

 

6- Step 7: Check the stopping condition. This step checks the termination criterion of the 

search process. In this work, it is set as a maximum number of fitness evaluations in line 

with previous works. If the specified stopping condition is reached, the search process 

stops and returns the best solution. Otherwise, the algorithm performs the following 

processes: 

 
i. Population clearing scheme: This scheme calculates the similarity between 

solutions in the population. The similarity is calculated by using a matching 

algorithm, which matches each pair of solutions in terms of phenotype. Two 



solutions are similar if they have the same values in all the cells of both 

solutions. If two or more solutions are similar, these solutions are deleted and 

replaced with randomly generated ones.  

 

ii. Population update: All sub-populations are merged to form one population. 

 

iii. Re-divide the population: The population is re-divided into m sub-populations 

and the algorithm continues by starting the process at step 1 with a new 

generation.  

 



 
Figure 1. The proposed Multi-pop-ABC  

 

3. Experimental Setup 
This section discusses the Moving Peak Benchmark (MPB), evaluation metric and the 

parameter settings.  

 

 



3.1 The Moving Peak Benchmark 
The moving peak benchmark (MPB) is a maximization dynamic continuous optimization 

problem proposed by [9], [25], and has been commonly used as a testbed for the performance 

of optimisation algorithms. MPB consists of a set of peaks that move over the problem 

landscape.  It takes the given solution as an input and returns the value of the highest peak. 

The returned value represents the quality of this solution. MPB can be mathematically 

expressed as follows: 
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where F(x, t) is the quality of solution x at time t, p is the number of peaks, D is the problem 

dimension (number of decision variables where each variable has an upper and lower 

boundary (DB)), Hi (t) is the height of peak i, Wi (t) is the width of peak i, and Xij is the jth 

element of the location of peak i. Note that Equation (5) is a stationary optimization problem. 

Thus, to change it to a dynamic problem, MPB randomly shifts the position of all peaks by 

vector iv
o  of a distance s (s is also known as the shift length that determines the severity 

degree) as follows: 
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where 
o

r  is a random vector, λ is the correlation between consecutive movements of a single 

peak that takes either “0” if the movement of peaks are completely uncorrelated or “1” if they 

move in the same direction. To make a fair comparison with existing algorithms, in this 

paper, we used λ=0 [6]. The change of height and width of a peak in a given solution can be 

mathematically expressed as follows:  
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where height_severity and width_severity are calculated based on the problem severity. σ is a 

normally distributed random number between 0 and 1. Then, the change of a solution x is 

given as follows: 
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The change frequency (cf) occurs every 5,000 fitness evaluations [9]. The parameter values 

of all MPBs that have been used in our experiments are shown in Table 1 [25].  

 

Table 1 MPB parameter values  
Parameters Description Value  

p  Number of peaks  1–200 
cf Change frequency  5000 

height_severity Height severity 7.0 
width_severity Width severity 1.0 

Peak shape Peak shape Cone 
s Shift length  1.0 
D Number of dimensions 5 
λ Correlation coefficient  0 

DB Each dimension boundaries  [0,100] 
H Peak height  [30.0,70.0] 
W Peak width  [1,12] 

 
3.2 Evaluation Metric  
To fairly compare the proposed ABC with existing algorithms, we use the same evaluation 

metric known as the offline error as suggested by [25]. This has also been used by other 

researchers. The offline error is calculated as follows: 
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where g is the number of generations and Ω is the best performance since the last change at ith 

fitness evaluation.  

 

3.3 Parameter Settings  
The parameter values of our Multi-pop-ABC are set by carrying out a set of initial 

experiments, with the exception of the stopping condition which was set to be the same as the 

compared algorithms (50,000 fitness evaluations). For each parameter, we tested various 

values and the best values were selected. This is achieved by varying the value of one 

parameter while fixing others. We have selected two scenarios of MPB for the parameter 

tunning process: 50 peaks and 200 peaks. The proposed ABC has three parameters: 



population size (Ps), limit (Lit) and the change strength threshold (Tv). First, we fixed Lit to 

30, Tv to 0.09 and changed Ps. Table 2 shows the offline error of various Ps values for 50 and 

200 peaks. The best result is highlighted in bold. Next, we fixed Ps to 60, Tv to 0.09 and 

changed Lit as shown in Table 3. Finally, we fixed Ps to 60, Lit to 30 and changed Tv as 

shown in Table 4. The parameter settings of the proposed ABC that were used across all 

scenarios are presented in Table 5. 

 

Table 2 The value of Ps parameter 

Ps value 50 peaks 200 peaks 
20 0.95669 2.70215 
40 0.319632 1.8935 
60 0.5810 0.34865 
80 0.576911 1.15134 

   

Table 3 The value of Lit parameter 

Lit value 50 peaks 200 peaks 
10 1.03474 1.18977 
20 1.27535 1.70215 
30 1.29851 0.24824 
40 1.841891 1.28967 

 

Table 4 The value of Tv parameter 

Tv value 50 peaks 200 peaks 
0.03 0.95669 1.89663 
0.05 0.96573 1.08053 
0.07 0.89978 1.37518 
0.09 1.23491 1.77956 

 

Table 5 The parameter settings of the proposed ABC 

# Parameter Value  
1- Maximum number of iterations 

(MaxIt) 
50,000 fitness 
evaluations  

2- Population size (Ps) 60 
3- Limit parameter (Lit) 30 
4- Change strength threshold (Tv) 0.05 

 

4. Results 
We carried out three set of experiments. In first one, we compare the results of Multi-pop-

ABC with the basic ABC. In second one, the results obtained by Multi-pop-ABC are 



compared with state of the art methods. In the third experiment, the results of Multi-pop-ABC 

on well-known test functions are compared with state of the art methods. 

 

4.1 Results comparison of Multi-pop-ABC and the basic ABC 
This section aims to verify the effectiveness of the additional components that we have added 

to the basic ABC. Specifically, the objective is to investigate the impact of the proposed 

enhancements on the performance of the basic ABC when dealing with DOPs. Four different 

algorithms were derived as follows: 

 

- Multi-pop-ABC: the proposed ABC that utilises the adaptive multi-population and 

population clearing scheme 

- Multi-pop-ABC1: same as above but without the population clearing scheme 

- Multi-pop-ABC2: same as above but uses a fixed number of sub-populations and 

without the population clearing scheme. The sub-populations were fixed to be the 

same as [26] 

- ABC: basic ABC algorithm. 

 

The computational comparisons of Multi-pop-ABC, Multi-pop-ABC1, Multi-pop-ABC2 and 

basic ABC are presented in Table 6. The comparison is in terms of the offline error, ± 

standard error for each number of peaks. The best results are highlighted in bold. The results 

clearly show the good performance of Multi-pop-ABC when compared to Multi-pop-ABC1, 

Multi-pop-ABC2 and basic ABC. Indeed, Multi-pop-ABC outperformed Multi-pop-ABC1, 

Multi-pop-ABC2 and basic ABC on both the offline error and the standard error on all tested 

scenarios. The results demonstrate that the enhancements we made to the basic ABC improve 

the algorithmic performance.  

 

Table 6 Results of the Multi-pop-ABC, Multi-pop-ABC1, Multi-pop-ABC2 and basic ABC 
Number of Peaks 

Algorithm 1 2 5 7 10 20 30 40 50 100 200 
Multi-pop-

ABC 
0.14 

±0.00 
0.12 

±0.00 
0.20 

±0.00 
0.38 

±0.01 
0.22 

±0.01 
0.35 

±0.00 
0.46 

±0.00 
0.52 

±0.01 
0.44 

±0.01 
0.52 

±0.00 
0.93 

±0.00 
Multi-pop-

ABC1 
1.81 

±0.18 
1.42 

±0.32 
1.11 

±0.13 
1.01 

±0.22 
1.57 

±0.12 
1.43 

±0.15 
1.45 

±0.14 
1.62 

±0.10 
1.21 

±0.21 
1.73 

±0.11 
1.22 

±0.10 
Multi-pop-

ABC2 
1.12 

±0.18 
1.21 

±0.41 
1.61 

±0.10 
1.65 

±0.11 
1.71 

±0.15 
1.11 

±0.14 
1.72 

±0.19 
1.42 

±0.13 
1.62 

±0.18 
1.41 

±0.12 
1.42 

±0.12 
Basic ABC 5.88 

±2.48 
5.52 

±4.31 
4.12 
±3.7 

4.5 
±2.3 

5.2 
±3.16 

6.3 
±3.51 

3.38 
±4.32 

7.14 
±3.60 

6.21 
±2.01 

6.97 
±2.11 

7.03 
±3.44 

Note: Values in bold font indicate the best results.  



 

To further verify the results, we conducted a comparison between Multi-pop-ABC and each 

method separately. We used a Wilcoxon statistical test with a confidence level of 0.05. The p-

values of Multi-pop-ABC against Multi-pop-ABC1, Multi-pop-ABC2 and basic ABC for each 

scenario is presented in Table 7. A value less than 0.05 indicates Multi-pop-ABC is superior 

(i.e. statistically different). As can be seen from Table 7, Multi-pop-ABC is superior to Multi-

pop-ABC1, Multi-pop-ABC2 and basic ABC on 9 out of 11 tested scenarios (p < 0.05). The 

table also shows than on two scenarios (1 peak and 2 peaks) Multi-pop-ABC is not superior 

to Multi-pop-ABC1 and Multi-pop-ABC2. This can be attributed to the fact that these two 

scenarios are relatively easy to solve and thus all methods produce very good solutions. The 

results of the statistical test also demonstrate that the proposed enhancements have a positive 

impact and improve the search process.   

 

Table 7 p-values of the of Multi-pop-ABC against other methods 
Number of Peaks 

Multi-pop-
ABC vs. 

1 2 5 7 10 20 30 40 50 100 200 

Multi-pop-
ABC1 

0.06 0.08 0.04 0.03 0.00 0.00 0.00 0.01 0.01 0.00 0.00 

Multi-pop-
ABC2 

0.07 0.06 0.02 0.07 0.06 0.00 0.04 0.01 0. 02 0.00 0.00 

Basic ABC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Note: Values less than 0.05 indicate that Multi-pop-ABC is better than the compared methods. 

 

 

4.2 Comparison with state of the art methods 
There are numerous methods that use different schemes to handle diversification, and which 

have been tested on MPB. In this section, we evaluate the performance of our algorithm by 

comparing it with several recently proposed algorithms taken from the scientific literature. 

The algorithms are: 

- Multiswarms, exclusion, and anti-convergence in dynamic environments (mCPSO) 

[27]. 

- Multiswarms, exclusion, and anti-convergence in dynamic environments (mQSO) 

[27] 

- Multiswarms, exclusion, and anti-convergence in dynamic environments (mCPSO*) 

[27] 



- Multiswarms, exclusion, and anti-convergence in dynamic environments (mQSO*) 

[27]. 

- Competitive population evaluation in a differential evolution algorithm for dynamic 

environments (CDE) [28]. 

- Differential evolution for dynamic environments with unknown numbers of optima 

(DynPopDE) [29]. 

- Dynamic function optimization with hybridized extremal dynamics (EO + HJ) [30] 

- A competitive clustering particle swarm optimizer for dynamic optimization problems 

(CCPSO) [31]. 

- A novel hybrid adaptive collaborative approach based on particle swarm optimization 

and local search for dynamic optimization problems ( CHPSO(ES-NDS)) [32]. 

To ensure a fair comparison, we used the same stopping condition (50,000 fitness 

evaluations), the same change frequency (every 5,000 fitness evaluations) and the same 

evaluation metric (Offline error). We also used 11 MPB instances with a different number of 

peaks ranging between 1 to 200 peaks.  

 

The results of Multi-pop-ABC and the compared algorithms are presented in Table 8.  The 

results in the table are in terms of offline error, ± standard error and computational times for 

each number of peaks. In the table, the symbol ‘-’ indicates that the scenario has not been 

tested. We indicate in bold the best obtained results. From Table 8, it can be seen that Multi-

pop-ABC is superior to the other algorithms in most of the cases in terms of offline error. In 

particular, Multi-pop-ABC obtained new best results for 9 out of 11 tested MPB instances. 

Multi-pop-ABC was inferior on only two MPB instances: 1 peak and 2 peaks. Nevertheless, 

the results of Multi-pop-ABC for these two scenarios are very competitive, where it obtained 

the second best results. In terms of the standard error, Multi-pop-ABC produced a better 

standard error for 6 scenarios, being similar on 5 scenarios out of the 11 tested.  

 

Table 8 Results of Multi-pop-ABC compared to the state of the art methods 

Number of Peaks 
Algorithm 1 2 5 7 10 20 30 40 50 100 200 
Multi-pop-

ABC 
0.14 

±0.00 
8.11 

0.12 
±0.00 

9.10 

0.20 
±0.00 
10.20 

0.38 
±0.01 
10.63 

0.22 
±0.01 
11.12 

0.35 
±0.00 
13.75 

0.46 
±0.00 
15.13 

0.52 
±0.01 
17.17 

0.44 
±0.01 
20.23 

0.52 
±0.00 
28.64 

0.93 
±0.00 
56.48 

mCPSO 4.93 
±0.17 

3.36 
±0.26 

2.07 
±0.08 

2.11 
±0.11 

2.08 
±0.07 

2.64 
±0.07 

2.63 
±0.08 

2.67 
±0.07 

2.65 
±0.06 

2.49 
±0.04 

2.44 
±0.04 



mQSO 5.07 
±0.17 

3.47 
±0.23 

1.81 
±0.07 

1.77 
±0.07 

1.80 
±0.06 

2.42 
±0.07 

2.48 
±0.07 

2.55 
±0.07 

2.50 
±0.06 

2.36 
±0.04 

2.26 
±0.03 

mCPSO* 4.93 
±0.17 

3.36 
±0.26 

2.07 
±0.11 

2.11 
±0.11 

2.05 
±0.07 

2.95 
±0.08 

3.38 
±0.11 

3.69 
±0.11 

3.68 
±0.11 

4.07 
±0.09 

3.97 
±0.08 

mQSO* 5.07 
±0.17 

3.47 
±0.23 

1.81 
±0.07 

1.77 
±0.07 

1.75 
±0.06 

2.74 
±0.07 

3.27 
±0.11 

3.60 
±0.08 

3.65 
±0.11 

3.93 
±0.08 

3.86 
±0.07 

CDE - - - - 0.92 
±0.07 

- - - - - - 

DynPopDE - - 1.03 
±0.13 

- 1.39 
±0.07 

- - - 2.10 
±0.06 

2.34 
±0.05 

2.44 
±0.05 

EO + HJ 7.08 
±1.99 

- - - 0.25 
±0.10 

0.39 
±0.10 

0.49 
±0.09 

0.56 
±0.09 

0.58 
±0.09 

0.66 
±0.07 

- 

CCPSO 0.09 
±0.00 

0.09 
±0.00 

0.25 
±0.01 

0.53 
±0.03 

0.75 
±0.06 

1.21 
±0.08 

1.40 
±0.07 

1.47 
±0.08 

1.50 
±0.09 

1.76 
±0.09 

- 

CHPSO(ES-
NDS) 

0.19  
± 0.00 

- 0.44 
±0.02 

- 0.64 
±0.02 

0.91 
±0.01 

0.99 
±0.01 

1.02 
±0.01 

1.03 
±0.01 

1.04 
±0.01 

1.01 
±0.00 

Note: Values in bold font indicate the best results.  
 

To further verify the effectiveness of the proposed Multi-pop-ABC, we statistically compare 

it with other methods. We followed the procedure described in [33]. First, Friedman test and 

Iman and Davenport statistical tests with 0.05 confidence levels are carried out to detect if 

there is a difference between the results of Multi-pop-ABC and other methods. It should be 

noted that only those methods that were tested on all scenarios were considered for this test. 

Both the Friedman test and Iman and Davenport tests returned p-values (0.000009 and 

0.000000009061) less than 0.05 indicating the compared results are statistically different. We 

next conducted a Friedman test to obtain rankings, and Holm and Hochberg post-hoc tests. 

The ranking value for each method obtained by a Friedman test is presented in Table 9 (the 

lower the better), where Multi-pop-ABC obtained the first rank followed by mQSO second 

rank, mCPSO third rank, mQSO* fourth rank and mCPSO* fifth rank. Consequently, Multi-

pop-ABC will be the controlling method for the Holm and Hochberg post-hoc tests. The p-

values of Holm and Hochberg tests are shown in Table 10. From the table, one can see that 

Multi-pop-ABC is statistically better than the compared methods on both Holm and 

Hochberg tests in which all the obtained p-values are less than 0.05.   

Table 9 The average ranking of Friedman test 
# Algorithm Ranking 
1 Multi-pop-ABC 1 
2 mQSO 2.6364 
3 mCPSO 3.3636 
4 mQSO* 3.6364 
5 mCPSO* 4.3636 

 
Table 10 The adjusted p-value of the compared methods 

# Algorithm Unadjusted P P Holm P Hochberg 



1 mCPSO* 0.000001 0.000002  0.000002 
2 mQSO* 0.000092  0.000276 0.000276 
3 mCPSO 0.000455  0.00091 0.00091 
4 mQSO 0.015219  0.015219 0.015219 

 

The above results reveal that, in most of the tested scenarios, the proposed Multi-pop-ABC is 

better than the compared methods. These results are supported by statistical tests. 

We hypothesise that several key features contribute to the high performance of the proposed 

algorithm (Multi-pop-ABC) on the dynamic problem. These can be summarised as follows: 

- Multi-population: This feature is beneficial for maintaining the diversity of solutions 

in the population during the search process. 

- Adaptive number of sub-populations: This feature helps the algorithm in changing the 

solution distribution over the search landscape to get better diversification and 

intensification based on the problem change strength.     

- Population clearing scheme: This feature helps avoid having similar solutions within 

the population in order to further add to the diversification.      

 
4.3 Comparison with state-of-the-art approaches on test functions 
In this section, we evaluate our proposed algorithm based on other well-known ten test 
functions. The tested functions are widely used by researchers [34-37]. These functions are: 
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For every benchmark function, respectively assume the dimension as 30, 50 and 100. The 
results in Tables 11, 12 and 13 demonstrate that Multi-pop-ABC performs better than the 
compared ABC, PS-ABC and PS-ABCII algorithms [34-36] in terms of both mean and 
standard deviation (SD). Note that the best results are highlighted in bold. The presented 
results indicate that the Multi-pop-ABC outperforms other methods over all test functions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 11 M
ean, the standard deviation (SD

) of functions w
ith 30 dim

ensions. 
F 

ABC 
PS-ABC 

PS-ABCII 
LW

G
SO

D
E     

C
FO

A 
M

ulti-pop-ABC 
D

im
 

M
ean

 
SD

 
M

ean
 

SD
 

M
ean

 
M

ean
 

M
ean

 
SD

 
M

ean
 

SD
 

SD
 

SD
 

f1 
30

 
3.3955  x 10

-9 
4.5376 x 10

-9 
0 

0 
0 

0 
1.68 x 10

-7 
1.63 x 10

-7 
1 x 10

-309 
- 

0 
0 

f2 
30 

5.1029 x 10- 6 
1.8417 x 10

-6 
0 

0 
0 

0 
1.10 x 10

-3 
4.09 x 10

-4 
1 x 10 -155 

- 
0 

0 
f3 

30 
1.2598  x 10

4 
2.9192 x 10

3 
7.2696 x 10

3 
1.4359 x 10

3 
4.0756 x 10

4 
8.1760 x 10

3 
- 

- 
- 

- 
6.4361 x 10

2 
1.9164 x 10

2 
f4 

30 
2.4044  x 10

1 
3.3935 

0 
0 

0 
0 

- 
- 

- 
- 

0 
0 

f5 
30 

3.2873 
3.4035 

1.4048 
2.7168 

2.8408 x 10
1 

0.1154 
2.60 x 10

1 
2.70 x 10

-2 
- 

- 
1.0196 

1.9217 

f6 
30 

1.5788  x 10
-1 

3.6701 x 10
-1 

1.8545 x 10
-2 

5.3198 x 10
-3 

5.5447 x 10
-4 

1.2352 x 10
-3 

- 
- 

1 x 10
-309 

- 
3.2124 x 10

-4 
1.0172 x 10

-3 

f7 
30 

-12185.9 
1.4299 x 10

2 
-12549.7 

4.4891 x 10
1 

-12088.9 
1.8715 x 10

2 
- 

- 
- 

- 
-14847.9 

3.5787 x 10
1 

f8 
30 

4.0160 x 10
-1 

6.2228 x 10
-1 

0 
0 

0 
0 

3.85 x 10
-5 

3.75 x 10
-5 

- 
- 

0 
0 

f9 
30 

2.4076 x 10
-5 

1.2439 x 10
-5 

8.8817 x 10
-16 

0 
8.8817 x 10

-16 
0 

2.99 x 10
-4 

1.86 x 10
-4 

1 x 10
-308 

- 
0 

0 

10 
30 

1.4335 x 10
-3 

4.0152 x 10
-3 

0 
0 

0 
0 

- 
- 

1 x 10
-309 

- 
0 

0 

    



 

Table 12 Mean, the standard deviation (SD) of functions with 50 dimension. 
F ABC PS-ABC PS-ABCII Multi-pop-ABC 

Dim Mean SD Mean SD Mean SD Mean SD 
f1 50 1.1483 x 10-5 1.6272 x 10-5 0 0 0 0 0 0 

f2 50 2.8511 x 10-3 1.3944 x 10-3 0 0 0 0 0 0 

f3 50 4.6422 x 104 6.9821 x 103 3.0638 x 103 3.4739 x 103 1.2539 x 105 2.1047 x 104 2.1041 x 103 2.0893 x 103 
f4 50 5.6020 x 101 5.1905 1.8782 x 101 5.7908 0 0 0 0 

f5 50 3.7224 x 101 3.6453 x 101 3.1451 x 101 2.9224 x 101 4.8504 x 101 1.3535 x 10-1 2.2310 x 101 2.1102 x 101 

f6 50 4.2726 x 10-1 8.2393 x 10-2 5.7802 x 10-2 1.6469 x 10-2 5.4388 x 10-4 6.4470 x 10-4 2.1847 x 10-4 3.2711 x 10-4 

f7 50 -19359.1 3.1097 x 102 -20893.4 7.9224 x 101 -19414.1 3.3738 x 102 -26893.4 7.8394 x 101 

f8 50 8.1857 2.4195 0 0 0 0 0 0 

f9 50 4.0637 x 10-2 3.2467 x 10-2 8.8817 x 10-16 0 8.8817 x 10-16 0 0 0 

10 50 9.9977 x 10-3 1.1718 x 10-2 0 0 0 0 0 0 

 
Table 13 Mean, the standard deviation (SD) of functions with 100 dimension. 

F ABC PS-ABC PS-ABCII Multi-pop-ABC 
Dim Mean SD Mean SD Mean SD Mean SD 

f1 100 4.9461 x 10-3 1.1389 x 10-2 8.3417 x 10-47 4.5689 x 10-46 0 0 0 0 

f2 100 2.7814 x 10-1 4.0035 x 10-1 0 0 0 0 0 0 

f3 100 1.8854 x 105 2.1886 x 104 1.3544 x 105 1.2851 x 104 5.4823 x 105 1.0256 x 105 1.4211 x 104 1.0937 x 104 
f4 100 8.2376 x 101 3.0440 7.2160 x 101 4.0371 0 0 0 0 

f5 100 3.3118 x 102 3.8309 x 102 2.0376 x 102 6.7028 x 101 9.8590 x 101 1.5702 x 10-1 4.1781 x 101 1.2011 x 10-1 

f6 100 1.5950 3.2657 x 10-1 2.2021 x 10-1 4.1119 x 10-2 1.6151 x 10-3 3.2646 x 10-3 1.1260 x 10-3 2.9615 x 10-3 

f7 100 -34413.8 5.0878 x 102 -39976.6 3.3634 x 102 -37405.7 5.5665 x 102 -40182.4 2.6738 x 102 

f8 100 8.5540 x 101 1.1018 x 101 0 0 0 0 0 0 

f9 100 3.8186 3.6198 x 10-1 2.3270 x 10-14 1.2259 x 10-13 8.8817 x 10-16 0 0 0 

10 100 1.4344 x 10-1 1.3282 x 10-1 1.6904 x 10-3 6.4786 x 10-3 0 0 0 0 

 
 
 
5. Conclusion 
This paper has presented a modified artificial bee colony algorithm for dynamic optimization 

problems. The aims of our modifications were to enhance the capability of the algorithm to 

efficiently deal with DOPs. We first integrated it with a multi-population method to scatter 

the solution over the search process so that they can search and track the optimum solution 

simultaneously. An adaptive multi-population was also proposed to adaptively change the 

number of sub-populations based on the problem change strength. In addition, a population 

clearing scheme was proposed to remove redundant solutions in the population.  To evaluate 

the performance of the proposed algorithm, experimental tests were carried out using the 

moving peaks benchmark DOP, with a different number of peaks. Comparisons were carried 

out between the proposed algorithm, the basic ABC and state of the art methods.  The results 

demonstrated that the proposed algorithm outperforms basic ABC on all tested scenarios. It 



also produced better results than the state of the art methods on many scenarios, indicating 

that the proposed algorithm is an effective method for the DOP.  
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Abstract 
Recently, interest in solving real-world problems that change over the time, so called 

dynamic optimisation problems (DOPs), has grown due to their practical applications. A 

DOP requires an optimisation algorithm that can dynamically adapt to changes and several 

methodologies have been integrated with population-based algorithms to address these 

problems. Multi-population algorithms have been widely used, but it is hard to determine the 

number of populations to be used for a given problem. This paper proposes an adaptive multi-

population artificial bee colony (ABC) algorithm for DOPs. ABC is a simple, yet efficient, 

nature inspired algorithm for addressing numerical optimisation, which has been successfully 

used for tackling other optimisation problems. The proposed ABC algorithm has the 

following features. Firstly it uses multi-populations to cope with dynamic changes, and a 

clearing scheme to maintain the diversity and enhance the exploration process. Secondly, the 

number of sub-populations changes over time, to adapt to changes in the search space. The 

moving peaks benchmark DOP is used to verify the performance of the proposed ABC. 

Experimental results show that the proposed ABC is superior to the ABC on all tested 

instances. Compared to state of the art methodologies, our proposed ABC algorithm produces 

very good results.   

 

Keywords: dynamic optimisation, artificial bee colony algorithm, adaptive multi-population 

method, meta-heuristics 

 

1. Introduction  
Many real-world optimisation problems have the characteristic of changing over time in 

terms of decision variables, constraints and the objective function [1], [2]. These problems 
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are referred to as dynamic optimisation problems (DOPs) in the scientific literature.  A DOP 

requires an optimisation algorithm that can dynamically adapt to the changes and track the 

optimum solution during the execution of the algorithm [2]. Given their practical applications 

and complexity, DOPs have attracted a lot of research attention. Population-based algorithms, 

which are a set of methodologies that utilise a population of solutions distributed over the 

search space, have attracted particular attention, due to their good performance [1], [2]. A key 

challenge in developing an optimisation algorithm for DOPs is how to maintain population 

diversity during the search process in order to keep track of landscape changes [3]. Several 

interesting diversity schemes have been developed in order to improve the search capability 

of population-based algorithms so that they can adapt effectively to the problem as it 

changes.  

 

Prediction based methods is one of the diversity schemes which has been widely integrated 

with other algorithms to maintain the diversity. This methodology uses an algorithm to learn 

patterns from previous searches, which are then used to predict future changes. It should be 

noted that memory methods can be categorised as a special case of the prediction method as 

they store a set of solutions to be used when a problem changes [2]. The prediction method is 

suitable for problems with cyclic changes. Hatzakis and Wallace [4] proposed a hybrid 

algorithm that combines an evolutionary algorithm and a forecasting methodology for DOPs. 

Forecasting is used to predict the movement of the optimum based on previous movements. 

The results demonstrate that this method is suitable for problems which change quickly if the 

movement of the optimum solution is predicted correctly. Sim et al. [5]  used a prediction 

based method to predict how the environment would change and the time of the next change. 

The authors utilised a Markov chain that uses the previous movement of the search in order to 

predict future changes and a linear regression to predict when the change will occur. The 

results demonstrate that the hybrid algorithm performs with prediction, than without.  Branke 

and Mattfeld [6] proposed an anticipation-based algorithm for DOPs. This algorithm attempts 

to simultaneously search for a good quality solution and move the search into a different area 

based on the previous changes. This proposed algorithm was tested on a dynamic job-shop 

scheduling problem and it was shown to produce very good results compared to other 

algorithms. The advantage of the prediction method is that it can be effective in detecting the 

global optima quickly, if the predictions are accurate [2]. The main drawback with this 

method is that it depends on the training model and in many cases the data used during the 



training process does not capture real world scenarios and there is a possibility of training 

errors due to lack of training data [7], [2]. 

 

 

Memory based methodologies aim to maintain diversity. They use a memory with a fixed 

size to store some of promising solutions that are captured during the search process. When a 

change is detected, the stored solutions will be reinserted into the current population and the 

population will be filtered to include only the best solutions. Examples of memory based 

methodologies can be found in [8], [9], [10], [11]. These methodologies have worked well 

when the dynamic problems are periodical or cyclic. The drawback is that they have 

parameter sensitivities that need to be determined in advance, and most real world problems 

are not cyclic in nature. 

 

Self-adaptive algorithms attempt to adaptively improve the diversification of population-

based algorithms based on environmental changes. They use mechanisms to adapt the 

algorithm to the changes in the search space [2]. Adaptive mechanisms can improve 

algorithm search behaviour and also reduce the need for manual parameter tuning. The idea is 

to apply different operators or parameter values for different problems by adaptively 

changing them during the search process [7], [2]. Grefenstette [12] proposed a self-adaptive 

genetic algorithm for DOPs. The proposed algorithm adaptively selects different 

crossover/mutation operators at each generation. The author uses an agent based concept to 

control the selection process, and each agent represents a crossover or mutation operator. All 

agents are executed simultaneously and the one that generates the best solution is selected for 

the current instance. Promising results were achieved when compared to other algorithms. 

Grefenstette [12] also proposes an idea called a genetic mutation rate for the DOP. The idea 

is to set the value of the mutation rate based on the fitness of the population. This idea was 

shown to generate better results compared to the basic genetic algorithm. Ursem [13] 

proposed a multinational genetic algorithm for the DOP. The main parameters are encoded 

with the decision variables and are evolved during the solution process. The results show that 

this algorithm is very good for simple instances in which the velocity of the moving peaks is 

constant. It is also able to adapt by changing the algorithm parameters during the search. 

However, encoding the parameters with the solution decision variables requires specialist 

evolutionary operators. In addition, it is also very difficult to determine the values of the 

parameters [2]. 



 

 

Multi-population methods improve diversity by dividing the population of solutions into 

several sub-populations and distributing them throughout the search landscape so that they 

can more effectively capture the problem changes. The idea is to maintain population 

diversity by assigning a different sub-population to a different area, where each one is 

responsible for either intensifying or diversifying the search process [7], [2]. These sub-

populations interact with each other via a merge and divide process when a change in the 

environment is detected. The multi-population method has been shown to be effective in 

dealing with various problem changes, whether they are cyclic or non-cyclic, and it has 

outperformed other methods on various problem sizes. Branke et al. [14] proposed a self-

organising scouts multi-population evolutionary algorithm for the DOP. The population of 

solutions is divided into two groups; small and large. The small population group is 

responsible for tracking promising solutions found so far, while the large population group 

tries to find a new region of the search space that has a new peak. The proposed algorithm 

was tested on the moving peaks benchmark (MPB), obtaining very good results. Blackwell 

and Branke [15] proposed a multi-swarm optimisation algorithm for the DOP. The swarm is 

divided into subsets of swarms. These multi-swarms interact with each other locally, through 

algorithm parameters, and globally by using an anti-convergence mechanism. The anti-

convergence mechanism searches for new peaks by removing the worst ones and re-

initialising them into a different area in the search space. The proposed algorithm obtained 

very good results when tested on MPB problems. Mendes and Mohais [16] presented a multi-

population differential evolution algorithm for the DOP. The population of solutions is 

divided into several sub-populations. Each sub-population is assigned to a different area of 

the search space. The experimental results show that this algorithm obtains very good results 

for MPB problems. Li and Yang [17] proposed a fast multi-swarm Particle Swarm 

Optimisation (PSO) algorithm for the DOP. The swarm population is divided into two types 

of swarms; parents and children. The parent swarm explores the entire search space to seek 

the global optima, while the child swarm is responsible for monitoring the search behaviour 

around the best solution obtained by the parent swarm. The position of the child swarm is 

dynamically updated during the process. The algorithm was tested on the MPB problems and 

produced good results when compared to other methods.  Yang and Li [18] presented a 

clustering-based particle swarm optimiser for the DOP. The swarm is divided based on a 

hierarchical clustering method to locate and track multiple peaks. The algorithm achieved 



very good results when tested on the MPB.  Turky and Abdullah [19] proposed a multi-

population electromagnetic algorithm for DOPs. The proposed algorithm divides the 

population into several sub-populations to simultaneously explore and exploit the search 

process.  The algorithm was tested on MPB problems and obtained very good results when 

compared to other population diversity mechanisms. The same authors [20] also presented a 

multi-population harmony search algorithm for the DOP. The population is divided into sub-

populations. Each sub-population is responsible for either exploring or exploiting the search 

space. An external archive is utilised to track the best solutions found so far, which are used 

to replace the worst ones when a change is detected. The results show that this algorithm 

produces good results when compared to other methods. Sharifi et al. [21] proposed a hybrid 

PSO and local search algorithm for DOPs. The algorithm utilises a fuzzy social-only model 

to locate the peaks. The results show that this algorithm can produce very good results for 

MPB problems. In Li et al. [22] comprehensive experimental analysis was reported on the 

performance of a multi-population method with various algorithms in relation to DOPs. The 

authors concluded that the multi-population method is able to deal effectively with various 

DOPs and has the ability to maintain population diversity. It is also able to help the search in 

locating a new area through a divide and merge process and information exchange. The 

authors also highlighted several weaknesses of their method that relate to the number of sub-

populations, the distribution of solutions and the reaction to problem changes.  

 

Existing works on DOPs demonstrate that employing multi-population methods are the most 

effective method in maintaining population diversity. The features that make the multi-

population methodologies popular are [3]: i) it divides the population into sub-populations, 

where the overall population diversity can be maintained since different populations can be 

located in different areas of the problem landscape, ii) it has the ability to search different 

areas simultaneously, enabling it to track the movement of the optimum, and iii) various 

single population-based algorithms can be integrated within multi-population methods.   

 

Although multi-population methods have shown success when applied to DOPs, most of 

them use a number of sub-populations and the population diversity is maintained only 

through the sub-population distribution [3]. The number of sub-populations has a crucial 

impact on algorithm performance as it relates to the difficulty of the problem, which is not 

known in advance, and changes during the search. In addition, the solutions in the sub-

populations may not be diverse enough as some methods are only concerned with how to 



divide the population into sub-populations, rather than focussing on diversification. To 

address these issues, this work proposes an adaptive multi-population artificial bee colony 

(ABC) algorithm for the DOP. The proposed ABC utilises a clearing scheme to remove 

redundant solutions in order to maintain diversity and enhance the exploration process. To 

efficiently track the landscape changes, the proposed ABC algorithm adaptively updates the 

number of sub-populations based on the problem change strength. 

 

In this paper, the key objectives are: 

 

i. To propose an artificial bee colony algorithm that utilises a multi-population and a 

population clearing scheme to efficiently solve the dynamic optimisation problem. 

ii. To propose an adaptive multi-population algorithm that updates the number of the 

sub-populations based on the problem change strength. 

iii.  To test the performance of the proposed algorithm on dynamic optimisation problems 

using different scenarios and compare the results with other methodologies.  

 

We used the moving peaks benchmark DOP with a different number of peaks to evaluate the 

effectiveness of the proposed ABC. Results demonstrate that the proposed ABC performs 

better than a basic ABC on all tested scenarios. Compared to the state of the art method, the 

proposed ABC produces very good results for many instances.   

 

2. The proposed algorithm 
This section presents the basic artificial bee colony algorithm, as well as our proposed 

adaptive multi-population algorithm. 

 

2.1 Basic artificial bee colony algorithm 
The Artificial Bee Colony (ABC) algorithm is a simple, yet efficient, nature inspired 

algorithm for addressing numerical optimization problems. It was proposed in [23] as a 

nature inspired swarm intelligence algorithm based on the observation of bee foraging 

behaviour. In ABC, there are a set of food sources and a set of bees. The quality of the food 

sources is based on the amount of nectar they contain. Bees search and collaborate with each 

other, seeking better food sources. To address an optimization problem using ABC, food 

sources represent the population of solutions for a given problem and bees are categorised 

into three types: scout, employee and onlooker bees. The amount of nectar corresponds to the 



quality (objective function) of the problem being addressed.  The three types of bees work 

together in an iterative manner to improve the quality of the population of solutions (food 

sources).  The pseudo-code of a basic ABC is shown in Algorithm 1 [24]. ABC first sets the 

main parameters, initializes the population of solutions and then evaluates them. Next, the 

main loop is executed in an attempt to solve the given optimisation problem by calling the 

employee bees, onlooker bees and scout bees until the stopping condition is satisfied. 

 

 Algorithm 1:  The pseudo-code of basic ABC 
 Step 1: Set the parameter values 

Step 2: Initialize the population of solutions 
Step 3: Evaluate the population of solutions  
while termination condition is not met do 
     Step 4: Employed Bees step 
     Step 5: Onlooker Bees step 
     Step 6: Scout Bees step 
end while 

 

The basic ABC has the following steps: 

Step 1- Set ABC parameters. In this step the main parameters of ABC are initialized. 

These include: the maximum number of iterations (MaxIt) which represents the stopping 

condition of ABC, the number of solutions or population size (Ps) which represent how 

many solutions will be generated, the total number of bees (Sbees) which is set to be 

twice the size of Ps, where half of them are employee bees and the other half are 

onlooker bees, the limit parameter (Lit), which is used to determine if the solution should 

be replaced by a new one. 

 

Step 2- Initialise the population of solutions. A set of solutions with size equal to Ps 

are randomly generated as follows:  
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where i is the index of the solution, j is the current decision variable, Rand [0,1] 

generates a random number between zero and one and  min
, jix  and max

, jix  are the lower and 

upper bonds for the jth decision variable.  

 



Step 3- Evaluate the population of solutions. The fitness (quality) of the generated 

solutions are calculated using the objective function. The objective function is problem 

dependent. The objective function used in this work is shown in Section 3.2. 

 

Step 4- Employed bees. Each employee bee is sent to one food source (solution). Its 

main role is to explore the neighbourhood of the current solution, seeking an improving 

solution. A neighbourhood solution, v, is created by modifying the ith solution, x, as 

follows:   
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where k is a randomly selected solution from Ps and Φ is a random number between [-1, 

1]. The generated neighbourhood solution will be replaced with current solution if it has 

better fitness.  

 

Step 5- Onlooker bees. Onlooker bees seek to improve the current population of 

solutions by exploring their neighbourhood using Equation (2), the same as the employee 

bee. The difference is that onlooker bees select the solutions probabilistically based on 

their fitness values as follows: 
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That is, the solution with the higher fitness has a higher chance of being selected (i.e. 

roulette wheel selection). Onlooker bees use a greedy selection mechanism, where the 

better solution in terms of fitness is selected. 

 

Step 6- Scout bees. This step is activated if both employed and onlooker bees cannot 

improve the current solution for a number of consecutive iterations defined by the limit 

parameter, Lit. This indicates that the current solution is not good enough to search its 

neighbourhood and it should be discarded. In this case, the scout bee will generate a new 



solution using Equation (1) to replace the discarded one. This can help ABC to escape 

from a local optimum and explore a different area of the search space. 

 

2.2 The proposed artificial bee colony algorithm 
Existing works on DOPs have demonstrated that multi-population methods are state of the 

art, in that they outperform other methods on many scenarios.  However, although multi-

population methods have achieved success in solving DOPs, most of them use a fixed 

number of sub-populations and the population diversity is maintained through the sub-

population distribution. To address these issues, this work proposes an adaptive population 

ABC (denoted as Multi-pop-ABC). In Multi-pop-ABC, three major modifications are added 

to the basic ABC.  These are: 

 

i. Multi-population method. To deal with DOP, the proposed ABC uses a multi-population 

method to divide the population into several sub-populations. By using a multi-population 

method, the solutions are scattered over the search space instead of focusing on a specific 

area. Thus the algorithm can generate high quality solutions and track the problem 

changes. 

 

ii. Adaptive scheme. To track the landscape changes that occur during the search process, the 

proposed Multi-pop-ABC updates the number of sub-populations based on the strength of 

the problem change. That is the number of sub-populations is either decreased or increased 

during the search process. By using the proposed adaptive method, the number of sub-

populations can be changed adaptively based on the strength of the environment changes, 

which helps the search track the optimum solution and also improves the diversification 

and exploration processes. 

 
iii. Population clearing scheme. To ensure that the solutions are diverse enough, a population 

clearing scheme is called when a change is detected to delete redundant solutions and 

replace them with new solutions. This scheme removes redundant solutions in order to 

maintain diversity and enhance the exploration process. 

 

The flowchart of the proposed Multi-pop-ABC for DOPs is shown in Figure 1. It 

starts by setting the parameter values. It creates the population of solutions and then evaluates 

them. Next, the population of solutions is divided into m sub-populations. Each sub-



population utilises an ABC algorithm. If a change in the problem is detected, the algorithm 

calculates the change strength to update the sub-population size and checks the stopping 

condition. If the specified stopping condition (we set this as a maximum number of fitness 

evaluations) has been reached, the algorithm terminates and the best solution is returned. 

Otherwise, the algorithm merges all the sub-populations, updates the population, runs the 

clearing method, re-divides the population into m sub-populations and starts a new iteration.  

 

The main steps are described in further detail below: 

 

- Step 1: Set parameters. The main parameters of Multi-pop-ABC are initialised. The 

algorithm has five parameters. Four of them are the same as the basic ABC. These 

are: the maximum number of iterations (MaxIt), population size (Ps), number of bees 

(Sbees), and the limit parameter (Lit). The fifth parameter is the sub-population size 

(m), which represents the number of sub-populations (Ps/m). Initially, m=2 and during 

the search process, it is either decreased or increased.  

 

1- Step 2: Initialise the population of solutions. Same as Step 2 in the basic ABC, Section 

2.1.   

 

2- Step 3: Evaluate the population of solutions. Same as Step 3 in the basic ABC, Section 

2.1. 

 

3- Step 4: Divide the population. The population of solutions is divided into m sub-

populations (Ps/m). Each sub-population is assigned to explore a different area of the 

search space. These sub-populations interact with each other through merging and re-

dividing every time a change in the environment is detected. Each solution in the 

population is randomly assigned to a sub-population. The number of sub-populations m 

is either increased or decreased based on the environment change strength. The initial 

value of m is set to two (m=2) and it is updated during the search.  
 

4- Step 5: Assign ABC to each sub-population.  Each sub-population has its own ABC 

algorithm.  Each ABC executes all the steps presented in Section 2.1. It starts with a 



population of solutions and iteratively calls the following until the stopping condition is 

satisfied (the algorithm stops when a change in the environment is detected):  
 

i. Employee bees. Same as Step 4 in the basic ABC, Section 2.1. 

 

ii. Onlooker bees. Same as Step 5 in the basic ABC, Section 2.1. 

 

iii. Scout bees. Same as Step 6 in the basic ABC, Section 2.1.   

 

5- Step 6: Check the change strength. This step is activated when a change in the 

environment is detected. Its main role is to update the number of sub-populations based 

on the environment change strength. It first calculates the objective function of the best 

solution before and after the environment change as follows: 
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where Cs is the change strength, f(best_before) is the quality of the best solution before 

the  environment change and f(best_after) is the quality of the best solution after the  

environment change.  If the Cs is less than the defined threshold (Tv) and m is greater 

than 2, the number of sub-populations m is decreased as the algorithm needs to be more 

exploitive than explorative (m=m-1). Otherwise, m is increased by one with the aim of 

increasing the exploration aspect of the search (m=m+1). It should be noted that when m 

is an odd number, the extra solution is randomly assigned to one of the sub-populations. 

 

6- Step 7: Check the stopping condition. This step checks the termination criterion of the 

search process. In this work, it is set as a maximum number of fitness evaluations in line 

with previous works. If the specified stopping condition is reached, the search process 

stops and returns the best solution. Otherwise, the algorithm performs the following 

processes: 

 
i. Population clearing scheme: This scheme calculates the similarity between 

solutions in the population. The similarity is calculated by using a matching 

algorithm, which matches each pair of solutions in terms of phenotype. Two 



solutions are similar if they have the same values in all the cells of both 

solutions. If two or more solutions are similar, these solutions are deleted and 

replaced with randomly generated ones.  

 

ii. Population update: All sub-populations are merged to form one population. 

 

iii. Re-divide the population: The population is re-divided into m sub-populations 

and the algorithm continues by starting the process at step 1 with a new 

generation.  

 



 
Figure 1. The proposed Multi-pop-ABC  

 

3. Experimental Setup 
This section discusses the Moving Peak Benchmark (MPB), evaluation metric and the 

parameter settings.  

 

 



3.1 The Moving Peak Benchmark 
The moving peak benchmark (MPB) is a maximization dynamic continuous optimization 

problem proposed by [9], [25], and has been commonly used as a testbed for the performance 

of optimisation algorithms. MPB consists of a set of peaks that move over the problem 

landscape.  It takes the given solution as an input and returns the value of the highest peak. 

The returned value represents the quality of this solution. MPB can be mathematically 

expressed as follows: 
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where F(x, t) is the quality of solution x at time t, p is the number of peaks, D is the problem 

dimension (number of decision variables where each variable has an upper and lower 

boundary (DB)), Hi (t) is the height of peak i, Wi (t) is the width of peak i, and Xij is the jth 

element of the location of peak i. Note that Equation (5) is a stationary optimization problem. 

Thus, to change it to a dynamic problem, MPB randomly shifts the position of all peaks by 

vector iv
o  of a distance s (s is also known as the shift length that determines the severity 

degree) as follows: 

))1()1((
|)1(|

)( ���
��

 
oo

oo

o

tvr
tvr

stv i

i

i OO                                 (6) 

where 
o

r  is a random vector, λ is the correlation between consecutive movements of a single 

peak that takes either “0” if the movement of peaks are completely uncorrelated or “1” if they 

move in the same direction. To make a fair comparison with existing algorithms, in this 

paper, we used λ=0 [6]. The change of height and width of a peak in a given solution can be 

mathematically expressed as follows:  
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where height_severity and width_severity are calculated based on the problem severity. σ is a 

normally distributed random number between 0 and 1. Then, the change of a solution x is 

given as follows: 
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The change frequency (cf) occurs every 5,000 fitness evaluations [9]. The parameter values 

of all MPBs that have been used in our experiments are shown in Table 1 [25].  

 

Table 1 MPB parameter values  
Parameters Description Value  

p  Number of peaks  1–200 
cf Change frequency  5000 

height_severity Height severity 7.0 
width_severity Width severity 1.0 

Peak shape Peak shape Cone 
s Shift length  1.0 
D Number of dimensions 5 
λ Correlation coefficient  0 

DB Each dimension boundaries  [0,100] 
H Peak height  [30.0,70.0] 
W Peak width  [1,12] 

 
3.2 Evaluation Metric  
To fairly compare the proposed ABC with existing algorithms, we use the same evaluation 

metric known as the offline error as suggested by [25]. This has also been used by other 

researchers. The offline error is calculated as follows: 
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where g is the number of generations and Ω is the best performance since the last change at ith 

fitness evaluation.  

 

3.3 Parameter Settings  
The parameter values of our Multi-pop-ABC are set by carrying out a set of initial 

experiments, with the exception of the stopping condition which was set to be the same as the 

compared algorithms (50,000 fitness evaluations). For each parameter, we tested various 

values and the best values were selected. This is achieved by varying the value of one 

parameter while fixing others. We have selected two scenarios of MPB for the parameter 

tunning process: 50 peaks and 200 peaks. The proposed ABC has three parameters: 



population size (Ps), limit (Lit) and the change strength threshold (Tv). First, we fixed Lit to 

30, Tv to 0.09 and changed Ps. Table 2 shows the offline error of various Ps values for 50 and 

200 peaks. The best result is highlighted in bold. Next, we fixed Ps to 60, Tv to 0.09 and 

changed Lit as shown in Table 3. Finally, we fixed Ps to 60, Lit to 30 and changed Tv as 

shown in Table 4. The parameter settings of the proposed ABC that were used across all 

scenarios are presented in Table 5. 

 

Table 2 The value of Ps parameter 

Ps value 50 peaks 200 peaks 
20 0.95669 2.70215 
40 0.319632 1.8935 
60 0.5810 0.34865 
80 0.576911 1.15134 

   

Table 3 The value of Lit parameter 

Lit value 50 peaks 200 peaks 
10 1.03474 1.18977 
20 1.27535 1.70215 
30 1.29851 0.24824 
40 1.841891 1.28967 

 

Table 4 The value of Tv parameter 

Tv value 50 peaks 200 peaks 
0.03 0.95669 1.89663 
0.05 0.96573 1.08053 
0.07 0.89978 1.37518 
0.09 1.23491 1.77956 

 

Table 5 The parameter settings of the proposed ABC 

# Parameter Value  
1- Maximum number of iterations 

(MaxIt) 
50,000 fitness 
evaluations  

2- Population size (Ps) 60 
3- Limit parameter (Lit) 30 
4- Change strength threshold (Tv) 0.05 

 

4. Results 
We carried out three set of experiments. In first one, we compare the results of Multi-pop-

ABC with the basic ABC. In second one, the results obtained by Multi-pop-ABC are 



compared with state of the art methods. In the third experiment, the results of Multi-pop-ABC 

on well-known test functions are compared with state of the art methods. 

 

4.1 Results comparison of Multi-pop-ABC and the basic ABC 
This section aims to verify the effectiveness of the additional components that we have added 

to the basic ABC. Specifically, the objective is to investigate the impact of the proposed 

enhancements on the performance of the basic ABC when dealing with DOPs. Four different 

algorithms were derived as follows: 

 

- Multi-pop-ABC: the proposed ABC that utilises the adaptive multi-population and 

population clearing scheme 

- Multi-pop-ABC1: same as above but without the population clearing scheme 

- Multi-pop-ABC2: same as above but uses a fixed number of sub-populations and 

without the population clearing scheme. The sub-populations were fixed to be the 

same as [26] 

- ABC: basic ABC algorithm. 

 

The computational comparisons of Multi-pop-ABC, Multi-pop-ABC1, Multi-pop-ABC2 and 

basic ABC are presented in Table 6. The comparison is in terms of the offline error, ± 

standard error for each number of peaks. The best results are highlighted in bold. The results 

clearly show the good performance of Multi-pop-ABC when compared to Multi-pop-ABC1, 

Multi-pop-ABC2 and basic ABC. Indeed, Multi-pop-ABC outperformed Multi-pop-ABC1, 

Multi-pop-ABC2 and basic ABC on both the offline error and the standard error on all tested 

scenarios. The results demonstrate that the enhancements we made to the basic ABC improve 

the algorithmic performance.  

 

Table 6 Results of the Multi-pop-ABC, Multi-pop-ABC1, Multi-pop-ABC2 and basic ABC 
Number of Peaks 

Algorithm 1 2 5 7 10 20 30 40 50 100 200 
Multi-pop-

ABC 
0.14 

±0.00 
0.12 

±0.00 
0.20 

±0.00 
0.38 

±0.01 
0.22 

±0.01 
0.35 

±0.00 
0.46 

±0.00 
0.52 

±0.01 
0.44 

±0.01 
0.52 

±0.00 
0.93 

±0.00 
Multi-pop-

ABC1 
1.81 

±0.18 
1.42 

±0.32 
1.11 

±0.13 
1.01 

±0.22 
1.57 

±0.12 
1.43 

±0.15 
1.45 

±0.14 
1.62 

±0.10 
1.21 

±0.21 
1.73 

±0.11 
1.22 

±0.10 
Multi-pop-

ABC2 
1.12 

±0.18 
1.21 

±0.41 
1.61 

±0.10 
1.65 

±0.11 
1.71 

±0.15 
1.11 

±0.14 
1.72 

±0.19 
1.42 

±0.13 
1.62 

±0.18 
1.41 

±0.12 
1.42 

±0.12 
Basic ABC 5.88 

±2.48 
5.52 

±4.31 
4.12 
±3.7 

4.5 
±2.3 

5.2 
±3.16 

6.3 
±3.51 

3.38 
±4.32 

7.14 
±3.60 

6.21 
±2.01 

6.97 
±2.11 

7.03 
±3.44 

Note: Values in bold font indicate the best results.  



 

To further verify the results, we conducted a comparison between Multi-pop-ABC and each 

method separately. We used a Wilcoxon statistical test with a confidence level of 0.05. The p-

values of Multi-pop-ABC against Multi-pop-ABC1, Multi-pop-ABC2 and basic ABC for each 

scenario is presented in Table 7. A value less than 0.05 indicates Multi-pop-ABC is superior 

(i.e. statistically different). As can be seen from Table 7, Multi-pop-ABC is superior to Multi-

pop-ABC1, Multi-pop-ABC2 and basic ABC on 9 out of 11 tested scenarios (p < 0.05). The 

table also shows than on two scenarios (1 peak and 2 peaks) Multi-pop-ABC is not superior 

to Multi-pop-ABC1 and Multi-pop-ABC2. This can be attributed to the fact that these two 

scenarios are relatively easy to solve and thus all methods produce very good solutions. The 

results of the statistical test also demonstrate that the proposed enhancements have a positive 

impact and improve the search process.   

 

Table 7 p-values of the of Multi-pop-ABC against other methods 
Number of Peaks 

Multi-pop-
ABC vs. 

1 2 5 7 10 20 30 40 50 100 200 

Multi-pop-
ABC1 

0.06 0.08 0.04 0.03 0.00 0.00 0.00 0.01 0.01 0.00 0.00 

Multi-pop-
ABC2 

0.07 0.06 0.02 0.07 0.06 0.00 0.04 0.01 0. 02 0.00 0.00 

Basic ABC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Note: Values less than 0.05 indicate that Multi-pop-ABC is better than the compared methods. 

 

 

4.2 Comparison with state of the art methods 
There are numerous methods that use different schemes to handle diversification, and which 

have been tested on MPB. In this section, we evaluate the performance of our algorithm by 

comparing it with several recently proposed algorithms taken from the scientific literature. 

The algorithms are: 

- Multiswarms, exclusion, and anti-convergence in dynamic environments (mCPSO) 

[27]. 

- Multiswarms, exclusion, and anti-convergence in dynamic environments (mQSO) 

[27] 

- Multiswarms, exclusion, and anti-convergence in dynamic environments (mCPSO*) 

[27] 



- Multiswarms, exclusion, and anti-convergence in dynamic environments (mQSO*) 

[27]. 

- Competitive population evaluation in a differential evolution algorithm for dynamic 

environments (CDE) [28]. 

- Differential evolution for dynamic environments with unknown numbers of optima 

(DynPopDE) [29]. 

- Dynamic function optimization with hybridized extremal dynamics (EO + HJ) [30] 

- A competitive clustering particle swarm optimizer for dynamic optimization problems 

(CCPSO) [31]. 

- A novel hybrid adaptive collaborative approach based on particle swarm optimization 

and local search for dynamic optimization problems ( CHPSO(ES-NDS)) [32]. 

To ensure a fair comparison, we used the same stopping condition (50,000 fitness 

evaluations), the same change frequency (every 5,000 fitness evaluations) and the same 

evaluation metric (Offline error). We also used 11 MPB instances with a different number of 

peaks ranging between 1 to 200 peaks.  

 

The results of Multi-pop-ABC and the compared algorithms are presented in Table 8.  The 

results in the table are in terms of offline error, ± standard error and computational times for 

each number of peaks. In the table, the symbol ‘-’ indicates that the scenario has not been 

tested. We indicate in bold the best obtained results. From Table 8, it can be seen that Multi-

pop-ABC is superior to the other algorithms in most of the cases in terms of offline error. In 

particular, Multi-pop-ABC obtained new best results for 9 out of 11 tested MPB instances. 

Multi-pop-ABC was inferior on only two MPB instances: 1 peak and 2 peaks. Nevertheless, 

the results of Multi-pop-ABC for these two scenarios are very competitive, where it obtained 

the second best results. In terms of the standard error, Multi-pop-ABC produced a better 

standard error for 6 scenarios, being similar on 5 scenarios out of the 11 tested.  

 

Table 8 Results of Multi-pop-ABC compared to the state of the art methods 

Number of Peaks 
Algorithm 1 2 5 7 10 20 30 40 50 100 200 
Multi-pop-

ABC 
0.14 

±0.00 
8.11 

0.12 
±0.00 

9.10 

0.20 
±0.00 
10.20 

0.38 
±0.01 
10.63 

0.22 
±0.01 
11.12 

0.35 
±0.00 
13.75 

0.46 
±0.00 
15.13 

0.52 
±0.01 
17.17 

0.44 
±0.01 
20.23 

0.52 
±0.00 
28.64 

0.93 
±0.00 
56.48 

mCPSO 4.93 
±0.17 

3.36 
±0.26 

2.07 
±0.08 

2.11 
±0.11 

2.08 
±0.07 

2.64 
±0.07 

2.63 
±0.08 

2.67 
±0.07 

2.65 
±0.06 

2.49 
±0.04 

2.44 
±0.04 



mQSO 5.07 
±0.17 

3.47 
±0.23 

1.81 
±0.07 

1.77 
±0.07 

1.80 
±0.06 

2.42 
±0.07 

2.48 
±0.07 

2.55 
±0.07 

2.50 
±0.06 

2.36 
±0.04 

2.26 
±0.03 

mCPSO* 4.93 
±0.17 

3.36 
±0.26 

2.07 
±0.11 

2.11 
±0.11 

2.05 
±0.07 

2.95 
±0.08 

3.38 
±0.11 

3.69 
±0.11 

3.68 
±0.11 

4.07 
±0.09 

3.97 
±0.08 

mQSO* 5.07 
±0.17 

3.47 
±0.23 

1.81 
±0.07 

1.77 
±0.07 

1.75 
±0.06 

2.74 
±0.07 

3.27 
±0.11 

3.60 
±0.08 

3.65 
±0.11 

3.93 
±0.08 

3.86 
±0.07 

CDE - - - - 0.92 
±0.07 

- - - - - - 

DynPopDE - - 1.03 
±0.13 

- 1.39 
±0.07 

- - - 2.10 
±0.06 

2.34 
±0.05 

2.44 
±0.05 

EO + HJ 7.08 
±1.99 

- - - 0.25 
±0.10 

0.39 
±0.10 

0.49 
±0.09 

0.56 
±0.09 

0.58 
±0.09 

0.66 
±0.07 

- 

CCPSO 0.09 
±0.00 

0.09 
±0.00 

0.25 
±0.01 

0.53 
±0.03 

0.75 
±0.06 

1.21 
±0.08 

1.40 
±0.07 

1.47 
±0.08 

1.50 
±0.09 

1.76 
±0.09 

- 

CHPSO(ES-
NDS) 

0.19  
± 0.00 

- 0.44 
±0.02 

- 0.64 
±0.02 

0.91 
±0.01 

0.99 
±0.01 

1.02 
±0.01 

1.03 
±0.01 

1.04 
±0.01 

1.01 
±0.00 

Note: Values in bold font indicate the best results.  
 

To further verify the effectiveness of the proposed Multi-pop-ABC, we statistically compare 

it with other methods. We followed the procedure described in [33]. First, Friedman test and 

Iman and Davenport statistical tests with 0.05 confidence levels are carried out to detect if 

there is a difference between the results of Multi-pop-ABC and other methods. It should be 

noted that only those methods that were tested on all scenarios were considered for this test. 

Both the Friedman test and Iman and Davenport tests returned p-values (0.000009 and 

0.000000009061) less than 0.05 indicating the compared results are statistically different. We 

next conducted a Friedman test to obtain rankings, and Holm and Hochberg post-hoc tests. 

The ranking value for each method obtained by a Friedman test is presented in Table 9 (the 

lower the better), where Multi-pop-ABC obtained the first rank followed by mQSO second 

rank, mCPSO third rank, mQSO* fourth rank and mCPSO* fifth rank. Consequently, Multi-

pop-ABC will be the controlling method for the Holm and Hochberg post-hoc tests. The p-

values of Holm and Hochberg tests are shown in Table 10. From the table, one can see that 

Multi-pop-ABC is statistically better than the compared methods on both Holm and 

Hochberg tests in which all the obtained p-values are less than 0.05.   

Table 9 The average ranking of Friedman test 
# Algorithm Ranking 
1 Multi-pop-ABC 1 
2 mQSO 2.6364 
3 mCPSO 3.3636 
4 mQSO* 3.6364 
5 mCPSO* 4.3636 

 
Table 10 The adjusted p-value of the compared methods 

# Algorithm Unadjusted P P Holm P Hochberg 



1 mCPSO* 0.000001 0.000002  0.000002 
2 mQSO* 0.000092  0.000276 0.000276 
3 mCPSO 0.000455  0.00091 0.00091 
4 mQSO 0.015219  0.015219 0.015219 

 

The above results reveal that, in most of the tested scenarios, the proposed Multi-pop-ABC is 

better than the compared methods. These results are supported by statistical tests. 

We hypothesise that several key features contribute to the high performance of the proposed 

algorithm (Multi-pop-ABC) on the dynamic problem. These can be summarised as follows: 

- Multi-population: This feature is beneficial for maintaining the diversity of solutions 

in the population during the search process. 

- Adaptive number of sub-populations: This feature helps the algorithm in changing the 

solution distribution over the search landscape to get better diversification and 

intensification based on the problem change strength.     

- Population clearing scheme: This feature helps avoid having similar solutions within 

the population in order to further add to the diversification.      

 
4.3 Comparison with state-of-the-art approaches on test functions 
In this section, we evaluate our proposed algorithm based on other well-known ten test 
functions. The tested functions are widely used by researchers [34-37]. These functions are: 
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For every benchmark function, respectively assume the dimension as 30, 50 and 100. The 
results in Tables 11, 12 and 13 demonstrate that Multi-pop-ABC performs better than the 
compared ABC, PS-ABC and PS-ABCII algorithms [34-36] in terms of both mean and 
standard deviation (SD). Note that the best results are highlighted in bold. The presented 
results indicate that the Multi-pop-ABC outperforms other methods over all test functions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 11 M
ean, the standard deviation (SD

) of functions w
ith 30 dim

ensions. 
F 

ABC 
PS-ABC 

PS-ABCII 
LW

G
SO

D
E     

C
FO

A 
M

ulti-pop-ABC 
D

im
 

M
ean

 
SD

 
M

ean
 

SD
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M
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M
ean

 
SD

 
M

ean
 

SD
 

SD
 

SD
 

f1 
30

 
3.3955  x 10

-9 
4.5376 x 10

-9 
0 

0 
0 

0 
1.68 x 10

-7 
1.63 x 10

-7 
1 x 10

-309 
- 

0 
0 

f2 
30 

5.1029 x 10- 6 
1.8417 x 10

-6 
0 

0 
0 

0 
1.10 x 10

-3 
4.09 x 10

-4 
1 x 10 -155 

- 
0 

0 
f3 

30 
1.2598  x 10

4 
2.9192 x 10

3 
7.2696 x 10

3 
1.4359 x 10

3 
4.0756 x 10

4 
8.1760 x 10

3 
- 

- 
- 

- 
6.4361 x 10

2 
1.9164 x 10

2 
f4 

30 
2.4044  x 10

1 
3.3935 

0 
0 

0 
0 

- 
- 

- 
- 

0 
0 

f5 
30 

3.2873 
3.4035 

1.4048 
2.7168 

2.8408 x 10
1 

0.1154 
2.60 x 10

1 
2.70 x 10

-2 
- 

- 
1.0196 

1.9217 

f6 
30 

1.5788  x 10
-1 

3.6701 x 10
-1 

1.8545 x 10
-2 

5.3198 x 10
-3 

5.5447 x 10
-4 

1.2352 x 10
-3 

- 
- 

1 x 10
-309 

- 
3.2124 x 10

-4 
1.0172 x 10

-3 

f7 
30 

-12185.9 
1.4299 x 10

2 
-12549.7 

4.4891 x 10
1 

-12088.9 
1.8715 x 10

2 
- 

- 
- 

- 
-14847.9 

3.5787 x 10
1 

f8 
30 

4.0160 x 10
-1 

6.2228 x 10
-1 

0 
0 

0 
0 

3.85 x 10
-5 

3.75 x 10
-5 

- 
- 

0 
0 

f9 
30 

2.4076 x 10
-5 

1.2439 x 10
-5 

8.8817 x 10
-16 

0 
8.8817 x 10

-16 
0 

2.99 x 10
-4 

1.86 x 10
-4 

1 x 10
-308 

- 
0 

0 

10 
30 

1.4335 x 10
-3 

4.0152 x 10
-3 

0 
0 

0 
0 

- 
- 

1 x 10
-309 

- 
0 

0 

    



 

Table 12 Mean, the standard deviation (SD) of functions with 50 dimension. 
F ABC PS-ABC PS-ABCII Multi-pop-ABC 

Dim Mean SD Mean SD Mean SD Mean SD 
f1 50 1.1483 x 10-5 1.6272 x 10-5 0 0 0 0 0 0 

f2 50 2.8511 x 10-3 1.3944 x 10-3 0 0 0 0 0 0 

f3 50 4.6422 x 104 6.9821 x 103 3.0638 x 103 3.4739 x 103 1.2539 x 105 2.1047 x 104 2.1041 x 103 2.0893 x 103 
f4 50 5.6020 x 101 5.1905 1.8782 x 101 5.7908 0 0 0 0 

f5 50 3.7224 x 101 3.6453 x 101 3.1451 x 101 2.9224 x 101 4.8504 x 101 1.3535 x 10-1 2.2310 x 101 2.1102 x 101 

f6 50 4.2726 x 10-1 8.2393 x 10-2 5.7802 x 10-2 1.6469 x 10-2 5.4388 x 10-4 6.4470 x 10-4 2.1847 x 10-4 3.2711 x 10-4 

f7 50 -19359.1 3.1097 x 102 -20893.4 7.9224 x 101 -19414.1 3.3738 x 102 -26893.4 7.8394 x 101 

f8 50 8.1857 2.4195 0 0 0 0 0 0 

f9 50 4.0637 x 10-2 3.2467 x 10-2 8.8817 x 10-16 0 8.8817 x 10-16 0 0 0 

10 50 9.9977 x 10-3 1.1718 x 10-2 0 0 0 0 0 0 

 
Table 13 Mean, the standard deviation (SD) of functions with 100 dimension. 

F ABC PS-ABC PS-ABCII Multi-pop-ABC 
Dim Mean SD Mean SD Mean SD Mean SD 

f1 100 4.9461 x 10-3 1.1389 x 10-2 8.3417 x 10-47 4.5689 x 10-46 0 0 0 0 

f2 100 2.7814 x 10-1 4.0035 x 10-1 0 0 0 0 0 0 

f3 100 1.8854 x 105 2.1886 x 104 1.3544 x 105 1.2851 x 104 5.4823 x 105 1.0256 x 105 1.4211 x 104 1.0937 x 104 
f4 100 8.2376 x 101 3.0440 7.2160 x 101 4.0371 0 0 0 0 

f5 100 3.3118 x 102 3.8309 x 102 2.0376 x 102 6.7028 x 101 9.8590 x 101 1.5702 x 10-1 4.1781 x 101 1.2011 x 10-1 

f6 100 1.5950 3.2657 x 10-1 2.2021 x 10-1 4.1119 x 10-2 1.6151 x 10-3 3.2646 x 10-3 1.1260 x 10-3 2.9615 x 10-3 

f7 100 -34413.8 5.0878 x 102 -39976.6 3.3634 x 102 -37405.7 5.5665 x 102 -40182.4 2.6738 x 102 

f8 100 8.5540 x 101 1.1018 x 101 0 0 0 0 0 0 

f9 100 3.8186 3.6198 x 10-1 2.3270 x 10-14 1.2259 x 10-13 8.8817 x 10-16 0 0 0 

10 100 1.4344 x 10-1 1.3282 x 10-1 1.6904 x 10-3 6.4786 x 10-3 0 0 0 0 

 
 
 
5. Conclusion 
This paper has presented a modified artificial bee colony algorithm for dynamic optimization 

problems. The aims of our modifications were to enhance the capability of the algorithm to 

efficiently deal with DOPs. We first integrated it with a multi-population method to scatter 

the solution over the search process so that they can search and track the optimum solution 

simultaneously. An adaptive multi-population was also proposed to adaptively change the 

number of sub-populations based on the problem change strength. In addition, a population 

clearing scheme was proposed to remove redundant solutions in the population.  To evaluate 

the performance of the proposed algorithm, experimental tests were carried out using the 

moving peaks benchmark DOP, with a different number of peaks. Comparisons were carried 

out between the proposed algorithm, the basic ABC and state of the art methods.  The results 

demonstrated that the proposed algorithm outperforms basic ABC on all tested scenarios. It 



also produced better results than the state of the art methods on many scenarios, indicating 

that the proposed algorithm is an effective method for the DOP.  
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